为热力学建筑确定合适的模型

为热力学建筑确定合适的模型
为热力学建筑确定合适的模型

为热力学建筑确定合适的模型

摘要:本篇论文介绍了为热力学建筑确定合适的模型的过程。这个过程对于确定模型而言是十分必要的,这有利于更好的使用智能仪表,未来几年这些智能仪表会被安装在几乎全部的建筑上。而且这个模型有许多用途,例如,控制室内气候,预测能源消耗,以及对于建筑物的能源性能的准确描述。灰箱模型基于先前的物理学知识,并且应用了数据驱动建模,这帮助我们得以了解建筑物的物理特性。日益复杂的层次结构模型由先前的物理学知识论述,并且提出了一个正向的选择策略,以此来使分析人员反复地在日益复杂的模型中筛选出合适的模型。分析人员使用概度比检定来比较不同模型的性能,并且使用适当的数据和物理解释这两者结合的方式来验证结果。在对一个单层120平方米的建筑分析之后,分析人员找到了一个合适的模型来描述个案分析。成果是对一系列日益复杂的不同模型,以及建筑物特征,例如导热性,不同部位的热容,和窗口区域进行了预估。

关键词:连续时间模型;概度比检定;灰箱模型;热力学;热动力学;建筑物;模型选择;集总模型;参数估计

1.简介

本篇论文描述了一种新方法来获得关于建筑热动力学的信息,这种方法基于对热量消耗,室内温度,和其他气候变量的频繁的测取。这种方法被认为极其重要,是更好的使用智能仪表的关键性步骤,未来几年这些智能仪表会被安装在几乎全部的建筑上。这种方法是基于为热动力学建筑选择一个合适模型的过程。Rabl [12]给出了一种关于分析稳态和动态的建筑能源使用的技术的观点,后来涉及到关于建筑热动力系统的建模。这种动态模型可以由一系列不同的等式(由Sonderegger [13]和Boyer et al. [4]实施)来实现。在动态模型中参数估计作为系统识别被认知,并且一项关于建筑物的不同方法在Ref. [3]中被发现。该方法采用的模型是灰箱模型,它由一系列连续时间随机微分方程和一系列分离时间测量方程组成。灰箱模型可以被很好地证明是一个复杂却又精确的方法来模拟动态系统,因此可以得到关于建筑物热力性质的信息(见[8,1,5])。确定一个合适模型的问题在于找到一个符合物理现实的模型,并且这个模型具有与数据信息水平相符的复杂度,这意味着这个模型应该既不低于标准,又不能高于标准。大多数合适的模型通过一系列日益复杂的模型来确定。一项正向的策略已经被实施,所以分析人员由最简单易行的模型开始建模,并且反复选择日益复杂的模型。在每次迭代中,不同的模型通过概度比检定来比较,并且分析模型的性能。筛选程序直到模型没有明显的进步为止。通过Refs. [11,10]来对可能的理论和模型选择进行深入的评估。分析

人员通过为一个单层120平米的建筑物确定合适的模型来展示这个过程。这个建筑是实验性的能源分布系统的一部分,这个系统实验室在丹麦,它的外部由木头建造,内部由石膏板建成,在它们之间是一层保温棉。使用的数据来自持续6天的一系列建筑能源性能的实验,这个实验在2009年冬天被实施,其在Ref. [2]中被详细描述。

本篇论文的其余部分如下所述。采用的灰箱模型建模技术在第二部分被描述,模型选择的统计检验在第三部分被描述,为确定合适的模型所提出的程序在第四部分简述。接下来部分是个案分析,这将用到前述的程序,它以建筑物和数据的描述为开头,接下来是采用的模型和筛选方法的简述,以结果的讨论为结尾。最后在第六部分给出了一个关于应用程序的观点,结论在第七部分给出。

2. 动力系统的灰箱模型

灰箱模型基于先前的物理学知识,并且采用了统计学,也就是数据中的信息。先前的物理学知识由一系列一阶随机微分方程论述,也称作连续时间随机线性状态空间模型。这个等式描述了建筑物热动力系统的集总模型,它强调了参数的物理解释是基于建筑物在模型中是如何被划分为实体的。

一个可行的模型例子如下。它有两个状态变量,其中一个用来描述内部温度T i ,另一个代表建筑物围护结构的温度T e 。由随机微分方程代表一阶动态,

111()i e i h w s i i ie i i i

dT T T dt dt A dt dw R C C C φφσ-=

+++ (1) e 11()()R e i e a e e e ie e a e dT T T dt T T dt dw R C C σ--=++ (2)

其中t 代表时间,ie R 代表建筑物内部和外围之间的热阻,e R a 代表建筑物外围与周围空气的热阻,i C 代表建筑物内部热容,e C 代表建筑物外围热容,h φ是从供热系统流出的能量,w A 是有效窗口区域,s φ是从日光照射中得到的能量,a T 是周围空气的温度,{i w ,t}

和{e w ,t}代表标准维纳过程,2i σ和2e σ代表维纳过程的增量变化。这个模型可以由图一中

的RC 网络所表示,在图一中这个模型被分成不同的部分,以此来说明建筑物的相应部分。

图1

物理模型部分与数据驱动模型部分一起和可观测数据中的信息被用于参数估计。数据驱动部分在可能的模型中用离散时间测量方程表示:

k ik k Y T e =+ (3)

其中k 是一次测量中的时间k t 的一个点,k Y 是测量的内部温度,k e 是测量误差,它被认为是带有变量2

σ的高斯白噪声过程。这种假设确保了模型的评估和模型的测试性能,因为这种假设一旦成立,这将意味着物理模型与所受观察的建筑物的热动力学系统一致。 参数的最大估计 给出一个上述的灰箱模型,可以得到参数的最大估计。观测结果可由以下式子表示, 110[,,...,,]N N N y Y Y Y Y -= (4)

然后得到可能的方程是联合密度方程:

101(;)(,)()||N N K k K L y P Y y P Y θθθ-=??= ???

