低介电常数材料论文

低介电常数材料论文
低介电常数材料论文

低介电常数材料的特点、分类及应用

胡扬

摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其

在集成电路工艺中的应用。指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。

关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材

料 ;Air-Gap

1.引言

随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。

这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。

2.背景知识

低介电常数材料大致可以分为无机和有机聚合物两类。目前的研究认为,降低材料的介电常数主要有两种方法:

其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。材料分子密度的降低有助于介电常数的降低。这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。

针对降低材料自身极性的方法,目前在0.18mm技术工艺中广泛采用在二氧化硅中掺杂氟元素形成FSG(氟掺杂的氧化硅)来降低材料的介电常数。氟是具有强负电性的元素,当其掺杂到二氧化硅中后,可以降低材料中的电子与离子极化,

从而使材料的介电常数从4.2降低到3.6左右。为进一步降低材料的介电常数,人们在二氧化硅中引入了碳(C)元素:即利用形成Si-C及C-C键所联成的低极性网络来降低材料的介电常数。例如无定形碳薄膜的研究,其材料的介电常数可以降低到3.0以下。

针对降低材料密度的方法,其一是采用化学气相沉积(CVD)的方法在生长二氧化硅的过程中引入甲基(-CH3),从而形成松散的SiOC:H薄膜,也称CDO(碳掺杂的氧化硅),其介电常数在3.0左右。其二是采用旋压方法(spin-on)将有机聚合物作为绝缘材料用于集成电路工艺。这种方法兼顾了形成低极性网络和高空隙密度两大特点,因而其介电常数可以降到2.6以下。但致命缺点是机械强度差,热稳定性也有待提高。

介电常数不仅仅决定于材料本身的固有性质,而且会因为制备条件和方法的不同而有所变化。化学汽相沉积是制备ULSI低介材料的重要技术,沉积不同的薄膜应采用不同的CVD技术,而制备同一种薄膜采用的CVD技术不同,也

COH薄膜,k值会使材料的某些性能有所差异。例如用PECVD制备的S

可由先前的2.4降至2.1,若将它在400℃下进行4h的后期退火,可进一步降低k值至1.95。通过对沉积方法的选择和对沉积参数的优化,能得到更符合要求的低介材料薄膜。

3.正文

下面将按顺序介绍5种低K材料:

3.1有机低k材料

有机低k材料种类繁多,性质各异,其中以聚合物低k材料居多。重点介绍聚酰亚胺。

聚酰亚胺(PI)是一类以酰亚胺环为结构特征的高性能聚合物材料,介电常数为3.4左右,掺入氟,或将纳米尺寸的空气分散在聚酰亚胺中,介电常数可以降至2.3~2.8。介电损耗角正切值为10-3,介电强度为1~3 MV/cm,体电阻率为1017 Ω·cm。这些性能在一个较大的温度范围和频率范围内仍能保持稳定。聚酰亚胺薄膜具有耐高低温特性和耐辐射性、优良的电气绝缘性、粘结性及机械性能。聚酰亚胺复合薄膜还具有高温自粘封的特点。聚酰亚胺低k材料目前已广泛应用于宇航、电机、运输工具、常规武器、车辆、仪表通信、石油化工等工业部门。它可作耐高温柔性印刷电路基材,也可以作为扁平电路、电线、电缆、电磁线的绝缘层以及用作各种电机的绝缘等。一种孔洞尺寸为纳米级,介电常数低于2.4的芳香性聚酰亚胺泡沫材料已经问世。它是目前制备聚酰亚胺玻璃布覆铜板的新型介电材料。制备聚酰亚胺纳米泡沫材料的一般方法为:通过共缩聚反应,合成热稳定性好的聚酰亚胺再与一些带有氨基的、热稳定性差的齐聚物镶嵌或接枝而成为共聚物。全芳香聚酰亚胺开始分解温度一般都在500℃左右。由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600 ℃,这是迄今聚合物中热稳定性最高的品种之一。

除聚酰亚胺外,还有硅烷交联聚乙烯和四甲基硅甲烷聚合物低k材料也具有一些特殊的性质。硅烷交联聚乙烯耐电压、耐热、耐腐蚀、电阻系数高、介电常数小、机械性能好、加工便利,它被广泛应用于制造电力电缆、聚乙烯管、交联聚乙烯铝塑复合管材等。

