锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展
锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。

关键词:锂离子电池负极材料碳/硅复合材料

引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。

1、锂离子负极材料的基本特性

锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命;

(2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好;

(5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。

现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。

2、选材要求

一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染

3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

的化学组成可以分为金属类负极材料、无机非金属类负极材料及金属-无机非金属复合负极材料。

(1)金属类负极材料:这类材料多具有超高的嵌锂容量。最早研究的负极材料是金属锂。由于电池的安全问题和循环性能不佳,金属锂在锂二次电池中并未得到应用。目前金属单质还不具有直接用作锂离子电池负极材料的可行性。锂合金的出现在一定程度上解决了金属锂负极可能存在的安全隐患,但是锂合金在反复的循环过程中经历了较大的体积变化,存储大量的锂时,体积可膨胀到原来的数倍,极大程度的造成电极粉化,电池容量迅速衰减,这使得锂合金并未成功用作锂离子二次电池的负极材料。

(2)无机非金属类负极材料:用作锂离子电池负极的无机非金属材料主要是碳材料、硅材料及其它不同非金属的复合材料

碳材料:碳材料主要包括石墨类碳材料和非石墨类碳材料。 4、锂离子负极材料的研究进展

目前对锂离子电池负极材料的研究主要集中在碳类材料、硅类材料及这两种材料的复合材料。

4.1 碳材料的研究

4.1.1 石墨碳材料按其结构可分为石墨和无定形碳(软碳、硬碳)。石墨是最早用于锂离子电池的碳负极材料,其导电性好,结晶度高,具有完整的层状晶体结构,很适合锂离子的嵌入与脱出。石墨分为天然石墨和人造石墨。工业上多采用鳞片石墨作为碳负极的原材料。鳞片石墨晶面间距(d002)为 0.335 nm,主要有 ABAB 排列的 2H 型六方晶体结构和 ABCABC排列的 3R型菱形晶面排序结构,即石墨层按两种顺序排列。

4.1.2 无定形碳常见的无定形碳有有机聚合物热解碳、树脂碳和乙炔黑等,前两者前驱体有很多种,如聚氯乙烯、酚醛树脂、糠醛树脂、含有氧异原子的呋喃和含有氮异原子的丙烯腈树脂等。近年来,随着研究的深入,在改善无定形碳材料性能方面也取得了极大进展。研究发现,由晶体生长水热法制备的含微孔的无定形碳球(HCS1具有较好的球形形貌、可控的单分散粒子粒径和光滑的表面,其可逆容量高达 430 mAh/g,首次库仑效率达到 73%,动力学性能比中间相碳微球(MCMB)还好。在进一步的研究工作中,Hu 等发现,利用微乳液作媒介的晶体生长水热法制备的含微孔的无定形碳球(HCS2)具有比 HCS1 更小的微孔。HCS2 具有比 HCS1 还要高的嵌锂容量,其值达到 566 mAh/g,首次库仑效率也提高到83.2%,而且循环性能也非常好。吴宇平、尹鸽平、Schonfelder 等在无定形碳材料改性的研究中发现,在硬碳材料中掺磷,可使其嵌锂特性发生明显改变,有序化程度提高,是提高无定形碳球电极可逆容量和充放电效率的较好方法。 4.1.3 中间相碳微球(MCMB)

目前, MCMB 是长寿命小型锂离子电池及动力电池所使用的主要负极材料之一,它存在的主要问题是比容量有些偏低,价格昂贵。除 MCMB外,还有其它形式的由可石墨化碳制得的人造石墨。如石墨纤维和其它复合石墨化碳。冯熙康等通过对可石墨化碳如石油焦等采取掺杂、结构调整或表面修饰并经高温石墨化处理等方法制得的人工石墨,比容量可达到 330~350 mAh/g,具有良好的循环性能和低于 MCMB 的价格。

4.2 硅基材料

锂与硅反应可得到不同的合金产物,如Li12Si17、Li13Si4、Li22Si5 等,其中锂嵌入硅形成的合金 Li4.4Si,其理论容量高达 4200 mAh/g。锂硅合金高的储

锂容量引起了广大科研工作者的浓厚兴趣,但以锂硅合金为负极的锂电池并未进入商品市场。一个主要原因是:在充放电循环过程中, Li-Si 合金的可逆生成与分解伴随着巨大的体积变化,会引起合金的机械分裂,导致材料结构崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极材料循环性能的急剧下降,最后导致电极材料失效。人们主要通过向硅中添加氧化物、制备纳米级硅材料以及构建出活性/非活性复合体系来改善硅材料的性能。 4.2.1 硅单体