∏ (5) 其中1(,)|K k P Y y θ-是一个条件密度,它用来指示在考虑到先前的观测结果和参数θ时的观测k Y 的可能性,0|()P Y θ是起始条件的参数化。最大可能参数估计由以下公式得到: ?max{;arg ()}N L Y θ

θθ

= (6) 由于之前提到的关于噪声过程的假设和模型是线性的事实,于是出现了这样的结果:在Eq.(6)中的条件密度是高斯密度。因为这里的条件密度是高斯密度,所以卡尔曼过滤器可以用于计算似然函数,并且可以应用优化算法来将它最大化,然后计算出最大的似然估计(在

[7]中有详细的论述)。这些被应用于计算机软件CTSM ,这款软件已经被用于计算参数估计(在Ref.[6]中有关于这款软件的更多内容)。

3. 模型筛选的统计检验

统计检验可以被用到选择最合适的模型,如果一个模型是更大的模型的子模型,那么一种可能性检测将决定这个更大的模型是否能够表现得比子模型更出色。可以发展一系列筛选最佳模型的策略测试。

3.1概度比检测

使一个模型有0θ∈Ω这个参数,其中0r

R Ω∈是参数空间,0dim()r =Ω在模型中是参数的数量。使一个模型有θ∈Ω这个参数,其中m R Ω∈,dim()m Ω=,并且假定 0Ω?Ω (7)

也就是第一个模型是第二个模型的子模型,而且r m <。

概度比检测公式为:

0()(sup ;()sup ;)

N N N L y y L y θθθλθ∈Ω∈Ω= (8) 其中N y 是观测值,可以被用于检测假设:

00:H θ∈Ω vs. 0:Ha θ∈ΩΩ? (9)

因为在0H 的统计监测量2log(())N y λ-收敛到自由度为(m-r )的随机变量2

x 的情况下,N y 的样本数量趋于无穷。如果0H 不成立,那么更大的模型的可能性比子模型的可能性要明显大一些,并且可以得到结论N y 在更大的模型中更具观察价值。所以更大的模型比子模型更能描述隐藏在数据中的信息。更多详细内容见Ref. [10]。

3.2预选

在预选程序中,分析人员从一个最小的、可行的模型开始,然后依次用给定值最低的部分拓展模型,也就是说,这是最重要的改进。可能改进的模型是在每次迭代中选择出来的对当前模型而言需要最小拓展的那个。当模型没有改进的必要时程序停止,除非假定值低于预先规定的限定值,通常设定为5%。

4. 模型筛选程序

筛选合适模型的不同策略在文献中给出,并且发现了一种合适的策略,这种策略基于具体的建模设置。一种纯粹的算法和详细的选择的程序很难做到合适,所以分析人员在筛选中一定程度上涉及到的迭代法被广泛应用。在这,一种预选程序被提出来,它被用来确定一种基于概度比检测的合适的热动力系统模型,这种程序在3.1中被详细介绍。

4.1模型选择

Ω和

这个程序开始于一个关于最简可行性模型的设想,它有参数空间m

Ω的完整模型,

一个具有参数空间full

Ω?Ω(10)

m full

在这个范围内可以建立一组模型,并且能够确定一个合适的模型。这个合适的模型是最精简的模型,它足以描述隐藏在数据[10]中的信息。这种选择源于最简单的模型并且这种模型的拓展是迭代增加的。当被选定的模型不需要再改进时,程序会停止,并且给出一个高于预先设定的限制值的假定值,这个模型更适合于观测数据。上述提到的纯粹的算法程序是不可能做到这一点的,所以分析人员必须在每次迭代中评估预计的模型,评估的内容主要是分析残差的属性和参数估计。如果某些属性不符合设想和物理事实,分析人员可能会不得不影响模型的选择。在图2中列出了具体的程序,每一个步骤的主要内容是模型拟合:从当前模型拓展得到的模型依靠参数的最大似然估计而适合数据。

图2

似然比测试:把现有的模型与每一个扩展模型进行比较,然后计算出似然比检验的统计数据。如果没有一个测试中的假定值低于5%,那么停止计算并且使用当前的模型作为最终模型,若不是则选择拓展后的具有最低假定值的模型。

估计:分析人员估计被选择的、拓展后的模型。如果结果是令人满意的,那么继续使用这个模型并且下一次迭代可以开始;如果结果不是令人满意的,那么重复之前的步骤来选择其他的拓展。

