简单线性规划问题的类型与解法

简单线性规划问题的类型与解法
简单线性规划问题的类型与解法

简单线性规划问题的类型与解法

简单线性规划问题就是在线性约束条件下,求目标函数最优解的数学问题。纵观近几年的高考,简单线性规划问题是高考的热点问题,基本上每卷都有一个五分小题。归结起来简单线性规划问题主要包括:①在线性约束条件下,求目标函数的最值;②含有参数的简单线性规划问题;③简单线性规划的应用问题等几种类型,各种类型具有各自的结构特征,简单方法也各不相同,那么在实际解答解答线性规划问题时,如何抓住问题的结构特征,快捷、准确地实施解答呢?下面通过典型例题的详细解析来回答这个问题。

【典例1】解答下列问题:

1、设变量x 、y 满足约束条件x+2y-5≤0 则目标函数Z=2x+3y+1的最大值为( )

x-y-2≤0

A 11

B 10 X ≥0

C 9

D 8.5

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确定可行域,利用求目标函数最值的基本方法就可得出结果。

【详细解答】作出约束条件的可行域如图所示,Q 由 x+2y-5=0,得到 x=3,∴A (3,1),B (2,0), x-y-2=0, y=1, C (5,0), ?当目标函数z=2x+3y+1经过点C (5,0)时, z=2?5+3?0+1=10+1=11为最大,?A 正确,∴ 选A 。 x-y+1≤2、实数x 、y 满足 x >0 (1)若z=y x

,求z 的最大值和最小值,并求z 的取值范围; y ≤2 (2)若z= 22x y +,求z 的最大值和最小值,并求z 的取值范围。

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确定可行域,利用求目标函数最值的基本方法分别求出最大值和最小值,就可得出目标函数的取值范围。

【详细解答】作出约束条件的可行域如图所示,Q 由 x-y+1=0,得到 x=1,∴A (0,2),B (1,2), y-2=0, y=2, C (0,1), ?(1)当目标函数z=

y x

经过点B (1,2)时,z=21 =2为最小值,目标函数无最大值,∴目标函数z 的 取值范围是[,2,+∞);(2)当目标函数z=22

x y +经过点C (0,1)时,z=0+1=1为最小值,当目标函数z=22x y +经过点B (1,2)时,z=1+4=5为最大值,的取值范围是[1,5]。

3、设实数x 、y 满足约束条件x+y ≤1 则目标函数Z=3x+y 的最小值为( )

y ≤x A 7 B 2 y ≥-2 C -6 D - 8

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确

【详细解答】作出约束条件的可行域如图所示,Q 由 x+y=1,得到 x=12

,x+y=1,得到 x=3, y=x , y=x , y=12

, y=-2, y=-2,y=-2,得到 x=-2,∴A (12,12

),B (-2,-2),C (3,-2y=-2,?当目标函数z=3x+y 经过点B (-2,-2时,z=3?(-2)+1?(-2)=-6-2=-8为最小,?D 正确, ∴选D 。『思考题1』

(1)【典例1】是在线性约束条件下求目标函数的最值问题,这类问题包括:①目标函数是

线性函数;②目标函数是非线性函数两种类型;

(2)求解目标函数是非线性函数的最值问题一般要结合给定代数式的几何意义来完成;常

见代数式的几何意义有:表示点(x ,y )与原点(0,0)的距离;

表示点(x ,y )到最小Ax+By+C=0的距离;(x ,y )与点(a ,

b )的距离;④y x

表示点(x ,y )与原点(0,0)连线的斜率;⑤y b x a --表示点(x ,y )与点 (a ,b )连线的斜率。

〔练习1〕解答下列问题: x+2y-5≥0

1、设实数x 、y 是满足不等式组 2x+y-7≥0,若x 、y 为整数,则3x+4y 的最小值是( )

x ≥0,y ≥0

A 14

B 16

C 17

D 19

2、若变量x 、y 满足约束条件 3≤2x+y ≤9,则Z=x+2y 的最小值为 ;