硅单体,有晶体和无定形两种形式。作为锂离子电池负极材料,以无定形结构硅的性能较好。S.Bourderau 等研究表明,非晶态或无定形态硅具有较好的充放电容量和循环寿命,他们采用化学气相沉积(Chemical Vapor Deposition,CVD)法于 650℃在泡沫镍表面沉积一层 1.2 μm 厚的无定形态硅膜。在 0.10~0.05 V 之间,以 C/2 倍率循环时,其最初三次的放电容量均为 900~1000 mAh/g。但随后容量开始明显下降,20 次循环后其容量降至 200 mAh/g,这可能与集电体发生机械分离有关。最近 Hunjoon Jung 等用 CVD 法沉积了50 nm的无定形硅薄膜,在电压范围为0~3 V 时,最大容量为 4000 mAh/g,但 20 次循环后容量急剧下降。在较低的电压范围 0~0.2 V 下,则循环性能超过 400 次,但放电容量降为 400 m Ah/g。这可能是充电深度降低,材料的体积膨胀也降低,从而提高了循环性能。S.Ohara 等采用真空热蒸发镀膜的方法在金属镍基片上沉积一层 77 nm 的 Si 薄膜,在 2C 倍率充放电循环 750次仍能保持 1700 mAh/g 以上的容量,且与电解液的相容性好。T.Takamura 等进一步研究了更厚(达 1 μm)的硅薄膜的充放电性能,研究表明镍基底的表面粗糙度对其充放电性能有很大影响。

4.2.2 硅薄膜

Bourderau 等采用低压化学气相沉积法(LPcVD)以硅烷为前驱体在多孔镍箔表面制备硅薄膜,其初始比容量达 l000 mAh/g,但 10 次循环后,容量衰减为 400 mAh/g。Maranchi 等采用射频磁电管溅射法 (radio frequency magnetrons Puttering)在铜箔上制备 250 nm厚的非晶硅薄膜,并研究了膜厚度对电极性能的影响。结果表明,250 nm 厚的非晶硅膜具有更好的电化学性能,经过 30 次循环,其比容量接近 3500 mAh/g。SEM 观察显示,较薄的膜与铜箔接触更好,使得电极具有更小的内阻。Lee 等发现铜箔的表面形貌对电极性能影响显著:表面粗糙的铜箔上沉积的薄膜电极具有更好的性能,经过 30 次循环其比容量在 1500 mAh/g 以上,优于以平整表面的铜箔作为基底的电极。

4.2.3 纳米硅用纳米 Si、碳黑、PVDF 按重量百分比为40:40:20 制得复合负极,其工作电压比较平稳,第 10 周的可逆容量仍保持在 1700 mAh/g,是碳材料的 5 倍,循环性远远优于普通硅,将充放电电流密度增大 8 倍后,循环性基本不受影响,表明了这种纳米复合电极优异的高倍率充放电性能。但是纳米材料容易团聚,团聚后的颗粒有可能失去电接触而失效。H.Li 等对几种纳米硅,包括球状纳米硅、线形纳米硅作为锂离子电池负极材料进行了研究,采用 X-射线衍射、拉曼光谱和扫描电镜等测试手段发现:常温下锂离子的嵌脱会破坏纳米硅的晶体结构,生成亚稳态的锂和硅的化合物,并观察到纳米硅颗粒发生团聚,导致电池循环性能下降。

4.2.4 硅的氧化物

由于 Li+与氧生成不可逆相 Li2O,Li2O 为惰性相,增加了材料的首次不可逆容量,但减缓材料的体积变化,使循环性能得到提高。S.H 等研究了几种硅氧化物,

包括 SiO0.8、SiO、SiO1.1等作为锂离子电池负极材料,发现随着硅氧化物中氧含量的增加,电池比容量降低,但是循环性能提高。

4.2.5 硅合金硅与金属复合形成合金存在两种情况:一是金属(如 Ni、Ti)或惰性物质在整个充放电过程中不具有嵌脱锂活性,纯粹起支撑结构作用;二是金属(如金属 Al、Sn、Mg)或惰性物质本身具有嵌脱锂活性,但与硅的电位不同,因此它们的复合将使材料的体积膨胀发生在不同电位下,缓解由此产生的内应力,从而提高材料的循环稳定性。利用高能球磨法制备了纳米 NiSi 合金,首次放电容量达到 1180 mAh/g,20 次循环后容量为 800 mAh/g 以上。嵌锂过程中 Si 与 Li 形成合金,Ni保持惰性维持结构的稳定,从而使 NiSi 合金的循环性能较 Mg2Si 有所改善,但纳米材料的剧烈团聚限制了 NiSi 循环性能的进一步提高。M.Yoshio等用气相沉积法制备了 Mg2Si 纳米合金,其首次嵌锂容量高达1370 mAh/g。 4.2.6 硅/碳复合材料