如果两个扩展显示出几乎相同的改进,也就是说,测试中的假定值几乎相等,那么这种选择模式可以被拓展,并且分别检验不同部分的拓展的内容。程序将会进行到几个模型无法相互由于对方为止,这时需要分析人员来决定哪一个更加优秀。这需要由比较可能性来完成,如果两个模型具有相同的可能性,那么应首选小一些的模型,并且还需考虑残差检验和模型估计。也可能发生这样的情况,几个模型这有性能上的边际差异,那么这几个模型都可以被认定是有效的模型。

4.2模型评价

被选取的模型在每一个步骤中必须被评估。这有助于检验模型是否满足假设和是否能够从一个物理的观点给出合理的评价。并且这种评价可以通过发现模型的哪些部分应该更加完善来揭示模型的缺点。这种评价应该包括以下几个方面:

-关于白噪声残差的假定应当使用自相关函数和累计周期图来得到,这样也可以揭示如何更好的在不同时间尺度上的动力学建模。

-关于输入量,输出量,残差的统计图。这些统计图可以用于了解模型没有描述好哪些效果。-关于估计的物理参数的评价。很明显,不同模型之间的结果应该是一致的,举例来说,在众多模型中关于建筑物外围结构热阻的估计不应该有很明显的改变。

5.案例分析:建筑物的模型识别

分析人员通过将一种方法应用于为一个建筑物确定合适的模型来演示这种方法。这个建筑物叫做FlexHouse,它是位于丹麦国家实验室的实验性能源系统Syslab的一部分。这座建筑物很适合这类实验,因为它有一个可控的电加热系统。五分钟的检测结果甚至比六天的检测值更具价值,并且这些检测结果将被用于实验的描述,而且实验数据已经给出来了。这一部分开始于对建筑物和测量设备的描述,然后给出了考虑的模型的概述并且提供了数据,最后给出了模型识别和评价。

5.1建筑物和测量设备的描述

建筑物的外部由木头建造,内部由石膏板建成,在它们之间是一层保温棉。在图3中我们可以看到北立面和南立面的样子。这些建筑物是成群的,在地面和建筑物之间有一间隙。房顶是平的并且由油毡纸覆盖。建筑物的平面图的规模大约是16米的7.5倍。在图4中给出了建筑物的平面图。在建筑物内安装了服务系统,它可以控制电加热器,它位于建筑物平面图指示的位置。为了测量室内温度,位于一小块木头上的Hobo U12-012温度/湿度/亮度/外部传感器被悬挂在每个房间的中央。一个小型气候站坐落在建筑物东边两米的地方,其相对于建筑物的位置在图4中给出。

图3

图4

5.2数据

目前的研究是基于在2009年2月到四月进行的一系列实验收集到的数据。接下来用到了由五分钟平均值组成的时间序列:

y (0C)代表室内温度的一个单信号。它由来自Hobo传感器测量的室内温度的最重要的测量结果形成。

Ta (0C)在气候站观测的周围环境的温度。

φ建筑物电加热器的全部的热量输入。

()

h KW

2

φ气候站测量的全球辐照度。

(/)

s KW m

图5是时间序列图。可控热量输入是一个伪随机二进制序列(PRBS),它有白噪声特性并且与其他输入量没有关联。它被设计成用来在若干范围的频率下激发热动力学,这个频率是建筑物的时间常数预计要成为的,如此数据中隐藏的信息被用来优化建筑物热动力属性的估计

(见Ref.[9])。

图5

5.3应用模型

建议的程序是这样的,分析人员从一个最简单的模型开始并且迭代选择更加复杂的模型。这意味着从最简单的模型开始拟合一组模型,到最复杂的可行模型,也就是完整的模型。在这部分描述了一组应用模型和迭代选择程序的结果。所有的模型是灰箱模型(在第二部分有详细介绍),其中物理部分是随机线性状态空间模型并且模型的动态情况可以写成: dT ATdt BUdt dw =++ (11)

其中T 是状态矢量,U 是输入矢量,并且没有状态变量或者输入变量是在A 或B 中,其只由参数组成。所有可能的模型都有一输入矢量,这个输入矢量带有个带有三个输入量: ,,[]a s h T U T φφ= (12)

所有的模型是集总的,但是各有一个不同的结构,这意味着一个给定的参数不必代表着相同的物理实体。例如,参数i C 代表在最简单的模型中建筑物的热容量,然而这个热容量在整个模型中被分成了五个热容量,其中参数i C 代表室内空气的热容量。这在5.5.2中被更加详细地描述,并且给出了模型的参数估计。并且应当牢记于心的是这些模型真正的系统的线性

近似。

在接下来的部分描述了完整的最简的模型,因为它们代表了应用模型的范围。首先完整的模型概括的给出了全部的个体部分的完整的观点,这些个体部分全部都在模型中。然后给出了最简单的模型,因为它是第一个应用于选择程序的模型并且它描述了模型是如何被集总的。每个模型由它的状态矢量命名,并且还需要几个参数名称。见附录A可得全部应用模型相应的阻容网络的列表。

5.3.1.完整的模型

最复杂的完整的应用模型的阻容网络,在图6中被描述。这个模型包括建筑物所有的个体部分,并且分析人员发现它对于将线性模型和当前的可用数据包括在内是可行的。这些模型个体部分如图中所示。