3.2无机低k材料

典型的无机低k材料有无定形碳氮薄膜、多晶硼氮薄膜、氟硅玻璃等。

3.2.1无定形碳氮薄膜

无定形碳氮薄膜aCNx,在1MHz频率下介电常数值可降至1.9。并

且它比一般aCNx具有更高的电阻率。用C

2H

和N

作为原料气体,硅作

为衬底,电子回旋加速器共振等离子区制备的aC∶N的介电常数值在1MHz下能达到2。当氮碳原子比例增加或者进行氟掺杂时,k值有进一步的减小。目前最好的结果测得在1MHz下aC∶N和aC∶N∶F的介电常数值最低分别为1.4和1.2。薄膜的热稳定性通过在气体原料中加入氩气并将氮原子与无定形碳的网状结构结合而得到改善。aC∶N的特征电阻率为1017Ω·cm,击穿场强为46kV/mm,这样好的电抗性质很适合做为介电材料,被考虑作为一种低k互连介质应用于ULSI中。另外,aC∶N得到广泛的关注还由于它具有独特的菱形外观,化学性质稳定,不易与其他物质发生反应,良好的机械性能与电性能以及光学性质,因此它有很多用途,例如作为平板显示器的电子发射器材料的候选者等。

3.2.2多晶硼氮薄膜

以p型Si为衬底,BCl3、

N2和H

为原料,利用PACVD技术合成

的多晶硼氮薄膜k值能够达到2.2。进一步研究发现,C原子的加入能有效地降低k值。这种薄膜具有一定的机械硬度和化学稳定性,有很高的热传导率和较宽的能带隙(6eV),在场强为0.1 MV/cm时,其泄漏电流值为5.7×

10-8A/cm2,并且有望进一步减小。除了用做互连介质外,它在电子和光电子器件的应用上也是一种很有前途的材料,如场发射器等。

3.2.3氟硅玻璃

它是一种无机低k材料,能扩大S

iO

的化学汽相沉积过程,在普通玻璃中

加入氟,提高了填充能隙同时减低了介电常数。这种材料的性能很大程度上由其加工条件和原料物质决定,它的介电常数随着氟元素比例增加能在4.2~3.2变化。

3.3掺氟低k材料

掺杂(尤其是掺氟)是目前用以减少k值的最常见和有效的方式。很多材料在进行氟掺杂后k值显著降低,并且具体数值随着氟在材料中比例的变化而变化。此外,某些材料的性质也会伴随着掺杂而得到有益的改善。然而氟的介入不可避免地造成了抗湿性的减弱,这也是目前广泛研究的内容之一。以下几种材料是其中的代表。

●聚四氟乙烯,k值可达到2.0,是一种具有良好介电性能的高温绝缘材料,它具有低的介电损耗和稳定的介电常数,而且不受温度和频率变化的影响,可在-230~+260℃环境下使用,在200℃左右也可长期使用。同时它具有优良的耐药性、低的摩擦系数和不粘性,它与普通粘结剂也不相互粘结,因而是理想的防粘材料。因此聚四氟乙烯制品广泛用于国防、军事尖端科学及国民经济各个部门。但由于聚四氟乙烯的机械强度不高,因而采用玻璃布进行增强,既保持了聚四氟乙烯的基本性能,又大大提高了机械强度,为聚四氟乙烯制品推广应用创造了更广阔的前景。

●Si OF本身也是一种低k材料,随着其中氟成分比例的提高,k值下降。

以往S

iOF的k值最低达2.7,但采取较好的措施在S

/N2O中加入C

,进行等离子体加强化学汽相沉积(PECVD),k可降至2.3。通常具有较高稳定性的SiOF薄膜将氟元素的比例控制在2.4%,此时的k值能达

到3.5,并且在600℃下保持稳定。S

iOF保留了较多S

的性质,与

已有的S

iO

工艺能很好地兼容,在热稳定性,对无机物的黏附性等方面明显优

于有机介质。但氟的加入使得它抗湿性能差,暴露于空气中易吸收水而发生水解。可以采用各种各样的措施用来降低它对空气中水的吸收。实验发现,通过在S

4/O

/CF

混合气体中加进CH

,淀积的碳掺杂S

∶F薄膜(S

C∶F)的抗湿性有显著改善,同时也表现出较好的热稳定性。并且当原料中C

4F

对四乙基原硅酸盐(TEOS)的比例为1:8时,介电常数在1MHz频

率下的值能降到2.35。

●氟化非晶碳膜(a-C∶F)也是一种低k材料,它具有氟碳化合物的共性,即疏水性,以及低k性(k小于2.5,可达2.0,1MHz下为2.35)。

用以制备的典型原料是CF

4,C

,C

分别与H

的混合气体,可以通过

改变F—C比例来改善热稳定性,并且生产成本低廉,是一种有应用前景的互连介质材料。

●SiCFO薄膜是以SiH4和CF4为原料,采用PECVD技术而得到的薄膜,它表现出较好的抗湿性和极佳的低k性,k值在1.3~2.0之内,此外它还具有较好的界面支持性以及光滑的表面形态。除去以上几种材料,同类型的掺氟低k材料还有不少,例如以三乙氧基氟硅烷和氧气的混合气体为原料沉积得到的CF/SiOF复合薄膜,其k值可达到2.8等。