针对硅材料严重的体积效应,除采用合金化和其它形式的硅化物外,另一个有效的方法就是制成含硅的复合材料,利用复合材料各组分之间的协同效应,达到优势互补的目的,其中硅/碳复合材料就是一个重要的研究方向,它包括包覆型和嵌入型。王保峰等利用高温热解反应,使纳米硅和石墨微粒高度均匀地分散在 PVC 热解产生的碳中,形成一种新型的硅碳复合嵌锂材料。电化学测试表明:该复合材料首次充放电效率约为84%,可逆比容量为 700 mAh/g 左右,30 次循环后容量维持在90%以上。N.Dimov 等采用CVD 法在硅单质表面包覆了一层碳材料,得到平均尺寸为18μm 的颗粒,该材料的比容量(600 mAh/g 以上)比碳材料高,循环性能与碳材料相当,同单质硅相比有很大提高,但是硅在可逆充放电过程中结构还是发生了缓慢的破坏。吴国涛等[24]将硅与石墨或其他碳材料通过球磨方式形成纳米复合物 C1-xSix(x=0、0.1、0.2、0.25)。球磨将减弱石墨的结晶度,减小晶粒尺寸,由于团聚效应,颗粒可能变大。球磨后可逆容量从 437 mAh/g(球磨纯石墨)增加到1039 mAh/g(球磨制备C0.8Si0.2),增加的可逆容量位于约 0.4 V 附近,20次循环后,C0.8Si0.2 的容量仍保持在 794 mAh/g左右,其循环性能优于采用相同工艺方法制备的M/Si(M 为 Ni、Fe 等金属)。Z.S.Wen 等通过对填入石墨和单质硅的树脂进行高温分解,得到硅碳合成材料,比容量达到 800~900 mAh/g,循环 20次的比容量稳定在 600 mAh/g。该合成物同单质硅相比,比容量提高,循环性能明显好于单质硅。

4.3.非碳负极材料

4.3.1 氮化物锂-碳材料有良好的可充电性能,锂嵌入时体积变化小,安全性能好,是一种良好的负极材料并早已工业应用,但比容量较低(LiC6为372mAh/g),碳材料解体会导致容量衰减。因而,人们便设法寻找一些其他的非碳负极材料以替代碳负极材料,从而解决此问题。近几年来,有许多科研工作者对氮化物体系进行了研究。氮化物的合成最早可追溯至20世纪 40~50年代,德国的R.Juza 等对此展开了合成与结构方面的研究[1];而20世纪80年代对Li3N作为固体电解质的研究较多。Li3N有很好的离子导电性,但其分解电压很低(0.44V),显然不宜直接作为电极材料。而过渡金属氮化物则有好的化学稳定性和电子导电性,锂—过渡金属氮化物兼有两者性质,应适宜作为电极材料。氮化物体系属反萤石或Li3N结构的化合物,具有良好的离子导电性(Li3N电导率为10-3S226;cm-1),电极电位接近金属锂,有可能用作锂离子电池的负极。目前,人们已研究的氮化物体系材料有属于反萤石结构的Li7MnN4和Li3FeN2,和属于Li3N结构

的 Li3-xCoxNoLi7MnN4和Li3FeN2都有良好的可逆性和高的比容量。

4.3.2 金属氧化物碳作为锂离子电池的负极,由于在有机电解质溶液中碳表面形成能让电子和锂离子自由通过的钝化层,这种钝化层保证了碳电极良好的循环性能。然而,也会引起严重的首次充放电不可逆容量的损失,有时甚至能引起碳电极内部的结构变化和电接触不良。另外,高温下也可能因保护层的分解而导致电池失效或产生安全问题,因此,几乎在研究碳负极的同时,寻找电位与Li+/Li 电对相近的其他负极材料的工作一直受到重视,如目前主要研究的SnO、WO2、 MoO2、VO2、TiO2、LixFe2O3、Li4Mn2O12、Li4Ti5O12等,而其中的SnO 材料更是研究中的重点。这是由于锡基氧化物储锂材料有容量密度较高、清洁无污染、原料来源广泛、价格便宜等优点。1997年,Yoshio ldota[2]等报道了非晶态氧化亚锡基储锂材料,其可逆放电容量达到600mAh?g-1,嵌脱锂电位均较低,电极结构稳定,循环性能较好。Nam[3]等用电子束沉积1μm厚的SnO作为薄膜锂离子电池的负极材料,经充放电100次显示容量超出300mAh?g-1。SC Nam 等[3]用化学气相沉积法制备出结晶态SnO2薄膜,经循环伏安试验表明,在第1次循环中存在不可逆容量,认为是无定形Li2O和金属锡的生成引起的,在以后的循环中,金属锡作为可逆电极,容量达到500mAh? g-1,并表现出良好的循环性能。