图6

这些模型部分是:

T:室内热介质的温度,也就是室内墙壁和设备的温度;

m

T:加热器的温度;

h

T:建筑物外围的温度。

e

模型的参数代表建筑物不同的热特性,包括热阻:

R:室内与传感器之间的热阻;

is

R:室内与室内热介质之间的热阻;

im

R:加热器与室内之间的热阻;

ih

R:室内与环境之间的热阻;

ia

R:室内与建筑物外围之间的热阻;

ie

R a:建筑物外围与环境之间的热阻。

e

建筑物不同部分的热容由以下字符表示:

C:温度传感器的热容;

s

C:室内的热容;

i

C:室内墙壁和设备的热容;

m

C:电加热器的热容;

h

C:建筑物外围的热容。

e

最后还包括了两个系数,每个代表着对来自日光照射的能量进入建筑物的有效区域的估计。它们是:

A:建筑物的有效窗口区域;

w

A:日光照射进入建筑物外围的有效区域。

e

描述整个模型热量流动的随机微分方程是:

1()s i s s s is s

dT T T dt d R C σω=

-+ (13) 111()()()i s i m i h i is i im i ih i

dT T T T T dt T T R C R C R C =-+-+- (14) 11()()e i a i i i ie i ia i

T T dt T T dt d R C R C σω-+-+ (15) 1()m i m m m im m

dT T T dt d R C σω=-+ (16) 11()h i h h h ih h h

dT T T dt d R C C σω=-+ (17) e 111()()R e i e a e e s e e ie e a e e dT T T dt T T dt A dt d R C C C φσω=-+-++ (18) 测量方程是:

,k s k k Y T e =+ (19)

因为观测的温度有一些测量上的误差。

5.3.2.最简模型Ti

经过考虑的最简模型在图7中用阻容网络说明。

图7

这个模型有一个状态变量Ti 和下面的一些参数:

ia R :室内与环境之间的热阻;

i C :整个建筑物的热容,包括室内空气,室内墙壁,设备等,和建筑外围;

w A :建筑物的有效窗口区域。

描述热量流动的随机微分方程是:

111()i i a i w s h i ia i i i dT dw T T A dt R C C C dt

φφσ=-+++ (20) 并且测量方程是:

,k i k k Y T e =+ (21)

注意在表示建筑物的部分方面,最简模型与完整模型的区别,也就是说,ia R 在最简模型中表示建筑物外围的热阻,而在完整模型中由ia R ,ie R ,e R a 联合表示。

5.4模型辨识

辨识程序是用来在一组从Ti到TiTmTeTeThTsAeRia的模型中寻找一个有效的模型。每个模型的合适的似然函数,通过迭代的模型选择列在表1中。这个程序从最简单的模型开始。然后在第一次迭代中,对四个拓展后的模型进行拟合并且选择了TiTh,因为它有最高对数似然和似然比测试的最低假定值(四个模型具有相同的参数)。筛选程序进行到模型没有明显的拓展空间为止,这通常在第五次迭代时出现。在每次迭代中都评估来当前的模型(见5.5)。研究人员发现在每次迭代中被选择的模型都满足关于改进的结果的评估。在表2中列出了每次迭代中关于模型拓展的似然比测试的结果。显然在前三次迭代中模型的拓展对于模型有很大的提高。在第四次迭代中,提高的效果仍然低于5%,而在第五次迭代中没有任何提高。所以程序以TiTeThTsAe作为可靠的模型而结束,这个模型在图8中用阻抗网络描述。

图8

5.5模型评估

在下文中经选择的模型被评估,正如在4.2中概括的那样。

5.5.1残差

在图9中可见每个模型的输入量,输出量,残差的平面图。每个模型的残差的自相关函数(ACF)绘制在图10中并且累计周期图绘制在图11中。从图中可以直接看到来自最简函数Ti 的残差,可以发现它们没有白噪声特性并且它们不独立于输入量。残差的自相关函数也明显显示出高滞后的依赖,并且累计周期图揭示出模型不足以描述动态特性。在第一次迭代中检测被选择的模型的残差图,可以发现与Ti相比,TiTh的残差水平下降了。通过分析自相关函数与累计周期图发现关于白噪声残差的假定没有实现。在第二次迭代中从被选择的模型的残差图可知,与Ti相比TiTh的残差水平明显下降了,但是输入量还存在一些依赖性,主要来自阳光辐照度。自相关函数揭示出残差特性与白噪声更为接近,这也可以从累计周期图中看出,这意味着现在模型可以可以很好地描述建筑物的热动态特性。在第三次迭代中从被选择的模型的残差图,自相关函数图和累计周期图可知,TiTeThTs与之前的模型相比只有小幅度的提高。最后,从最终被选择的模型TiTeThTsAe可知,与之前的模型相比几乎没有任何不同。在太阳辐射度很高的情况下,可以观测到最大误差,所以可以得知,对于模型的进一步改进应针对阳光进入建筑物的那个部分,或者让维纳过程的增量变化依赖于太阳辐射。