x ≥0 6≤x-y ≤9

3、实数x ,y 满足 x-y+1≤0, ①若z= 11

y x --,求z 的取值范围;②若z=2x +2y -2x-2y+3, y ≤2,求z 的最大值与最小值。

【典例2】解答下列问题 : y ≥1

1、已知实数x 、y 满足约束条件 y ≤2x-1,如果目标函数Z=x-y 的最小值是-1,则实数m 等

于( )(2008全国高考陕西卷)x+y ≤m

A 7

B 5

C 4

D 3

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示

的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④一元

一次方程的定义与解法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确

定可行域,利用求目标函数最值的基本方法得到关于实数n 的方程,求解方程得出实数n

的值就可得出结果。

【详细解答】作出约束条件的可行域如图所示,Q 由 x+y=n ,得到 x=n+13, y=2x-1, 得到x=1, y=2x-1, y=2n-13

, y=1, y=1, ,得到 x=n-1,∴A (n+13,2n-13

),B (1,1),, y=1,C (n-1,1),?当目标函数z=x -y =经过点A (n+13,2n-13)时,z=n+13-2n-13=2-n 3

,当目标函数z= x-y =经过点B (1,1)时,z=1-1=0,当目标函数z= x-y =经过点,C (n-1,1)时,z=n-1-1=n-2,Q n-2-2-n 3

=4n-43,①若n ≥1,n-2-2-n 3=4n-43≥0,?目标函数z 的最小值为2-n 3

=-1,∴n=5;② 若n <1,n-2-2-n 3=4n-43

<0,?目标函数z 的最小值为n-2=-1,?n=1,此时无解,∴综上所述,当目标函数z =x-y 的最小值是-1时,实数n=5,?B 正确,∴选B 。

=2为最小值,目标函数无最大值,∴目标函数z 的

2、若变量x 、y 满足约束条件 x-y ≥-1,目标函数Z=ax+2y 仅在点(1,0)处取得最小

值,则a 的取值范围是( ) 2x-y ≤2,

A (-1,2) x+y ≥1,

B (-4,2)

C (-4,0〕

D 〔-3,4)

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示

的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④一元

一次不等式组的定义与解法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确

定可行域,不等式组,得出实数a 的取值范围就可得出结果。

【详细解答】作出约束条件的可行域如图所示,Q 由 x-y=-1,得到 x=3, x-y=-1, 得到x=0, 2x-y=2, y=4, x+y=1, y=1, 1

,得到 x=1,A (3,4),B (0,1), x+y=1, y=0,C (1,0),?当目标函数z= ax+2y 经过点A (3,4)时,z=3a+8;当目标函数 z=ax+2y 经过点B (0,1)时,z=0+2=2;当目标函数z=,

Q 目标函数Z=ax+2y 仅在点(1,0)处取得最小值,∴a < 3a+8? -4

a < 2,

∴选B 。

3、若实数x 、y 满足不等式组 x+3y-3≥0,且x+y 的最大值是9,则实数m=( ) 2x-y-3≤0

A -2

B -1 x-my+1≥0

C 1

D 2

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④分式方程的定义与解法。

【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确定可行域,利用求目标函数最值的基本方法得到关于实数n 的分式方程,求解分式方程得出实数n 的值就可得出结果。

【详细解答】作出约束条件的可行域如图所示,Q 由 2x-y-3=0,得到 x= 3n 121

n +-,x+3y-3=0, 得到 x-ny+1=0, y=521

n -, x-ny+1=0, 1 B C x+3y-3=0 x=333n n -+, 2x-y-3=0,得到 x= 127,∴A (3n 121

n +-y=43

n +, x+3y-3=0, y=37,521n -),B (333n n -+,43n +),C (127,37),?当目标函数z=x+y 经过点A (3n 121n +-,521

n -)时, z=3n 121n +-+521n -=3n 621n +-,当目标函数z=x+y 经过点B (333n n -+,43

n +)时,z=333n n -+ +43n += 313

n n ++,当目标函数z=x+y 经过点C (127,-37)时,z=127-37=97≠9,Q 若 3n 621n +-=9,?n=1;若313

n n ++=9,?n=-72,?C 正确,∴选C 。 『思考题2』

(1)【典例2】是含参数的线性规划问题,这类问题包括:①条件不等式中含有参数;②目标函数中含有参数两种类型;

(2)求解含有参数简单线性规划问题的基本方法是:①将参数视为常数,根据线性规划问题求出最优解,代入目标函数确定最值构造含参数的方程(或不等式),再求解方程(或不等式);②先分离含有参数的式子,再通过观察确定含参数的式子所满足的条件。

〔练习2〕解答下列问题:

1、设m >1,在约束条件y ≥x 下,目标函数Z=x+my 的最大值小于2,则m 的取值范围为 ( ) y ≤mx

A (1,1+ ) x+y ≤1

B (1+ ,+∞)

C (1,3)

D (3,+∞)

2、已知a >0,x ,y 满足约束条件 x+y ≤3,若z=2x+y 的最小值为1,则a=( )

x ≥1

A 14

B 12

y ≥a(x-3) C 1 D 2 【问题3】解答下列问题

1、某公司有60万元资金,计划投资甲、乙两个项目,按要求对甲项目的投资不小于对项目

乙投资的23

倍,且对每个项目的投资不低于5万元,对项目甲每投资1万元可获得利润0.4万元,对项目乙投资每1万元可获得利润0.6万元,该公司正确规划投资后,在这两个项目上共可获得的最大利润是( )

A 36万元

B 31.2万元

C 30.4万元

D 24万元

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④求解应用问题的基本方法。

【解题思路】设该公司投资甲项目x 万元,投资乙项目y 万元,根据问题条件得到线性约束条件和目标函数,

【详细解答】设该公司投资甲项目x 万元,投资乙项目y 元,由题意得: x+y ≤60,目标函数z=0.4x+0.6y x ≥23y ,束条件的可行域如图所示,Q x ≥5, x+y=60,得 x=24, x+y=60, x ≥5, x=

23y , y=36, y=5, 得 x=55, x=23

y ,得 x=5, x=5, y=5, x=5, y=7.5, y=5, ∴A (24,36),B (55,5),C (5,7.5),D (5,5), ?当目标函数z= 0.4x+0.6y 经过点A (24,36)时,

z=0.4 ?24+0.6?36=9.6+21.6=31.2为最大,∴该公司正确规划投资后,在这两个项目上共 可获得的最大利润是31.2万元,?B 正确,∴选B 。

2、某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨,生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得的最大利润是( )

A 12 万元

B 20万元

C 25万元

D 27万元

【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④求解应用问题的基本方法。

【解题思路】设该企业生产甲产品x 吨,生产乙产品y 吨,根据问题条件得到线性约束条件和目标函数,

【详细解答】设该企业生产甲产品x 吨,生产乙产品y 由题意得: 3x+y ≤13,目标函数z=5x+3y ,作出约束条件 2x+3y ≤18,的可行域如图所示,Q 由3x+y=13 x ≥0, x=3, 2x+3y= y ≥0,得 y=4,∴A (3,4),?当目标函数z=5x+3y 经过点A (3,4)时, z= 5?3+3?4=15+12=27

最大,∴该企业可获得的最大利润是27万元,?D正确,∴选D。

3、某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元,甲、乙两车间每天共完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为()

A甲车间加工原料10箱乙车间加工原料60箱B甲车间加工原料15箱乙车间加工原料55箱C甲车间加工原料18箱乙车间加工原料52箱D甲车间加工原料40箱乙车间加工原料30箱【解析】

【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法;④求解应用问题的基本方法。

【解题思路】设该加工厂甲车间加工原料x箱,乙车间加工原料y箱,根据问题条件得到线性约束条件和目标函数,运用二元一次不等式组表示的平面区域的确定方法,根据线性约束

【详细解答】设该加工厂甲车间加工原料x箱,乙车间

加工原料y箱,由题意得:x+y≤70,目标函数

10x+6y≤480, 200y,作出约

x≥0, 束条件的可行

y≥0,15 域如图所示,

Q由 x+y=70,得 x=15,∴A(15,55),?当目标

10x+6y=480, y=55,函数经过点A(15,55)

时,z= 280?15+20055=4200+11000=15200为最大,∴

当甲车间加工原料15箱,乙车间加工原料55箱时,甲,

乙两车间每天获利最大,?B正确,∴选B。

『思考题3』

(1)【典例3】是线性规划的实际应用问题,主要包括两:①给定一定数量的人力,物力资源,求怎样利用这些资源可以使完成的工作量最大,获取的利润最大;②给定一项任务,求怎样统筹安排,使完成这项任务耗费的人力,物力资源最小;

(2)解答线性规划应用问题的基本方法是:①认真读题,理解题意,确定影响问题的未知变量并设出未知变量;②确定影响问题的约束条件,列出二元一次不等式(或不等式组);

③根据条件写出目标函数(关于未知变量的解析式);④作出约束条件所表示的平面区域;