4.3.3 金属间化合物锂与金属氧化物的电极反应与锂在碳材料中嵌人-脱出反应不同,前者是Li与其他金属的合金化和去合金化过程,以金属氧化物为负极时,充电过程首次形成的Li2O在负极中可起结构支撑体作用,但又存在较大的不可逆容量。所以,为了降低电极的不可逆容量,又能保持负极结构的稳定,可以采用金属间化合物来作为锂离子电池的负极。但也应注意到, Li-M合金的可逆生成与分解伴随着巨大的体积变化,引起合金分裂。而解决的方法,一是制备颗粒极细的活性材料,使之不能形成大的原子簇,其二是使用滑陛或非活性的复合合金。其中不与Li反应的惰性金属作为基体与导电成分容纳合金组分。在这方面,前人已作了大量的研究。MaoOu等 [4-6]合成了Sn-Fe-I粉末;M.M.Thackeray[7]及D. Larcher等[8]研究了Cu-Sn合金的储锂性质;J.O. Besenhard[9]用固相法合成了多晶Sn-Sb合金,用电解法合成了纳米晶形Sn-Sb合金;J.Yangt[10]、李泓[11]等人在水溶液中分别以NaBH4和Zn粉作还原剂,制得纳米Sn-Sb合金;C.M.Ehrilich[12]等以MM法合成了Sn-Ni合金。Fang?L[13]等研究了非晶形的Sn-Ca合金。结果发现,这些合金的初始储锂量都较大,但循环性能都不甚理想,详见表2。要获得较好的循环性能,则其容量就要降低较多(200mAh/g左右),且循环区间较为狭窄,使应用受到一定限制。Hirokil S等人[14]用机械合金法(MA)合成Mg2.0Ce。发现25h时MA结晶度为90%,首次容量为320mAh/g。100h时MA结晶度近似为0,首次容量为25mAh/g,但循环性能好。HansuK等[15]研究了Mg-Si合金,发现Mg2Si作负极容量约为 1370mAh/g,电压曲线平坦,但由于大的体积变化导致电极的脱落。Hansu K 等人[16]还研究了Mg-N合金,发现Mg75N25在室温下与Li反应,循环性较纯Mg大大改善。Cao.G.S等[17]通过真空熔炼法制备 Zn4Sb3(-C7),首次容量为581mAh/g。10次循环后容量为402mAh/g。Huang.S.M等[18]制备SiAg合金。其中经50h磨的SiAg电极显示较好的循环性和较小的容量损失,在超过50次循环后,可逆容量为 280mAh/g。Zhang LT等[19]研制出CoFe3Sb12,首次可逆容量为490mAh/g,在10次循环后,可逆容量仍高于240mAh/g。而对Al的有关研究,近年来也有不少报道。根据A1-Li二元相图可知,Al和Li可以形成3种可能的

金属间化合物A1Li、Al2Li3和Al4Li9。所以,Al电极的理论最大容锂值是平均每个灿原子吸收2.25个 Li原子,也就是对应着富Li相Al4Li9,其理论比容量为2234mAh/g,远远高于石墨的理论比容量372mAh/g。但以纯Al作负极时,同样存在容量损失大且循环性能差的问题[20]。Hamon等[20]认为纯A1作为锂离子电池负极具有高于1000mAh/g的比容量,是由于锂离子在嵌入、脱出的过程中与Al形成了非晶态的Li-Al合金。而其较差的循环性则是由于Al电极在充放电循环过程中所产生的巨大体积变化而造成的。

同时,Hamon等人也发现,A1箔试样越薄,经充放电循环后,电极的体积变化越小,从而其循环性也越好。这也证实了要解决Li-M合金在可逆生成与分解时所伴随的巨大体积变化而导致电极循环性较差的问题,我们可以制备颗粒极细的活性材料或超薄的薄膜材料。另外,我们也可以采用在能与Li反应的单质金属中添加惰性金属元素制备一些活性或非活性的复合合金以解决此问题。Machill等[21-22]为改善AI电极的循环性能,可以在Al电极中添加一些溶于Al的或者可以和Al形成金属间化合物的金属元素,例如Ni、Cu、Mg等,以改善Li在嵌入负极过程中的扩散速度,从而提高A1电极的循环性能。虽然在Al电极中添加其它的金属元素会导致其比容量和能量密度的减少,但由此带来的循环性能的提高却可以弥补此不足。因此,Al基金属间化合物作为锂离子电池负极材料具有广阔的发展前景。

5、结束语

低成本、高性能、大功率、高安全、环境友好是锂离子电池的发展方向。锂离子电池作为一种新型能源的典型代表,有十分明显的优势,同时有一些不足需要改进,可以预料,随着研究的深入,从分子水平上设计出来的各种规整结构或掺杂复合结构的正负极材料以及相配套的功能电解液将有力地推动锂离子电池的研究和应用。锂离子电池将会是継镍镉,镍氢电池之后,在今后相当长一段时间内,市场前景最好、发展最快的一种电池。随着信息产业和便携式电子产品的迅速发展,锂离子电池的需求量也在逐年快速增长,根据市场分析,锂离子电池未来几年内,在上述领域仍将以每年 10%左右的速度增长。此外,现在锂离子电池的负极研究还涉及锂合金、铝基合金、镁基合金、锑基合金、钛酸盐等方面,但总体说来,现在在这方面的研究还有很多工作要作,需要进一步的研究。

参考文献

[1] 吴宇平, 万春荣, 姜长印. 锂离子二次电池. 北京: 化学工业出版社, 2004.

[2] 尹鸽平,周德瑞,夏保佳等. 掺磷碳材料的制备及其嵌锂行为. 电池, 2000, 30(4):147~149.

[3] 冯熙康. 锂离子在石墨中的嵌入特性研究. 电源技术,1997, 21(40):139~142.