图9

图10 图11

5.2参数估计

下面是被选择的模型的参数估计的评价。在表3中给出了参数估计和每个模型经过计算的时间常数。在表4中给出了经被选择的模型估计的建筑物外围的全部热容和热阻。正如经过评估残差所发现的那样,模型Ti和TiTh不能很好地描述系统的动态特性,这意味着关于热容的估计并不可靠。通过三个较大的模型所发现的关于热容的估计显得更加可信一些,特别是发现时间常数几乎相等,这意味着这些模型包含相同的动态特性。无法给出较小的热容Ci,Ch,Cs的准确的物理解释,但是值得注意的是它们的总和,三个较大的模型中的每一个都相当接近于从1.03到1.08千瓦时/?C。在表4中可见经被选择的模型估计的建筑物外围的全部热阻,从而发现对于全部的模型而言,UA值是非常相似的。

6.应用

为建筑物热力学确定合适的模型的关键在于反复阅读热量消耗,室内温度,周围环境温度和气候变化的数据,这对不同的用途而言是非常有效的。应用的重要领域有:

对建筑物能源性能的准确描述:建筑物的能源特性能够提供许多重要的能源方面的信息,并且建筑物可以得到有效的改进。可以确定对于一座单体建筑最有效的措施。并且热量消耗取决于物理效应,例如一个可怜的孤立的建筑物围墙可以由行为效应分离,例如很高的室内温度。

预测供热能源消耗:供热能源消耗的预测可用于大规模可再生能源的综合,例如风能和太阳能。通过带有热水箱的电加热系统而实现个人住房的热量存储,将会在未来几年有利可图。

关于建筑物热动力学的知识对于预测和管控这类系统而言是必不可少的。

室内气候控制:控制室内温度,空气流通等,为了提供一个良好的室内条件可以运用包括建立热动力学模型在内的一些方法。这些方法可以拓展以包括风力效应,从而能够提供建筑物其密度方面的信息。

7.结论

为建筑物热力学系统确定合适模型的步骤,已过在2009年2月实验所得到的数据的基础上描述和应用。这个步骤以似然比检验和预选方案相结合为基础。拟建的模型是灰箱模型,其中运用了先验知识和数据驱动建模相结合的方式。用于建模的数据由在当地测得的气候数据,室内温度测量数据,伪随机二进制序列控制的热量输入。

在统计和物理背景下,评价和讨论了确认程序的结果。这个评价显示了被选择的模型满足关于白噪声残差的假定,所以它可以给出与现实相符的可靠的估计,并且结果也通过了统计上的确定。此外文章指出了模型上的不足,应该探究更先进的模型。对于考虑的建筑物而言,太阳辐射进入建筑物的部分在模型中是主要的。

文章已经证明了这个方法是能够提供建筑物热动力学方面的相当详细的知识。这其中包括例如:建筑物外围的热阻和UA值,描述蓄热性能的参数,以及建筑物的时间常数。

热力学基本概念式

第一章热力学基本概念 一、基本概念 热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。工质:实现热能与机械能相互转换的媒介物质即称为工质。 热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。 边界:系统与外界得分界面。 外界:边界以外的物体。 开口系统:与外界有物质交换的系统,控制体(控制容积)。 闭口系统:与外界没有物质的交换,控制质量。 绝热系统:与外界没有热量的交换。 孤立系统:与外界没有任何形式的物质和能量的交换的系统。 状态:系统中某瞬间表现的工质热力性质的总状况。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。 状态参数:温度、压力、比容(密度)、内能、熵、焓。 强度性参数:与系统内物质的数量无关,没有可加性。 广延性参数:与系统同内物质的数量有关,具有可加性。 准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。 膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。(对外做功为正,外界对系统做功为负)。 热量:通过系统边界向外传递的热量。 热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。 二、基本公式 ??=-=0 2 1 1 2 dx x x dx 理想气体状态方程式: RT pV m = 循环热效率 1 q w net t = η 制冷系数 net w q 2 = ε 第二章 热力学第一定律 一、基本概念 热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

工程热力学基本概念及重要公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立 系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三 相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 第二章气体的热力性质 1.基本概念