3.4多孔低k材料

多孔低k材料可利用二氧化硅气凝胶等在k值已经较低的绝缘体中注入孔穴,并采取旋涂沉积方式制得。例如在孔穴加入的情况下聚四氟乙烯的k值可降

至1.57。另外,多孔硅的k值在1.3~2.5,并且随着气孔率的增加而降低。传统的多孔硅薄膜是利用气凝胶制备,但这个过程需要在无收缩下干燥等一系列复杂的加工条件。超临界溶解提取方法用于制备硅的气凝胶,能使材料的k值降到1.1~1.5,气孔率从85%~99%变化,但这种方法昂贵而且危险,没有推广价值。比较好的方法是在水蒸气环境下进行加工,实验显示水蒸气能有

效地完成凝胶化过程并且能控制气孔率。与堆积的S

iO

不同,S

的纳米微

粒能在相对较低的温度下蒸发。在氩气环境中对S

iO

的纳米微粒进行气体蒸发

沉积作用得到的纳米量级多孔硅薄膜介电常数随着氩气压强的增加而减小,此时孔隙率则有所上升。以聚四氟乙烯为原料通过旋涂制成的无定形含氟聚合物薄膜具有多孔结构,其k值相应也比较低。当场强在0~1.8MV/cm范围变化时,其泄漏电流密度小于3×10-4A/cm2,击穿场强为2.07MV/cm,作为介电材料性能比较优越。

3.5纳米低k材料

纳米低k材料因其独特的介电特性而得到人们广泛的关注。纳米粒子具有大的比表面积、表面原子数,表面能和表面张力随粒径的下降急剧增加,表现出小尺寸效应、表面效应、量子尺寸效应和宏观隧道效应等特点,从而导致纳米微粒的热、磁、光、敏感特性和表面稳定性等不同于正常的粒子,其奇异性能的重要表现之一便是具有特殊的介电性能。比如聚酰亚胺纳米杂化材料,其介电常数低于24,同时具有高的强度和低的吸水率,可作为超低介电常数绝缘材料。聚酰亚胺纳米材料的介电性能因所含无机物的介电性能不同而不同,其无机物有陶瓷、聚硅氧烷、分子筛等。近来一种被称作纳米玻璃的介质得到开发,它的介电常数也能在1.3~2.5变化。这种低介电常数介质可用惯用的自旋镀膜机镀到硅片上,然后烘干排除溶剂。和多孔二氧化硅相比,它在几分钟内便可排除溶剂,而多孔二氧化硅需要数小时。而且纳米玻璃温度稳定性也比多孔二氧化硅好,在800℃下仍很稳定。0.3μm铜/纳米玻璃连线IC和铝/二氧化硅连线IC相比,电阻相同时,电容下降36%;电容相同时,电阻下降46%;RC性能几乎提高1倍。

采用真空来制作芯片----真空的介电常数是最小的

一种新半导体制造技术,该技术通过“空气隙”(Air-Gap,微小的真空洞)来替换集成电路中铜线附近的常规绝缘材料。其效果甚至比最新的固体低电介质常数材料还要好。

IBM 的Air-Gap 技术: 可以将空气隙、槽, 或洞指为真空。他们具有比常规固体电介质更低的介电常数(k)—连线最重要的绝缘特性。具有更低介电常数的电介质可减少毗邻导线之间的电容耦合, 从而改善电流,特别是较长的平行的导线。空气隙尽量可减少阻容(RC)延迟35%。电路设计师能以各种各样的方式调整容值。这能增加芯片的时钟频率, 减少功耗,或选择某些改善组合。

Air-Gap 技术将帮助设计师保持电路缩放比例。由于电路持续变小,金属层

导线被紧压得更加紧密。一些最新的微处理器有超过20英哩接线。但上升的RC 延迟减慢了信号传播并迫使电路在更高的电流下运行。

不同层的不同选择: 通常,芯片金属层的导线被蚀刻在固体电介质材料中,如碳硅氧氢化物(SiCOH)或掺氟的氧化硅(SiOF)。 SiCOH对于较低金属层中(通常离含晶体管的多晶硅层最近)的最紧间距导线最有效。最顶层金属需要更厚的SiOF层来加强晶原和封装间的机械接口。传统的低k材料的介电常数分别为