[4] 李昌明,张仁元,李伟善. 硅材料在锂离子电池中的应用研究进展. 材料导报, 2006, 20(9):34~37.

[5] 王保峰, 杨军, 解晶莹等. 锂离子电池用硅/碳复合负极材料. 化学学报. 2003, 61 (10):1572~1576

[6]冯启路,杜啸岚.锂离子电池负极材料的研究[J].2011.7

[7] 李明月,陈科峰.新型锂离子电池材料研究进展[J].化工生产与术 2010 4.

[8] 黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].化学业出版社 2008.

[9] 郑红河.锂离子电池电解质[M].化学工业出版社 2007.

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

2016-2020年全球及中国锂电池负极材料行业研究报告

2016-2020年全球及中国锂电池负极材料 ?锂电池主要由正极材料、负极材料、隔膜和电解液构成,其中负极材料在锂5%-15%,是锂电池的重要原材料之一。行业研究报告 电池中的成本占比为5%15%,是锂电池的重要原材料之。 ?2015年,全球锂电池负极材料销量达11.27万吨,产地主要为中国和日本。 未来5年,随着新能源汽车销量的逐年攀升,预计全球锂电池负极材料销量仍将 保持25%以上的增长速度。 ?目前,全球锂电池负极材料仍然以天然石墨和人造石墨为主,2015年占比 达83%左右。但是随着动力电池的需求提升,新型材料如中间相炭微球(MCMB )、钛酸锂(LTO )、硅碳(Si/C )、硬碳/软碳等负极材料产量也在快速增长。 ?近年来,受益于中国新能源汽车市场的爆发,负极材料销量快速增长,增速 明显快于全球平均水平。2015年,中国负极材料销量达7.28万吨,同比增长 42.7%,预计未来5年复合增长率仍将达到30%以上。 ? 全球负极材料市场由日本和中国的企业占据,其中日本企业在技术水平方面 处于领先地位,而中国由于石墨矿产资源丰富,在负极材料生产方面成本优势明 显。

?2015年,全球负极材料市场份额(按销量)排名前六的企业分别为贝特瑞、日立化成、杉杉股份、三菱化学、日本碳素和日本JFE,市场份额之和接近70%。其中日立化成、杉杉科技、日本碳素和日本JFE以人造石墨为主,贝特瑞、三菱化学以天然石墨为主。 ?截止2015年底,中国从事锂电池负极材料生产的企业达50余家,大部分是2010年之后新进入该行业。 其中负极材料产能达万吨以上的企业有贝特瑞、上海杉杉、江西紫宸、星城石墨4家,产能分别为3万吨、1.5万吨、1万吨和1万吨。未来几年,随着中国企业负极材料产能的持续扩大及工艺技术的提升,其负极材料市场占有率将会继续上升。 有率将会继续上升 水清木华研究中心《2015-2020年全球及中国锂电池负极材料行业研究报告》主要包括以下几个内容: ?全球锂电池负极材料行业市场规模及预测、竞争格局、新型负极材料发展情况等; ?中国锂电池负极材料行业产业政策、市场规模及预测、竞争格局、价格走势等; ?全球及中国负极材料上游原料行业(石墨、碳化硅、钛酸锂、石墨烯等)市场规模、竞争格局、进出口、价格走势等; ?全球及中国锂电池行业市场规模竞争格局对负极材料需求分析及预测等; 全球及中国锂电池行业市场规模、竞争格局、对负极材料需求分析及预测等; ?全球及中国15家负极材料生产企业简介、负极材料业务分析、经营状况等; ?全球及中国3家钛酸锂材料生产企业简介、钛酸锂材料业务分析、经营状况等。

锂电池负极材料项目投资建议书

锂电池负极材料项目投资建议书 规划设计/投资分析/实施方案

锂电池负极材料项目投资建议书 负极材料最主要使用的是石墨化碳材料,其中天然石墨、人造石墨都 有了较大规模的产业化应用;同时新型硅碳复合材料也正在走向产业化应用。在石墨化碳类负极材料中,人造石墨循环寿命高、倍率性能好,且与 电解液相容性好,因此多用于动力锂电池;天然石墨虽然比能量略高于人 造石墨,但是倍率性能较差,首次放电效率较低,更多用于消费类锂电池。人造石墨良好的性能,得益于新能源汽车动力电池需求量的快速提升,国 内锂电池人造石墨负极出货量连续三年保持25%以上增速,2018年出货量 为12.9万吨,同比增长26.44%,占国内整个负极材料出货量的69%。 该锂电池负极材料项目计划总投资3756.83万元,其中:固定资产投 资2756.02万元,占项目总投资的73.36%;流动资金1000.81万元,占项 目总投资的26.64%。 达产年营业收入9198.00万元,总成本费用7098.64万元,税金及附 加78.50万元,利润总额2099.36万元,利税总额2467.43万元,税后净 利润1574.52万元,达产年纳税总额892.91万元;达产年投资利润率 55.88%,投资利税率65.68%,投资回报率41.91%,全部投资回收期3.89年,提供就业职位196个。

报告从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、 实用、效益”的指导方针,严格按照技术先进、低能耗、低污染、控制投 资的要求,确保投资项目技术先进、质量优良、保证进度、节省投资、提 高效益,充分利用成熟、先进经验,实现降低成本、提高经济效益的目标。 ......