为热力学建筑确定合适的模型

为热力学建筑确定合适的模型 摘要:本篇论文介绍了为热力学建筑确定合适的模型的过程。这个过程对于确定模型而言是十分必要的,这有利于更好的使用智能仪表,未来几年这些智能仪表会被安装在几乎全部的建筑上。而且这个模型有许多用途,例如,控制室内气候,预测能源消耗,以及对于建筑物的能源性能的准确描述。灰箱模型基于先前的物理学知识,并且应用了数据驱动建模,这帮助我们得以了解建筑物的物理特性。日益复杂的层次结构模型由先前的物理学知识论述,并且提出了一个正向的选择策略,以此来使分析人员反复地在日益复杂的模型中筛选出合适的模型。分析人员使用概度比检定来比较不同模型的性能,并且使用适当的数据和物理解释这两者结合的方式来验证结果。在对一个单层120平方米的建筑分析之后,分析人员找到了一个合适的模型来描述个案分析。成果是对一系列日益复杂的不同模型,以及建筑物特征,例如导热性,不同部位的热容,和窗口区域进行了预估。 关键词:连续时间模型;概度比检定;灰箱模型;热力学;热动力学;建筑物;模型选择;集总模型;参数估计 1.简介 本篇论文描述了一种新方法来获得关于建筑热动力学的信息,这种方法基于对热量消耗,室内温度,和其他气候变量的频繁的测取。这种方法被认为极其重要,是更好的使用智能仪表的关键性步骤,未来几年这些智能仪表会被安装在几乎全部的建筑上。这种方法是基于为热动力学建筑选择一个合适模型的过程。Rabl [12]给出了一种关于分析稳态和动态的建筑能源使用的技术的观点,后来涉及到关于建筑热动力系统的建模。这种动态模型可以由一系列不同的等式(由Sonderegger [13]和Boyer et al. [4]实施)来实现。在动态模型中参数估计作为系统识别被认知,并且一项关于建筑物的不同方法在Ref. [3]中被发现。该方法采用的模型是灰箱模型,它由一系列连续时间随机微分方程和一系列分离时间测量方程组成。灰箱模型可以被很好地证明是一个复杂却又精确的方法来模拟动态系统,因此可以得到关于建筑物热力性质的信息(见[8,1,5])。确定一个合适模型的问题在于找到一个符合物理现实的模型,并且这个模型具有与数据信息水平相符的复杂度,这意味着这个模型应该既不低于标准,又不能高于标准。大多数合适的模型通过一系列日益复杂的模型来确定。一项正向的策略已经被实施,所以分析人员由最简单易行的模型开始建模,并且反复选择日益复杂的模型。在每次迭代中,不同的模型通过概度比检定来比较,并且分析模型的性能。筛选程序直到模型没有明显的进步为止。通过Refs. [11,10]来对可能的理论和模型选择进行深入的评估。分析

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学概念公式

第一部分(第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热 能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空 间作为热力学研究对象。这种空间的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统包含的物质质量为一不变的常 量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间, 故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态, 简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同, 与质量多少无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统所含物质的数量有关的状态参数称为广延 性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变 化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统部 被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统部的 状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状 态所组成,并称之为准静态过程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不 留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全 部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环 中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。

吸附动力学和热力学各模型公式及特点

吸附动力学和热力学各模型公式及特点 -CAL-FENGHAI.-(YICAI)-Company One1

分配系数 吸附量 Langmiur KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支持力。1/n 越小吸附性能越好一般认为其在~时,吸附比较容易;大于2时,难以吸附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效 一级动力学1(1)k t t e q q e -=- 线性 二级动力学 22 21e t e k q t q k q t =+ 线性 初始吸附速度

Elovich 动力学模型 Webber-Morris动力学模型 Boyd kinetic plot 令F=Q t/Q e, K B t=(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; Webber-Morris动力学模型 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 Elovich和双常数模型适合于复非均相的扩散过程。 Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学概念公式复习过程

工程热力学概念公式

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量 转换以及热能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面 所围成的空间作为热力学研究对象。这种空间内的物质的总和称为热力 系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量 为一不变的常量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对 固定的空间,故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤 立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的 热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的 参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参 数。

10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状 态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参 数不随时间变化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为 热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使 过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而 使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程 就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过 程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初 始状态,而不留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到 初始状态的全部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热 效率等于循环中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为 卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的 一切热机,以可逆热机的热效率为最高。②在同温热源与同温冷源之间 的一切可逆热机,其热效率均相等。

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功形式的数量n加上一个象征传热方式的独立状态参数,即(n+1)个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能。 体积功:工质体积改变所做的功。 热量:除功以外,通过系统边界和外界之间传递的能量。 焓:引进或排出工质输入或输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。 功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章

热力学方程模型

应用WILSON NRTL UNIQUAC模型计算乙醇-水体系汽液平衡 摘要:利用已知的乙醇-水混合体系在常压下的汽液相平衡数据。选用Aspen plus 模拟软件系统自带的活度系数数学模型关联相平衡数据,并和实验测定值相比较。 关键词:汽液相平衡, Aspen plus 流体相平衡数据是化工过程中重要的基础数据,在热力学方面,新的热力学模型的开发,各种热力学模型的比较筛选。特别是在分析和解决传质分离设备的设计、操作、控制过程中,开发新的传质分离过程,往往离不开平衡数据的测定,关联和推算【1】。 1 实验数据部分 1.1由参考文献提供的实验数据(表1)和汽液平衡相图(图1)如下表 表1:H2O-C2H5OH体系相平衡实验数据 T/K x/% y/% T/K x/% y/% 373.15 0.00 0.00 357.65 32.73 58.26 368.65 1.90 17.00 355.85 39.65 61.22 362.15 7.27 38.91 354.95 50.79 65.64 361.85 9.66 43.75 354.85 51.89 65.99 360.45 12.38 47.04 354.45 57.32 68.41 359.25 16.61 50.89 352.85 67.63 75.85 358.85 23.37 54.45 352.55 74.72 78.15 358.45 26.08 55.80 351.25 89.43 89.43 注:x-液相摩尔分率;y-汽相摩尔分率: 图(1)