⑤确定最优解(若问题要求最优解是整数,按线性规划问题求得的最优解不是整数时,需作适当的调整,基本方法是:1》求出可行域中的所有整数点,2》利用点到直线的距离公式求出到目标函数距离最小的整数点为最优解),把最优解代入目标函数求出结果。

〔练习3〕解答下列问题:

1、某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需运往A地至少72吨货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元,派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用的两类卡车的车辆数,可得最大利润为()

A 4650元

B 4700元

C 4900元

D 5000元

2、某公司生产甲、乙两种幅袋产品,已知生产甲产品一幅需耗A原料1千克,B原料2千克;生产乙产品一幅需耗A原料2千克,B原料1千克。每幅甲产品的利润是300元,每幅

乙产品的利润是400元,公司在生产这两种产品的计划中,要求每天消耗A、B两种原料都不超过12千克,通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()

A 1800元

B 2400元

C 2800元

D 3100元

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划常见题型全集

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.已知实数x ,y 满足002x y x y ≥?? ≥??+≤? ,则z =4x +y 的最大值为( ) A 、10 B 、8 C 、2 D 、0 【答案】B 【解析】 试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8 考点:线性规划. 2.若不等式组0220x y x y y x y a -≥??+≤? ?≥??+≤?,表示的平面区域是一个三角形区域,则a 的取值范围是 ( ) A.43a ≥ B.01a <≤ C.413 a ≤≤ D.01a <≤或43a ≥ 【答案】D

【解析】根据 22 x y x y y -≥ ? ?+≤ ? ? ≥ ? ?? 画出平面区域(如图1所示),由于直线x y a +=斜率为1-,纵截距为a, 自直线x y a +=经过原点起,向上平移,当01 a <≤时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图2所示);当 4 1 3 a <<时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个四边形区域(如图3所示),当 4 3 a≥时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图1所示),故选D. 图1 图2 图3 考点:平面区域与简单线性规划. 3.已知变量x,y满足约束条件 20 1 70 x y x x y -+≤, ? ? ≥, ? ?+-≤, ? 则 y x的取值范围是( ) A. 9[6] 5 ,B.9 (][6) 5 -∞,?,+∞C.(3][6) -∞,?,+∞D.(3,6]

线性规划化问题的简单解法

简单线性规划问题的几种简单解法 依不拉音。司马义(吐鲁番市三堡中学,838009) “简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。 简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为: 1112220(0)0(0),(),0(0) m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤??++≥≤?∈=+???++≥≤?约束条件 目标函数 , 下面介绍简单线性规划问题的几种简单解法。 1. 图解法 第一步、画出约束条件表示的可行区域,这里有两种画可行 区域的方法。 ⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把 它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。 ⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)

表示的区域在直线Ax+By+C=0的上方;若B>0(<0),则不等式Ax+By+C<0(>0)表示的区域在直线Ax+By+C=0的下方。(即若B与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方) 用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。 第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这个可以用下面的两种办法解决。 ⑴y轴上的截距法:若b>0,直线y a b x z b =-+所经过可行域上的点使其y轴上的截距最大(最小)时,便是z取得最大值(最 小值)的点;若b<0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。 例1.设x,y满足约束条件 x y y x y +≤ ≤ ≥ ? ? ? ? ? 1 , , , 求z x y =+ 2的最大值、最 小值。 解:如图1作出可行域,因为y的系数1大于0,目标函数z x y =+ 2表示直线y x z =-+ 2在y轴上的截距,当直线过A(1,0) 时,截距值最大z max =?+= 2102,当直线过点O(0,0)时,截距