2.7(65nm CMOS)和2.4(45nm CMOS)。由于更高kSiCN 盖层具有附加电阻,总有效介电常数(keff)实际略高:分别为

3.0 (65nm CMOS)和2.7(45nm CMOS)。最佳可能的介电常数是真空: 1.0。

工程师不断寻找与现有的制造过程兼容的更低介电常数材料。不幸地, 随着介电常数的降低,低k固体电介质机械及电子性能也变差。这些副作用减少了新固体电介质的应用能力。过去,真空洞以有限的方式被使用,并且仅应用在奇特的比CMOS更昂贵的制程中。

面临的挑战是如何在导线附近留下物理空隙而不危害铜或创造缺乏结构完整性和导热性的空隙。空隙的临界尺寸仅仅是导线之间最小间距的一半。这个目标在最低的金属层中特别困难,因为这些金属层具有最紧的间距。另外, 为创造空隙的附加制造步骤应该与CMOS其他制造过程兼容, 从而使对设计规则和生产线的影响减到最小。

解决方案是使用二个非常不同的制造技术来创造空隙。较简单的技术使用常规光刻蚀,不幸地是,这个技术对于有最小间距的低层金属层是不够的。光刻蚀的分辨率无法创造足够小的洞。因此,必须为这些层发明一种非传统技术—即上述的“自组装纳米技术”。

对于中间和上部金属层,在熟悉的一系列制作步骤中采用传统光刻蚀。该过程由开始以常规铜接线层和一个绝缘体, 之后增加几步低成本步骤制造空隙。在下一绝缘层沉积之前前,夹断并密封空隙。可以构想一种方式来扩展在标准铜顶层中小开口下的空隙以便迅速实现夹断,而不导致空袭再次被填满。由于所有这些步骤发生在仔细控制的真空室(任何芯片制造过程的一个共性),被密封的空隙依然是真空的。

类似于牙齿生长的过程: 最低层金属层的处理方法非常不同。首先,和通常一样,在固体低k电介质材料(在这种情况下为SiCOH)中制造标准铜接线层。其次,SiCN (硅碳氮化物)标准盖层覆于其上。但这步之后,随后覆盖IBM未透露的特殊聚合物层。以液膜方式沉积这种材料。随着其固化,该材料自动重排其原子结构来组成晶格样式。

聚合物材料固化后,采用等离子在其中刻蚀出数万亿的纳米孔以破化其下的SiCOH(每个孔径约为20nm)。接下来,采用酸将已被破坏的SiCOH通过孔隙去,在余下的电介质中留下连续的空隙。通常采用常规层间电介质封闭连续的空袭。这些步骤在真空室中进行,从而在空洞中留下真空。

理想状况下,真空洞可完美地遮盖导线,从而达到电介常数为1。但是,为

了机械和热性能的完整性,相当量的固体电介质留在导线上方或下方。这导致总有效介电常数上升至2.0,但这仍然比固体电介质进步了很多。剩余的固体材料保持空隙结构的完整,及将导线的热导出至硅基板以传出芯片。没有固体电介质,空隙可能会太脆弱以至难以支撑导线,且这些空隙也会聚集太多的热。

Air-Gap技术在真正的芯片中的应用: 空气隙并非只是理论性或遥远未来的技术。空气隙可减少电容耦合35%,改善环震荡,及减少芯片功耗。

4.结论

减少介电常数主要有以下三种途径:一是利用有机物或无机物本身的低k特性,但其缺点是一般有机物不耐高温,与金属黏附力不够,因而限制了它们在集成电路中的应用;二是掺入杂质,普遍采用的氟能有效降低介质的偶极子极化,

从而达到降低介电常数的目的;三是注入孔穴,一般利用S

iO

气凝胶,由于孔

穴的介入相当于降低了平均介电常数,但是空气的热胀冷缩易对电路造成损伤。目前广泛研究的低介材料大都是通过这三种途径得到。

本文综述了当前正在研究和开发的新型低介电材料以及它们相关的特性。目前国内外都在积极研制介电常数值在3.0甚至2.0以下的并且具有较好电性

能、机械性能、化学性能和热性能的低介电材料,以作为S

iO

的潜在替代品来

适合ULSI的发展,从而达到减低RC延迟的目的。

当然目前介电常数的最低极限是1.0,现在还没有比真空还小的介电材料存在了。使用Air-Gap技术等模拟真空化也许是将来发展的主流方向。

参考文献

1. 赵智彪,许志,利定东.低介电常数材料在超大规模集成电路工艺中的应用,

刊于“半导体技术”第29卷第2期:4-6.2004

2. 黄娆,刘之景.新型低介电常数材料研究进展,刊于“微纳电子技术”第9期,11

页,2003

3. 宁兆元,叶超.超低介电常数材料和多孔SiOCH薄膜 ,刊于“世界科技研究与

发展”第26卷第6期,15页,2004

4. Tom R. Halfhill. Making Chips From Thin AIR, Electronic Engineering

& Product World,Vol.11,p.131,2007

PCB介电常数知识

1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-7 0度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M 左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),E SR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