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

【完整版】2020-2025年中国锂电池负极材料行业海外新兴市场开拓策略研究报告

(二零一二年十二月) 2020-2025年中国锂电池负极材料行业海外新兴市场开拓策略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业海外新兴市场开拓策略概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (6) 一、研究原则 (6) 二、研究方法 (7) 第三节研究企业海外新兴市场开拓策略的重要性及意义 (9) 一、重要性 (9) 二、研究意义 (9) 第二章市场调研:2019-2020年中国锂电池负极材料行业市场深度调研 (10) 第一节锂电池负极材料概述 (10) 第二节我国锂电池负极材料行业监管体制与发展特征 (12) 一、行业主管部门和监管体制 (12) 二、行业主要法律法规及政策 (13) 三、进入行业的壁垒 (16) (一)客户壁垒 (16) (二)资金壁垒 (16) (三)技术壁垒 (16) 四、行业的技术水平和技术特点 (17) 五、行业的周期性、区域性及季节性特征 (18) 六、上下游行业之间的关联性及影响 (19) 七、主要进口国的有关进口政策 (20) 第三节2019-2020年中国锂电池负极材料行业发展情况分析 (20) 一、产品种类繁多,价格差异明显 (20) 二、材料类型繁多,人工石墨为主流 (24) (一)人工石墨性能优异,新型负极材料仍在摸索 (24) (二)人工石墨工艺更有工艺壁垒 (25) 三、下游需求扩张,行业增长短期加速、长期空间大 (26) (一)消费领域增长平稳,动力需求增长加速 (27) (二)人工石墨占比逐年提高 (32) 第四节2019-2020年我国锂电池负极材料行业竞争格局分析 (32) 一、行业竞争格局 (32) (一)全球锂电池负极材料集中度高 (32) (二)国内锂电池负极材料行业竞争格局将发生较大变化 (33) 二、我国锂电池行业负极材料主要生产企业 (33) 三、行业集中于中国,龙头优势明显 (34) 第五节需求升级,聚焦全球龙头供应链 (40) 一、进入门槛提升,客户粘度增强 (40) 二、电动全球化,龙头企业受益 (41) 三、龙头更具议价能力 (42) 四、降低成本,加速布局全产业链 (43) (一)原料端:龙头加速布局针状焦,成本压力趋缓 (43)

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

中国锂电池负极材料行业研究-行业产业链、行业简介及分析

中国锂电池负极材料行业研究-行业产业链、行业简介及分析 (一)行业产业链 公司处于锂离子电池制造产业链的中游,主要原材料为焦类产品、初级石墨等;公司生产的负极材料供应给电池厂商,并最终应用于动力电池市场、消费电池市场和储能电池市场。 负极材料产业链全景图 由于每家锂离子电池生产企业对负极材料的技术指标要求均有不同,因此负极材料行业内公司通常采用“以销定产、以产定购、产品直销”的经营模式,在样品通过小试、中试、大试、小批量和批次稳定性测试程序后,进入客户供应商体系,与客户保持稳定、长久的合作关系,并获得持续的利润来源。

(二)锂离子电池与负极材料简介 1、锂离子电池简介 电池按工作性质通常分为一次电池和二次电池。一次电池是不可循环使用的电池;二次电池可以多次充放电、循环使用,如已实现商业化应用的铅酸电池、镍镉电池、镍氢电池和锂离子电池等。 锂离子电池是指分别使用两种不同的能可逆地嵌入与脱嵌锂离子的化合物作为正极与负极的二次电池。电池充电时,正极的锂原子电离为带正电荷的锂离子和电子。带正电的锂离子从正极出发,穿过薄膜后到达负极,并在负极与电子合成锂原子。电池放电时则完全相反,锂离子从负极材料表面电离为锂离子和电子,其中带正电荷的锂离子从负极出发,穿过薄膜后到达正极,并与电子合成锂原子。 采用不同正极材料的锂离子电池工作原理不存在差异。钴酸锂是锂离子电池的一种常用材料,其他常用的正极材料还包括三元材料、磷酸铁锂材料等。以钴酸锂(LiCoO2)为正极材料的锂离子电池为例说明锂离子电池工作原理,具体如下: 锂离子电池工作原理说明

相对于传统的二次电池(如铅酸电池),锂离子电池具有能量密度高、循环寿命长、充放电性能好、使用电压高、无记忆效应、污染较小和安全性高等优势。经过多年的发展,锂离子电池的生产工艺已经趋于成熟,价格逐步下降,同时在国家政策大力助推的背景下,锂离子电池在电池行业的市场份额持续提升。 锂离子电池的终端应用包括动力电池市场、消费电池市场和储能电池市场。2018 年,动力电池受新能源汽车市场强劲需求带动,销量同比增长46.1%,达65GWh,为锂离子电池最大的应用终端;消费电池市场经过多年的发展,已趋于成熟,2018 年受消费电子整体低迷的影响,数码锂离子电池销量略有下滑,销量为31.8GWh,同比下降2.2%。但受益于5G和柔性屏的推出,消费电池市场仍有可观的增长空间;储能电池市场目前仍处于发展初期,未来发展空间较大,受益于通信储能行业的发展和电力储能市场的