简单的线性规划word版

如对你有帮助,请购买下载打赏,谢谢! 7.3简单的线性规划 考点一二元一次不等式(组)表示的平面区域 1.(2013北京,14,5分)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足 =λ+μ(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为. 答案 3 2.(2013山东,14,4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是. 答案 3.(2013安徽,12,5分)若非负变量x,y满足约束条件则x+y的最大值为. 答案 4 考点二线性规划问题 4.(2013课标全国Ⅱ,3,5分)设x,y满足约束条件则z=2x-3y的最小值是( ) A.-7 B.-6 C.-5 D.-3 答案 B 5.(2013天津,2,5分)设变量x,y满足约束条件则目标函数z=y-2x的最小值为( ) A.-7 B.-4 C.1 D.2 答案 A 6.(2013福建,6,5分)若变量x,y满足约束条件则z=2x+y的最大值和最小值分别为( ) A.4和3 B.4和2 C.3和2 D.2和0 答案 B 7.(2013陕西,7,5分)若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值是( ) A.-6 B.-2 C.0 D.2 答案 A 8.(2013四川,8,5分)若变量x,y满足约束条件且z=5y-x的最大值为a,最小值为b,则a-b的值是( ) A.48 B.30 C.24 D.16 答案 C 9.(2013湖北,9,5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为( ) A.31 200元 B.36 000元 C.36 800元 D.38 400元 答案 C 10.(2013课标全国Ⅰ,14,5分)设x,y满足约束条件则z=2x-y的最大值为. 答案 3 11.(2013湖南,13,5分)若变量x,y满足约束条件则x+y的最大值为. 答案 6 12.(2013北京,12,5分)设D为不等式组表示的平面区域.区域D上的点与点(1,0)之间的距离的最小值为. 答案 13.(2013广东,13,5分)已知变量x,y满足约束条件则z=x+y的最大值是. 答案 5 14.(2013浙江,15,4分)设z=kx+y,其中实数x,y满足若z的最大值为12,则实数k= . 答案 2

线性规划常见疑问

第一章线性规划常见疑问解答 1.线性规划——这一运筹学重要分支的开创者是谁? 这里,必须谈到两个著名的人物,康托洛维奇和丹捷格。 1939年著名数理经济学者康托洛维奇发表了《生产组织和计划中的数学方法》这一运筹学的先驱性名著,其中已提到类似线性规划的模型和“解乘数求解法”。但是他的工作直到1960年的《最佳资源利用的经济计算》一书出版后,才得到重视。1975年,康托洛维奇与T . C . Koopmans 一起获得了诺贝尔经济学奖。 1947年G . B. Dantzig 在研究美国空军军事规划时提出了线性规划的模型和单纯形解法,并很快引起美国著名经济学家Koopmans的注意。Koopmans为此呼吁当时年轻的经济学家要关注线性规划。今天,单纯形法及其理论已成为了线性规划的一个重要的部分。 2.线性规划模型的形式是什么? 目标函数和约束条件都是线性的。 3.线性规划模型的三要素是什么? 就是资源向量b,价值向量c,系数矩阵A(一般都假设A是满秩的)。其中,资源向量b表示了稀缺资源的种类和限度;价值向量c反映了单位产品(广义)所创造的收益或形成的成本;而系数矩阵A是现有生产技术、生产工艺、管理水平的具体体现。只要这三个要素确定了,相应的线性规划模型就确定了。 4.线性规划模型的经济意义何在? 简言之,线性规划模型对于解决经济学研究的核心问题——资源有效配置有比较重要的意义。它不仅为宏观或微观的经济研究提供了一个有效的解决问题的平台,而且,(曾经)为经济学家提供了一个解决资源优化配置的新的思路。不仅如此,线性规划在企业的运作管理、物流管理、财务管理、人力资源管理、战略管理等诸多方面也能为管理者提供科学的决策支持。 5.线性规划的标准形式是怎样的? 线性规划的标准形式有三个特点:

线性规划常见题型大全

线性规划常见题型大全 Revised by BETTY on December 25,2020

绝密★启用前 2014-2015学年度?学校8月月考卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 一、选择题(题型注释) 1.已知实数x ,y 满足002x y x y ≥?? ≥??+≤? ,则z =4x +y 的最大值为( ) A 、10 B 、8 C 、2 D 、0 【答案】B 【解析】 试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8 考点:线性规划. 2.若不等式组0220x y x y y x y a -≥??+≤? ?≥??+≤?,表示的平面区域是一个三角形区域,则a 的取值范围是( ) A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥ 【答案】D