2 计算原理 2.1汽液相平衡的计算 在热力学汽液相平衡的计算中,对于真实体系,采用逸度来表示汽液相平衡,即: L i V f f =i (1) 通常的计算方法有活度系数法和状态方程法2种,UNIQUAC 、WILSON 、NRTL 的相平衡计算称为活度系数法,是将液相组分i 的逸度与混合溶液中组分i 的活度系数建立联系。换而言之,就是在处理真实溶液时修正理想溶液的浓度【3】。 因此,对于液相: =^ l i f 0 i i i f x γ(2) 其中,i γ为组分i 的活度系数,0i f 为标准态逸度,取Lewis-Randall 定为基准的标准状态,则: dp RT V p f f s i p l i s i s i l i i ∫ ==exp φ (3) 对于气相:v i f ^v i i py ^φ=(4) 式中,v i ^φ 为汽相混合物中组分i 在体系温度T 和压力P 下得逸度系数,综上可知得到活度系数法汽液相平衡计算的公式: ),.....2,1(,exp φ φ∫^N i dp RT V p py s i p l i s i s i v i i ==(5) 式中,l i V 为纯组分i 在体系温度T 时液相的摩尔体积,s i p 为为 纯组分i 在体系温度T 时的饱和蒸汽压,衬为纯组分s i φ在体系温度与其饱和蒸汽压 s i p 时的 逸度系数。 在中、低压范围内,压力的变化对0 i f 和i γ的影响可以忽略,即可以假设: dp RT V s i p l i ∫exp =1(6) 则(5)式可以简化为: i s i s i v i i x p py i ^φ φγ=(7) 应用活度系数法汽液相平衡关系式计算时,先选定适用于体系气相的状态方程,导出i ^ ln φ表

热力学公式

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδ d δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ?为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?= ? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W == pV U H +=2 ,m 1 d V U nC T ?=?

化工热力学基本概念和重点

第一章热力学第一定律及其应用 本章内容: *介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 *热力学研究的目的、内容 *热力学的方法及局限性 *热力学基本概念 一.热力学研究的目的和内容 目的: 热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。 内容: 热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 一.热力学研究的目的和内容 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: *利用热力学第一定律解决化学变化的热效应问题; *利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论; *利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题。 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 二、热力学的方法及局限性 优点: *研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 *只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。 二、热力学的方法及局限性 局限性: *只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 *只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 *系统与环境 系统:

统计热力学OK

统计热力学 摘要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。 关键词:统计热力学微观经典热力学 Statistical Thermodynamic Abstract:Statistical thermodynamic applies statistical mechanics method to study the thermodynamic properties of balance system. On the basis of statistical principle, statistical thermodynamic starts from internal system of the micro particle properties and structure of data in view of statistics to derive a lot of particle motion statistical average results, thus obtains the macroscopic properties. Statistical mechanic makes the thermal movement of the macroscopic phenomena and microscopic mechanism connected, providing a mathematical proof to the classical thermodynamic of phenomenological theory. For the development of computer and quantum mechanics, statistical thermodynamic will be more widely used in engineering. Key words:statistical thermodynamic microscopic classical thermodynamics 1 序论 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度[1-3]。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映[4]。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足[5-6]。 统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)[7-8]。 2 统计热力学 2.1 统计力学的发展历程 统计力学产生于经典分子运动论。麦克斯韦(James Clerk Maxwell,1831—1879) 通常被认为是统计力学理论的奠基人。他率先开始寻找热力学系统的微观处理方法(表征为统计力学特性)和唯象处理方法(表征为热力学特性)之间的联系。1860年麦克斯韦题为《对气体运动论的解释》的论文,第一次提出了统计力学的基本思想。1867年麦克斯韦引入了

第四章 溶液热力学基本概念题

第四章 溶液热力学基本概念题 一、填空题 1、试写出理想稀溶液中溶质B 的化学式表示式,其中溶质B 的质量摩尔浓度以b B 表示,B μ= 。 2、写出化学势的两个定义式B μ= = 。 3、已知60℃时,A(l)的蒸汽压为20.0kPa ,B(l) 的蒸汽压为40.0kPa 。则与含0.5molB(l),99.5molA(l)的理想液态混合物成平衡的气体总压力为 kPa 。 4、某理想溶液的温度为T ,压力为 p θ,溶剂A 的摩尔分数为A x ,则组分A 的化学势表达式为:A μ= 。 5、在恒温恒压下,一切相变化必然是朝着化学势 的方向自发的进行。 6、在一定温度下,B A p p **>, 由纯液态物质和形成理想溶液,当气液达平衡时,气相组成B y 总是 液相组成B x 。7、在T=300K ,p=102.0kPa 的外压下,物质的量为0.03的蔗糖水溶液的渗透压为1π。物质的量为0.02的KCl 水溶液的渗透压为2π,两种相同体积的溶液,则必然存在2π 1π的关系。 二、是非题。正确地打“√”,错误的打“×”。 1、当系统在一定的T 、p 下,处于相平衡时,任一组分在各相的化学势必定相等。 ( ) 2、一定温度下,微溶气体在水中的溶解度与其平衡分压成正比。 ( ) 3、偏摩尔量和化学势是同一公式的两种不同表示方式。 ( ) 4、一定温度下,稀溶液中挥发性溶质与其蒸汽达到平衡时,气相中的分压与该组分在液相中的组成成正比。 ( ) 5、在多相系统中于一定的T ,p 下,物质有从浓度高的相自发向浓度较低的相转移的趋势。 ( ) 三、问答题 1、写出纯理想气体在温度T 及压力p 时化学势表示式并解释式中各项符号的意义。 2、下列偏导数中那些是偏摩尔量?那些是化学势? ,,j B T p n H n ??? ???? ,,j B S p n H n ??? ???? ,,j B T V n A n ??? ???? ,,j B T V n G n ??? ???? ,,j B S V n U n ??? ???? ,,j B T p n V n ??? ???? ,,j B T p n A n ??? ???? 。 三、选择题