锂离子电池的组成部分之负极(非常详细)

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为8 2—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油等在350—5

00℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C 下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。 MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg) 负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极 粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极的膨胀, 抑制电极粉化问题,从而获得比较好的循环性能。

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

锂离子电池负极材料发展历程

锂电池是一类由锂金属或锂合金为正极材料、使用非水电解质溶液的电池。优点:绿色环保,不论生产、使用和报废,不产生任何铅、汞、镉等有毒有害重金属元素和物质。 电池原理: 组成材料主要包括:负极材料、正极材料和隔膜。 在充放电过程中,锂离子在正负极之间来回运动。充电时,锂离子从正极脱出,经过隔膜嵌入到负极中。放电时,锂离子再从负极中脱出,重新回到正极。由此可以看出锂电池的正、负极材料都要有良好的嵌入、脱出锂离子的能力。一般来说,锂离子电池的总比容量是由正极材料的比容量、负极材料的比容量及电池的其它组分决定的,因此,我们迫切需要提高正负极材料的比容量。 负极材料: 碳材料:商业化锂电池负极材料一般为碳作为基质的材料,包括石墨、中间相碳微球、碳纳米管等。虽然碳材料作为锂离子电池负极具有较好的循环性能,但已基本达到其理论极限容量(石墨理论比容量为372mAh/g),限制了电池的性能。另外实际应用中也暴露出碳负极存在许多缺陷:在快速充电或低温充电易发生“析锂”现象引发安全隐患;有机电解液中会形成钝化层,引起初始容量损失;这些因素直接制约了锂离子电池的进一步发展。因此,高能动力型锂离子电池的发展需要寻求高容量、长寿命、安全可靠的新型负极来取代碳负极材料。 其中锡基负极材料具有质量与体积比能量高,价格便宜,无毒副作用,加工合成相对容易等优点,因此一经提出就受到研究者的广泛关注。 研究表明,当负极材料的比容量在1000~1200 mAh/g时可以显著提高锂离子电池的总比容量。在各种非碳负极材料中,硅的理论比容量为4200mAh/g,具有明显的优势,因此吸引了越来越多研究者的目光。 硅-非金属体系:在此复合体系中,硅颗粒作为活性物质,提供储锂容量;非金属相作为分散基体,缓冲硅颗粒嵌脱锂时的体积变化,保持电极结构的稳定性,并维持电极内部电接触。目前主要有硅-碳复合体系、硅-玻璃/陶瓷体系、硅的氧化物、金属氮化物等体系。其中,碳类负极材料具有良好的导电性,在充放电过程中体积变化很小,循环稳定性能好。与硅结合可以很好的改善硅的体积膨胀,提高其电化学稳定性。因此,硅-碳复合材料成为当前负极材料的研究的热点。

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

2014年锂电池负极材料行业分析报告

2014年锂电池负极材料行业分析报告 2014年3月

目录 一、产业现状:石墨产品占据绝对主流位置 (3) 1、天然石墨vs人造石墨:人造石墨替代趋势明显 (4) 2、中间相炭微球(MCMB):寿命长,综合性能好 (6) 3、钛酸锂:较高电压平台限制其规模化应用 (6) 4、石墨烯:功率密度、能量密度是优势,高成本、低稳定性是短板 (7) 二、木桶原理对锂电负极材料提出更高要求,四因素已成技术聚焦点 (8) 1、负极石墨往往成为循环过程中的“短板” (8) 2、能量密度、循环性能等四因素已成技术聚焦点 (9) (1)提高能量密度的措施 (9) (2)提高功率密度的措施 (10) (3)提高循环性能 (10) (4)提高安全性的措施 (10) 三、负极材料成本构成 (10) 四、负极制造格局:由日本向中国产业转移明显 (11) 五、重点企业简况 (13) 1、杉杉股份:全球最大锂电池材料综合提供商 (14) (1)成功转型:起于服装业务,兴于锂电材料 (14) (2)负极材料:国内市场占有率27.83%,全产品系、定位高端 (14) (3)硅炭复合材料研发目标 (15) 2、中国宝安:国内最大的锂电池负极材料生产商 (15) 3、烯碳新材 (16)

在锂电池四大材料中,负极材料的技术相对最成熟。通常将锂电池负极材料分为两大类:碳材料和非碳材料。其中碳材料又分为石墨和无定形碳,如天然石墨、改性石墨、石墨化中间相碳微珠、软炭(如焦炭)和一些硬炭等。其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等。 一、产业现状:石墨产品占据绝对主流位置 高工锂电产业研究所(GBII)调查结果显示,2012 年中国负极材料出货量达到27650吨,相比2011 年净增长4650 吨,增幅达20.2%;其中天然石墨出货量占比59%,人造石墨30%,中间相炭微球8%及其他类型3%。 2012 年中国负极材料总体市场规模为20.08 亿人民币,同比上升15.3%。其中,天然石墨贡献7.26 亿元,占比34.9%;人造石墨(不