常见物质介电常数汇总知识交流

常见物质介电常数汇 总

精品资料 Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒 空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯 pvc 3 173 仅供学习与交流,如有侵权请联系网站删除谢谢2

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

电介质的介电常数

电介质的介电常数 温度() 温度()

石英玻璃电学性能 石英玻璃具有很高的介电强度,很低的电导率折电损失,即使在高温时,其电导率与介电损失也较一般材料低,特别适合高温高机械应力条件下作高频和电压绝缘材料。 电导率在20o C时,透明石英玻璃的电导率为10-17-10-16西/米,不透明石英玻璃的电导率为10-14-3.2×10-13西/米,其值与石英玻璃的纯度有关。 介电常数在常温和0-106赫兹频率下,透明石英玻璃的介电常数为3.70;不透明石英玻璃为3.50,温度升高,介电常数略有增加,到450o C以后,介电常数显著增加。 介电损失石英玻璃的介电损失与温度的关系是随温度的升高,介电损失增加,在350o C 以上,介电损失随温度的升高而增加更为显著。 石英玻璃的介电损失 击穿强度在200o C时,透明石英玻璃的击穿电压约为普通玻璃的三倍, 500o C时为普通玻璃的十倍。 石英光学玻璃 我厂生产的光学石英光学玻璃窗口片,能耐高温和高压,主要应用于:特种光源,光学仪器,光电子,军工,冶金,半导体,光通讯等领域。它能实验温度:1200度,软化温度为:1730度,具体参数如下。 1.JGS1(远紫外光学石英光学玻璃) 它是用高纯度氢氧熔化的光学石英光学玻璃。具有优良的透紫外性能,特别是在短波紫外区,其透

过性能远远地胜过所有其他玻璃,在185mμ处的透过率可达90%,是185—2500mμ波段范围内的优良光学材料。 2.JGS2(紫外光学石英光学玻璃) 它是用氢氧熔化的光学石英光学玻璃。它是透过220—2500mμ波段范围内的良好材料。 3.JGS3:(红外石英光学玻璃) 它是具有较高的透红外性能,透过率高达85%以上,其应用波段范围260—3500mμ的光学材料。石英光学玻璃物理性能

固体绝缘材料介电常数、介质损耗试验方法

固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 本标准等效采用国际标准 IEC 250(1969)《测量电气绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的推荐方法》,只是去掉其中液体试样及其试验部分。 1主题内容与适用范围 本标准规定了固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法。 本标准适用于 15 HZ~300 MHZ频率范围内测量固体绝缘材料的相对介电常数、介质损耗因数,并由此计算某些数值,如损耗指数。 测量所得的数值与一些物理条件,例如频率、温度、湿度有关,在特殊情况下也与场强有关。 2定义 2.1相对介电常数 绝缘材料的相对介电常数。r是电极间及其周围的空间全部充以绝缘材料时,其电容 Cx与同样构型的真空电容器的电容C0之比: Er=CX/C0………………………………………( 1) 在标准大气压下,不含二氧化碳的干燥空气的相对介电常数等于 1. 000 53。因此,用这种电极构型在空气中的电容C。来代替C。测量相对介电常数时,有足够的精确度。在一个给定的测量系统中,绝缘材料的介电常数是该系统中绝缘材料的相对介电常数。与真空介电常数的乘积。 真空介电常数: E0=8.854×10-12F/m≈1×10-9F/36πm………………………( 2) 在本标准中用PF/cm来计算,真空介电常数为: E0=0.08854pF/cm 2. 2介质损耗角 6 绝缘材料的介质损耗角a,是由该绝缘材料作为介质的电容器上所施加的电压与流过该电容器的 电流之间的相位差的余角。 2.3介质损耗因数tanδ 绝缘材料的介质损耗因数是介质损耗角E的正切tanE。 2.4损耗指数E n 绝缘材料的损耗指数E n,等于该材料的介质损耗因数不清tanE与相对介质常数e的乘积。 2.5相对复介电常数E 绝缘材料的相对复介电常数是由相对介电常数和损耗指数结俣而得出的。 Er=Er-JEr Er=Er 式中:Er是2.1条中所定义的相对介电常数。 E=Etane 有介质损耗的电容量,在任何经定的频率下既可用电容Cs和电阻Rs的串联回路来表示:

低介电常数材料论文

低介电常数材料的特点、分类及应用 胡扬 摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其 在集成电路工艺中的应用。指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。 关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材 料 ;Air-Gap 1.引言 随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。 这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。 2.背景知识 低介电常数材料大致可以分为无机和有机聚合物两类。目前的研究认为,降低材料的介电常数主要有两种方法: 其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。材料分子密度的降低有助于介电常数的降低。这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。 针对降低材料自身极性的方法,目前在0.18mm技术工艺中广泛采用在二氧化硅中掺杂氟元素形成FSG(氟掺杂的氧化硅)来降低材料的介电常数。氟是具有强负电性的元素,当其掺杂到二氧化硅中后,可以降低材料中的电子与离子极化,

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量 一、实验目的: 运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 二、实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120 -?=ε,S 为样品的有 效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 替代法: 替代法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示: 图一:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电 容C 两端的电压2π ,落后于电感两端的电压2π ,如图二。 图二:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z = = L V → -R V →

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5 ARGON 氩20 1.000513 ARSENIC TRIBROMIDE 三溴化砷37 9 ARSENIC TRICHLORIDE 三氯化砷66 7 ARSENIC TRICHLORIDE 三氯化砷21 12.4 ARSENIC TRIIODIDE 三碘化砷150 7 ARSINE 胂-100 2.5

常见介质介电常数

薅H2O (水) 78.5 螅HCOOH (甲酸) 58.5 袃HCON(CH3)2 (N,N-二甲基甲酰胺)36.7 蕿CH3OH (甲醇) 32.7 芇C2H5OH (乙醇) 24.5 薄CH3COCH3 (丙酮) 20.7 羃n-C6H13OH (正己醇)13.3 羀CH3COOH (乙酸或醋酸) 6.15 螅 莃温度对介电常数的影响 肃C6H6 (苯) 2.28 肇CCl4 (四氯化碳) 2.24 蒇n-C6H14 (正己烷)1.88 肂电介质的相对介电常数

【正文】:@@1.判别乳状液的类型和稳定性常规测定乳状液类型的方法主要有染料法,冲淡法,电导法,荧光法和润湿滤纸法,这些方法均简单易行其实利用介电常数测试法也可以判别乳状液的类型,其道理同电导法类似电导法所依据的原理是水和油电导率的差异,当乳状液为WO型时,由于外相是油,乳状液的电导率很小,当乳状液为O W型时,由于外相是水,乳状液的电导率很大水和油不仅在电导率方面有差异,在介电常数方面也有很大区别一般纯净原油的相对介电常数接近2,纯净水的相对介电常数接近80,所以原油乳状液的相对介电常数基本介于2和80之间当原油乳状液的外相为油时,乳状液的介电性质同油的性质类似,所以测得的介电常数偏小当乳状液的外相为水时,乳状液的介电性质同水的性质类似,所以介电常数偏大,因此,根据被测乳状液介电常数的大小,可判断乳状液的类型曾测试两种原油乳状液的相对介电常数分别是6.8和75.4,初步判断前一种是WO型,后一种是OW型,当用染料法和润湿滤纸法进行验证后,确认判断结果是正确的,这说明用介电常数测试法判别乳状液的类型是可行的 For personal use only in study and research; not for commercial use

介电常数实验报告

基础实验物理报告 学院专业: 实验名称 介电常数实验报告姓名班级 学号 一、实验原理 二、实验设备 三、实验内容 四、实验结果

一、实验原理 介电常数是电介质的一个材料特征参数。 用两块平行放置的金属电极构成一个平行板电容器,其电容量为: S C D D 为极板间距, S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0 ,08. 851012 F / m 。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值 r 。 如能测出平行板电容器在真空里的电容量C1及充满介质时的电容量C2,则介质的相对介电常数即为 ε r C 2 C 1 然而 C1、 C2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可 忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1.用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C1和放入固体电介质后的电容C2。 C 1 C 0 C 边1 C 分1 C 2 C 串C 边 2 C 分 2 其中 C0是电极间以空气为介质、样品的面积为S 而计算出的电容量: C 00 S D C 边为样品面积以外电极间的电容量和边界电容之和, C 分为测量引线及测量系统等引起的分 布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串 ,根据电容串联公式有: ε0 Sεrε0S C 串D-t t εrε0 S ε0 Sεrε0S t εr(D-t) D t t