【解析】根据0220x y x y y -≥??+≤? ?≥??? 画出平面区域(如图1所示),由于直线x y a +=斜率为1-,纵截 距为a , 自直线x y a +=经过原点起,向上平移,当01a <≤时,0220x y x y y x y a -≥??+≤? ?≥??+≤?表示的平面区域是一个 三角形区域(如图2所示);当413a <<时,0 220x y x y y x y a -≥??+≤? ?≥? ?+≤ ?表示的平面区域是一个四边形区域 (如图3所示),当43a ≥时,0 220x y x y y x y a -≥??+≤? ?≥??+≤?表示的平面区域是一个三角形区域(如图1所 示),故选D. 图1 图2 图3 考点:平面区域与简单线性规划. 3.已知变量x,y 满足约束条件 20170x y x x y -+≤, ?? ≥,??+-≤, ? 则y x 的取值范围是( ) A .9[6]5, B .9(][6)5-∞,?,+∞ C .(3][6)-∞,?,+∞ D .(3,6] 【答案】A 【解析】 试题分析:画出可行域, y x 可理解为可行域中一点到原点的直线的斜率,可知可行域的边界交点为临界点(59,22),(1,6)则可知k =y x 的范围是9[6]5,. 考点:线性规划,斜率. 4.(5分)(2011?广东)已知平面直角坐标系xOy 上的区域D 由不等式组 给定.若M (x ,y )为D 上的动点,点A 的坐标为 ,则 z=的最大值为( )

《简单的线性规划问题》教案

《简单的线性规划问题》教学设计 (人教A版高中课标教材数学必修5第三章第3.3.2节) 祁东二中谭雪峰 一、内容与内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法. 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想. 通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力. 二、教学目标 一)、知识目标 1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 2.理解线性规划问题的图解法 3. 会用图解法求线性目标函数的最优解. 二)、能力目标 1.在应用图解法解题的过程中培养学生的观察能力、理解能力. 2.在变式训练的过程中,培养学生的分析能力、探索能力.

3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想. 三)、情感目标 1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣. 2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神. 三、教学重点、难点 重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解. 难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系. 四、学习者特征分析 1. 已经掌握用平面区域表示二元一次不等式(组) 2. 初步学会分析简单的实际应用问题 3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示 本节课学生在学习过程中可能遇到以下疑虑和困难: 1.将实际问题抽象成线性规划问题; 2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化? 3.数形结合思想的深入理解. 五、教学与学法分析 本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等. 1.设置“问题”情境,激发学生解决问题的欲望; 2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.

线性规划的方法及应用

线性规划的方法及应用 1 引言 运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一. 2 线性规划的提出 经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等. ②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即 ,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负. 线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“ ”,

线性规划问题中目标函数常见类型梳理

线性规划问题中目标函数常见类型梳理 山东 张吉林 线性规划问题中目标函数的求解是线性规划问题的重点也是难点,对于目标函数的含义学生往往理解的不深不透,只靠死记硬背,生搬硬套,导致思路混乱,解答出错。本文将有关线性规划问题中目标函数的常见类型梳理如下,以期对大家起到一定的帮助。 一 基本类型——直线的截距型(或截距的相反数) 例1.已知实数x 、y 满足约束条件0503x y x y x +≥??-+≥??≤? ,则24z x y =+的最小值为( ) A .5 B .-6 C .10 D .-10 分析:将目标函数变形可得124 z y x =-+,所求的目标函数的最小值即一组平行直线12 y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。 解析:由实数x 、y 满足的约束条件,作可行域如图所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =?+?-=-,答案选B 。 点评:深刻地理解目标函数的含义,正确地将其转化为直线的斜率是解决本题的关键。 二 直线的斜率型 例2.已知实数x 、y 满足不等式组2240x y x ?+≤?≥? ,求函数31y z x +=+的值域. 解析:所给的不等式组表示圆22 4x y +=的右半圆(含边界),

31 y z x +=+可理解为过定点(1,3)P --,斜率为z 的直线族.则问题的几何意义为:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1) z --==--.过点P 所作半圆的切线的斜率最小.设切点为(,)B a b ,则过B 点的切线方程为4ax by +=.又B 在半圆周上,P 在切线上,则有22434 a b a b ?+=?--=?解 得65a b ?=???--?=?? 因 此min z =。综上可知函数的值域 为???? 三 平面内两点间的距离型(或距离的平方型) 例3. 已知实数x 、y 满足10101x y x y y +-≤??-+≥??≥-? ,则22448w x y x y =+--+的最值为___________. 解析:目标函数2222 448(2)(2)w x y x y x y =+--+=-+-,其含义是点(2,2)与可行域内的点的距离的平方。由实数x 、y 所满足的不等式组作可行域如图所示:

线性规划常见题型大全

. 绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.已知实数x ,y 满足002x y x y ≥?? ≥??+≤? ,则z =4x +y 的最大值为( ) A 、10 B 、8 C 、2 D 、0 【答案】B 【解析】 试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8 考点:线性规划. 2.若不等式组0220x y x y y x y a -≥??+≤? ?≥??+≤?,表示的平面区域是一个三角形区域,则a 的取值范围是 ( ) B.01a <≤ C. D.01a <≤或【答案】D