flac热力学分析

1热分析 简介 FLAC3D的热选择包含了传导模型和平流模型。传导对材料的瞬态热传导模型进行了模拟,并对热传导过程进行了研究,引起的位移和压力。对流模型采用对流传热。考虑到它可以模拟温度相关的流体密度和流体的热对流。这个热选择有几个具体的特点: 1.四种热材料模型:各向同性传导,各向异性传导,各向同性传导/平流和零热模型。 2.在FLAC3D的标准版本中,不同的区域可能有不同的模型属性。 3.所示。任何力学模型都可以与热模型一起使用。 4.所示,温度、通量、对流和绝热边界条件可以规定。 5.热源可以作为点源或体积源插入材料中。这些来源可能随时间呈指数衰减。 6.显式和隐含求解算法都是可用的。 7.所示。热选择为机械应力和孔隙压力提供单向耦合。通过热膨胀系数计算。 - 8.用户可以通过FISH访问温度来定义温度相关的属性。 本章描述了热配方(第节)和数值实现节)。还提供了解决热问题的建议。节)。用于热分析的FLAC3D输入命令(第节)和系统给出了热分析的单元(第节)。最后,几个验证问题(部分)。。请参考这些例子,作为创建FLAC3D模型的指南。分析和耦合热应力或热-地下水流动分析。 数学模型描述 约定和定义 作为符号约定,符号ai表示向量a在笛卡尔坐标系中的分量i;Aij是张量[A]的分量(i, j)。同样,f,我被用来表示f对xi的偏导数。(f可以是标量变量,也可以是矢量分量。)爱因斯坦求和约定只适用于i、j和k的指数,它们取包含空间维度的分量的值1、2、3。在矩阵方程中,指数可以取任意值。SI单位用于说明变量的参数和维度。请参阅第节转换到其他单元系统。以下无量纲的数字在瞬态热传导的表征中是有用的。 特征长度: 热扩散系数:

工程热力学基本概念

工程热力学基本概念及基本公式 1.准静态过程(Quasi-static Process ) 过程中热力学系统经历的是一系列平衡状态并在每次状态变化时仅无限小地偏离平衡状态。 A quasi-static process is one in which the departure from thermodynamic equilibrium is at most infinitesimal. 2.外界(Surroundings ):系统之外的一切其它物质。 边界(Boundary ):系统与外界之间的分界面。 闭口系统(Closed System ) ←→控制质量(Control Mass ):系统与外界之间没有物质交换,但有能量交换。0;0≠=E m δδ 开口系统(Open System )←→控制体积(Control Volume ):系统与外界之间不仅有物质交换,还有能量交换。0;0≠≠E m δδ 孤立系统(Isolated System ):系统与外界之间既无质量交换又无能量交换。0;0==E m δδ 3.热力学第一定律(First Law of Thermodynamics ): 在系统两个状态之间的所有绝热过程的净功是一样的,也就是说,闭口系统在经历给定两点的绝热过程对环境所作的净功仅与系统初态和终态有关,而与绝热过程的具体路径无关。 It is found by experiment that for all adiabatic processes between two states the value of the net work done by or on the system is the same. That is, the value of the net work done by or on a closed system undergoing an adiabatic process between two given states depends solely on the end states and not on the details of the adiabatic process. dE Q W δδ=-→dE Q W dt =- 4.第二定律的陈述(Statements of the Second Law ) 克劳修斯陈述: ① 热能不可能单独地从低温物体传向高温物体。(It is impossible for any system to operate in such a way that the sole result would be an energy transfer by heat from a cooler to a hotter body.) ② 热能可以单独地从高温物体传向低温物体。 ③ 在外界作用下,热能可以从低温物体传向高温物体。 开尔文-普朗克陈述: ① 任何系统不可能从单一热库吸收热能在经历一个热循环之后使之完全转变为功。(It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of work to its surroundings while receiving energy by heat transfer from a single thermal reservoir.) ② 热力系统可以从一个热库吸热同时向另一个热库放热并在经历一个热循环之后使剩余热能完全 转变为功。 ③ 外界对热力系统作功并在其经历一个热循环之后使之完全转变为热能。 5.不可逆和可逆过程(Irreversible and Reversible Processes ) 不可逆过程: 系统在经历了一个热力过程之后,如果系统及其环境不能精确地回复到各自的初始状态。 A process is called irreversible if the system and all parts of its surroundings cannot be exactly restored to their respective initial states after the process has occurred. 不可逆过程主要有:热交换过程;自由膨胀过程;燃烧过程;混合过程;粘性流动过程;非弹性变形过程; 可逆过程: 系统在经历了一个热力过程之后,如果系统及其环境能回复到各自的初始状态。

相关文档
最新文档