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

介电常数实验报告

基础实验物理报告学院专业:

一、实验原理 介电常数是电介质的一个材料特征参数。 用两块平行放置的金属电极构成一个平行板电容器,其电容量为: z S C = D D 为极板间距,S 为极板面积,£即为介电常数。材料不同£也不同。在真空中的介电常数为 12 ;0 , ;0 =8.85 10 …F / m 。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值 汀。 如能测出平行板电容器在真空里的电容量 C i 及充满介质时的电容量 C 2,则介质的相对 介电常数即为 C i 然而C i 、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可 忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测 出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电 常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容 C i 和放入固体电介质后的电 容C 2。 C 边为样品面积以外电极间的电容量和边界电容之和, C 分为测量引线及测量系统等引起的分 布电容之和,放入样品时,样品没有充满电极之间, 样品面积比极板面积小, 厚度也比极板 的间距小,因此由样品面积内介质层和空气层组成串联电容而成 C 串,根据电容串联公式有: £r C i 其中Co 是电极间以空气为介质、样品的面积为 S 而计算出的电容量: C o ;0 S 交流电桥

£ 0S£r£ 0 S D-t> t £0S£r£0 S C串= £ r £ S t紀 3) D -t t

当两次测量中电极间距 D 为一定值,系统状态保持不变,则有 C 边^C 边2、C 分?,=C 分2 C 串t £ 0 S-C 串(D - t ) 也就是说运用该实验方法消除了由分布电容和边缘 2. 线性回归法测真空介电常数 ;0 £ S 上述测量装置在不考虑边界效应的情况下,系统的总电容为: C = 0 0 ■ C 分 D 保持系统分布电容不变,改变电容器的极板间距 D ,不同的D 值,对应测出两极板间充满 空气时的电容量 C 。与线性函数的标准式 Y = A BX 对比可得:Y =C , A 二C 分, B = oS 0 , X = 1,其中S o 为平行板电容极板面积。用最小二乘法进行线性回归,求得 D 分布电容C 分和真空介电常数 p ( ;0 := 空)。 3 ?用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为 C01和C02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感 L 容和分布电容等构成 LC 振荡回路。振荡频率为: 其中C ^C o C 分。测试仪中电感 L 一定,即式中k 为常数,则频率仅随电容 最终得固体介质相对介电常数: 该结果中不再包含分布电容和边缘电容, 效应引入的系统误差。 与电极电 ——,或 2 n LC 2 2 4 二 2 Lf 2 C 的变 化而变化。当电极在空气中时接入电容 C 01,相应的振荡频率为 轴,得:C 01 C 分 k 2 f 2 ' 01 接入电容C 02,相应的振荡频率为f 02 ,得:C 02 C 分 k 2 f ; 实验中保证不变,则有 C 02 -C 01 k 2 ■2 f 。2 k 。当电极在液体中时,相应的有: £ r (C 02 -'C 01 k 2 )=2 f 2 k 2 2 f l

介电常数

脆化温度brittle temperature 塑料低温力学行为的一种量度。以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度。 屈服点(yield point) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2, (MPa=10^6(10的6次方)Pa,Pa: 帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规

定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 什么是介电常数,介电损耗,介电强度?[科学电力 ] 收藏转发至天涯微博 悬赏点数 10 6个回答 屋里有灯不黑啊2009-05-12 10:15:37 什么是介电常数,介电损耗,介电强度? 回答 换一张 码:

登录并发表取消 回答 heyerijue2009-05-12 10:15:55 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permeablity),又称诱电率. 介电强度(dielectric strength)是指单位厚度的绝缘材料在击穿之前能够承受的最高电压,即电场强度最大值,单位是 kV/mm。包括塑料 010********-05-12 10:16:02

介电常数, 用于衡量绝缘体储存电能的性能. 它是两块金属板之间以绝缘材料为介质时的电

常见物质介电常数汇总

常见物质介电常数汇总 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气1300 水淡8133 水咸8133 极地雪194-252 极地冰168 温带冰167 纯冰167 淡水湖冰4150 海冰78-157 永冻土1-8106-300 沿岸砂干燥1095 砂干燥3-6120-170 砂湿的25-3055-60 粉沙湿的1095 粘土湿8-1586-110 粘土土壤干3173 沼泽1286 农业耕地1577 畜牧土地1383 土壤平均1675 花岗岩5-8106-120 石灰岩7-9100-113 白云岩106-115 玄武岩湿8106 泥岩湿7113 砂岩湿6112 煤4-5134-150 石英145 混凝土6-855-112 沥青3-5134-173 聚氯乙烯pvc3173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(李大心) 2007第二期勘察科学与技术 电磁波在部分常见介质中的传播参数(Thepropagationparametersoftheelectromagneticwaveinthemedium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相