锂离子电池负极材料项目申请报告

锂离子电池负极材料项目 申请报告 规划设计/投资方案/产业运营

锂离子电池负极材料项目申请报告 负极材料是锂离子电池储存锂的主体,使锂离子在充放电过程中嵌入与脱出。负极是电池放电时流出电子的一极,负极材料主要影响锂电池的首次效率、循环性能等,负极材料的性能也直接影响锂电池的性能,负极材料占锂电池总成本5~15%左右。随着技术的进步,目前的锂离子电池负极材料已经从单一的人造石墨发展到了天然石墨、中间相碳微球、人造石墨为主,软碳/硬碳、无定形碳、钛酸锂、硅碳合金等多种负极材料共存的局面。 该锂离子电池负极材料项目计划总投资10323.00万元,其中:固定资产投资7105.97万元,占项目总投资的68.84%;流动资金3217.03万元,占项目总投资的31.16%。 达产年营业收入21565.00万元,总成本费用16785.26万元,税金及附加193.92万元,利润总额4779.74万元,利税总额5632.93万元,税后净利润3584.80万元,达产年纳税总额2048.12万元;达产年投资利润率46.30%,投资利税率54.57%,投资回报率34.73%,全部投资回收期4.38年,提供就业职位386个。

报告根据项目产品市场分析并结合项目承办单位资金、技术和经济实力确定项目的生产纲领和建设规模;分析选择项目的技术工艺并配置生产设备,同时,分析原辅材料消耗及供应情况是否合理。 ......

锂离子电池负极材料项目申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法 目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高; (2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大; (3)在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大; (4)氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电; (5)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电; (6)主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI 膜; (7)插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI 膜后不与电解质等发生反应; (8)锂离子在主体材料中有较大的扩散系数,便于快速充放电; (9)从实用角度而言,主体材料应该便宜,对环境无污染。 一、碳负极材料 碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。 目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。 石墨类碳材料的插锂特性是:(1)插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs. Li+/Li);(2)插锂容量高,LiC 6 的理论容量为372mAh.g-1;(3)与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。 石油焦类碳材料的插、脱锂的特性是:(1)起始插锂过程没有明显的电位平 台出现;(2)插层化合物Li x C 6 的组成中,x=0.5左右,插锂容量与热处理温度 和表面状态有关;(3)与溶剂相容性、循环性能好。 根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。 1、石墨 石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%

2018年锂离子电池负极材料行业分析报告

2018年锂离子电池负极材料行业分析报告 2018年1月

目录 一、行业管理 (5) 1、行业主管部门 (5) 2、行业监管体制 (5) 3、行业主要法律法规和政策 (5) (1)电池与电池材料行业相关法律法规和措施 (5) (2)终端应用相关政策措施 (7) 二、锂离子电池与负极材料简介 (10) 1、锂离子电池简介 (10) 2、锂离子电池负极材料简介 (12) 三、下游行业:锂离子电池行业分析 (13) 1、全球锂离子电池行业高速发展 (14) 2、中国锂离子电池行业影响力日益加强 (14) 3、国内锂离子电池产业结构分析 (16) (1)动力电池异军突起 (16) ①产业导入期(2009-2013年) (16) ②快速增长期(2014年至今) (17) (2)消费电池为最大应用领域 (19) (3)储能电池尚待发力 (20) 4、区域分布:广东及周边区域先发优势明显 (21) 四、锂离子电池负极材料行业分析 (23) 1、负极材料产量保持快速增长 (23) 2、石墨类负极材料占据主导地位,人造石墨上升较快 (24) 3、华南、华东区域为主要聚集地 (26) 五、行业竞争格局 (27) 1、产能集中度持续提高 (27) 2、地域集群正在形成 (28)

六、进入行业的壁垒 (29) 1、客户壁垒 (29) 2、资金壁垒 (29) 3、技术壁垒 (30) 4、规模壁垒 (30) 七、市场供求和竞争状况 (31) 1、人造石墨负极材料当前的市场供求情况 (31) (1)产销率 (31) (2)毛利率 (32) (3)新能源汽车补贴政策调整的影响 (32) 2、企业销售情况 (33) 3、市场容量及未来增长趋势 (33) 八、行业主要企业简况 (34) 1、贝特瑞 (34) 2、上海杉杉 (35) 3、江西紫宸 (35) 4、深圳斯诺 (36) 5、星城石墨 (36) 6、翔丰华 (36) 7、正拓能源 (37) 8、日立化成 (37) 9、三菱化学 (37) 九、行业周期性、区域性和季节性特点 (38) 1、周期性 (38) 2、区域性 (38) 3、季节性 (39) 4、政策相关性 (40) 十、影响行业发展的因素 (41)

相关文档
最新文档