试卷第2页,总17页 【解析】根据 22 x y x y y -≥ ? ?+≤ ? ? ≥ ? ?? 画出平面区域(如图1所示),由于直线x y a += 斜率为1 -,纵截距为a, 自直线x y a +=经过原点起,向上平移,当01 a <≤时, 22 x y x y y x y a -≥ ? ?+ ≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图2所示) 时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个四边形区域(如图3所示)时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图1所示),故选D. 图1 图2 图3 考点:平面区域与简单线性规划. 3.已知变量x,y满足约束条件 20 1 70 x y x x y -+≤, ? ? ≥, ? ?+-≤, ? ( ) A.(3][6) -∞,?,+∞ D.(3,6] 【答案】A

高二数学最新教案-简单线性规划问题的向量解法 精品

●教学目标 (一)教学知识点 1.线性规划问题,线性规划的意义. 2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 3.线性规划问题的图解方法. (二)能力训练要求 1.了解简单的线性规划问题. 2.了解线性规划的意义. 3.会用图解法解决简单的线性规划问题. (三)德育渗透目标 让学生树立数形结合思想. ●教学重点 用图解法解决简单的线性规划问题. ●教学难点 准确求得线性规划问题的最优解. ●教学方法 讲练结合法 教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题. ●教具准备 多媒体课件(或幻灯片) 内容:课本P60图7—23 记作§7.4.2 A 过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0. 然后,作一组与直线的平行的直线: l:2x+y=t,t∈R (或平行移动直线l0),从而观察t值的变化. ●教学过程 Ⅰ.课题导入 上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题. Ⅱ.讲授新课 首先,请同学们来看这样一个问题.

设z =2x +y ,式中变量x 、y 满足下列条件?? ???≥≤+-≤-1255334x y x y x 求z 的最大值和最小值. 分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域. (打出投影片§7.4.2 A) [师](结合投影片或借助多媒体课件) 从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R . 可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0. 而且,直线l 往右平移时,t 随之增大. (引导学生一起观察此规律) 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小. 所以:z m ax =2×5+2=12, z m in =2×1+3=3. 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题. 那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. Ⅲ.课堂练习 [师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线 l :2x +y =t ,t ∈R . 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大 .

线性规划的常见题型及其解法

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划题型总结

线性规划题型总结 1. “截距”型考题 在线性约束条件下,求形如(,) =+∈的线性目标函数的最值问题,通常转 z ax by a b R 化为求直线在y轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行 域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.(2017天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3 答案:D 解:变量x,y满足约束条件的可行域如图: 目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3. 2.(2017新课标Ⅲ)若x,y满足约束条件,则 z=3x﹣4y的最小值为. 答案:﹣1. 解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分), 平移直线y=x﹣,由平移可知当直线y=x﹣, 经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值, 将B的坐标代入z=3x﹣4y=3﹣4=﹣1,

即目标函数z=3x﹣4y的最小值为﹣1. 3.(2017浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞) 答案:D. 解:x、y满足约束条件,表示的可行域如图: 目标函数z=x+2y经过C点时,函数取得最小值, 由解得C(2,1), 目标函数的最小值为:4 目标函数的范围是[4,+∞). 4.(2016河南二模)已知x,y∈R,且满足,则z=|x+2y|的最大值为() A.10 B.8 C.6 D.3 答案:C. 解:作出不等式组,对应的平面区域如图: (阴影部分) 由z=|x+2y|, 平移直线y=﹣x+z, 由图象可知当直线y=﹣x﹣z经过点A时,z取得最大 值,

简单的线性规划教案[1]

简单的线性规划教案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

简单的线性规划【教学目标】 1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。 【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】 1.课题导入 [复习提问] 1、二元一次不等式0 +C Ax在平面直角坐标系中表示什么图形? By + > 2、怎样画二元一次不等式(组)所表示的平面区域应注意哪些事项 3、熟记“直线定界、特殊点定域”方法的内涵。 2.讲授新课 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:

引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组: 2841641200 x y x y x y +≤??≤?? ≤??≥?≥?? (1) (2)画出不等式组所表示的平面区域: 如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。 (3)提出新问题: 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答: 设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为: 当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少? 把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z 的直线。 当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

相关文档
最新文档