平行板谐振法测量微波介质介电常数性能(实验报告)

平行板谐振法测量微波介质介电常数性能 一.平行板谐振法测试原理 图 i Post Resonance Technique 实验测试装置如图i ,测试样品为圆柱状,放置在两个平行的金属板中,微波功率通过由样品和两个平行金属板组成的腔体耦合。输入和输出通过两个天线耦合。在某一频率下,该腔体的阻抗达到最小,即产生谐振,此时穿过的功率最大。该腔体的谐振特性可以通过一个矢量网络分析仪来得到直观显示。 实际测量中,常用TE011模来确定样品的介电性质。因为本测试装置可以在矢量网络分析仪上产生许多不同模式的谐振峰,本实验采用011T E 谐振模式(处于第二低的谐振频率处,最低的谐振频率是111H E 模式)。 本实验主要讨论介电常数的测量,至于电解质损耗和辐射损耗不做讨论。采用本测试方法的主要优势是 需要测量的参数有,样品厚度L 、样品直径D (D=2a )和谐振频率0f 电介常数可以通过以下公式计算得到: ()2 22 0012r ci c k k λεπ?? =++ ??? (1) 2 2 200212co k L λπλ?????? =-?? ? ????????? (2) ()() () 0000110()ci c c ci ci c J k a k a K k a J k a k a K k a =- (3) 00 c f λ= (4) 其中, J 和k 分别为第一类Bessel 函数和修正Bessel 函数,通过(3)可以求出ci k (采用数值方法,matlab 程序见附录) 二.实验过程 测量的参数如下: L = 8.01mm, D = 14.06mm f0 = 4.421401GHz 根据(1)--(4)式,可以求出r ε值,计算的值如下: 0λ=68 mm 0c k =381.20 ci k =426.34 r ε=39.14 计算过程见附录。 三.讨论 本实验并未讨论损耗角及品质因数的测量,随之的辐射损耗及电损耗并未讨论。采用此方法,不能精确测量平行板的表面阻抗[1],损耗角的测量也不准确;其次,样品的尺寸要求较大,若对于单晶体,很难制造[1]。可参考文献[2],有具体的改进方法。本方案的主要优势是计算的公式较完善,且很可靠。也因此,此方案仍被采用。 参考文献 [1] Sheen J 2005 Study of microwave dielectric properties measurements by various resonance techniques Measurement 37 123-30 [2] Sheen J 2008 A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region IOP Science Measurement Science and Technology 附录 %***************************************************** %******************* Post Resonance Technique *********** %*****************“微波测量之特别培养实验课”******** % Author:高永振 Date :2012-5-3 clear all; format long; % 实验的基本参数

常见物质介电常数汇总

. . .专业. .专注. Sir-20说明书普通材料的介电值和术语集 材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) r 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium)

材料的介电常数测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tg δ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 本实验的目的: 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q 表的工作原理; 3、掌握室温下用高频Q 表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量C x 与同样大小的介质为真空的电容器的电容量C o 之比值,被称为该电介质材料的相对介电常数。 o x C C = ε 式中:C x —电容器两极板充满介质时的电容; C ο —电容器两极板为真空时的电容; ε —电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tg δ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。 在工程中,常将介电损耗用介质损耗角正切tg δ来表示。tg δ是绝缘体的无效消耗

材料的介电常数测试

介质损耗和介电常数测量实验 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tg δ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 一、实验目的 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q 表的工作原理; 3、掌握室温下用高频Q 表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量C x 与同样大小的介质为真空的电容器的电容量C o 之比值,被称为该电介质材料的相对介电常数。 o x C C = ε 式中:C x —电容器两极板充满介质时的电容;

C ο —电容器两极板为真空时的电容; ε —电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tg δ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。 在工程中,常将介电损耗用介质损耗角正切tg δ来表示。tg δ是绝缘体的无效消耗的能量对有效输入的比例,它表示材料在一周期内热功率损耗与贮存之比,是衡量材料损耗程度的物理量。 RC tg ωδ1 = tg 式中:ω —电源角频率; R —并联等效交流电阻; C —并联等效交流电容器 凡是体积电阻率小的,其介电损耗就大。介质损耗对于用在高压装置、高频设备,特别是用在高压、高频等地方的材料和器件具有特别重要的意义,介质损耗过大,不仅降低整机的性能,甚至会造成绝缘材料的热击穿。

相关文档
最新文档