低介电常数和低介质损耗覆铜板材料的介绍

低介电常数和低介质损耗覆铜板材料的介绍
低介电常数和低介质损耗覆铜板材料的介绍

建筑材料损耗率表

建筑工程量计算损耗率 按实际施工多少计量钢筋损耗率 08 定额建筑上册 225 页说明: 7.本分部钢筋、铁件子目中,已包括钢筋、铁件的制作、安装损耗,不得另行计算损耗量。各种钢筋铁件损耗率为:现浇混凝土构件钢筋Φ1 0 以内 3%,Φ10 以上 2.5%,Ⅱ、Ⅲ级钢 3%;桩基钢筋笼 2%;砌体内加筋 3%;预制混凝土构件钢筋Φ10 以内 4.5%,Φ10 以上 2.5%,Ⅱ、Ⅲ级钢 3%;预应力钢丝 9%;预应力钢丝束(钢绞线)6%;后张预应力钢筋 13%;其他预应力钢筋 6%;铁件 1%。钢筋损耗在定额里的材料分析中就包括了,不用我们人为去考虑的,在软件中计算出来的钢筋用量,当在计价中套用定额后,计价会自动分析出来而计价的请问,如果工程采用的是商品混凝土,在用定额套价的时候,要把我们的量加上损耗率么,加多少呢?一定要加,商混的损耗是 2%,你可以看看黑龙江的绿本补充定额,那里有对商混的解释,我是哈市的,补充盯额上有你要的资料并且现在的商混是把商混的材料单价直接计入的而不是套定额生成的材料单价。定额中的材料量是完成规定单位工程的材料消耗量,已经包含了正常的施工损耗和混凝土干缩损耗,使用商品混凝土在套定额时只要把混凝土设置为商品混凝土就行,不用另加损耗。大理石 5%瓷砖 10%比较保险。模板配料的损耗系数为 15~20% 地砖的损耗率可按 5%计算,墙面砖的损耗率可按 10%计算。补损率即损耗率,你所说的模板损耗率,是按模板的周转次数计算的,定额中一般考虑 3 次周转,系数为 0.34. 2、周转性材料、周转材料的消耗定额 应该按照多次使用,分次摊销的方法确定。摊销量是指周转材料使用一次在单位产品上的消耗量,即应分摊到每一单位分项工程或结构构件上的周转材料消耗量。周转性材料消耗定额一般与下面四个因素有关:①一次使用量:第一次投入使用时的材料数量。根据构 件施工图与施工验收规范计算。一次使用量供建设单位和施工单位申请备料和编制施工作业计划使用。②损耗率:在第二次和以后各次周转中,每周转一次因损坏不能复用,必须另作补充的数量占一次使用量的百分比,又称平均每次周转补损率。用统计法和观测法来确定。③周转次数:按施工情况和过去经验确定。④回收量:平均每周转一次平均可以回收材料的数量,这部分数量应从摊销量中扣除。 04 年计价表中定额换算的计算公式 一、基础垫层材料换算方法: 1、灰土、砂、碎砖、碎石等单一材料、定额用量按下式取定:定额用量:定额计量单位×压实系数×(1+损耗率)压实系数=虚铺厚度/压实厚度

高分子材料常见知识简答

简单题: 1.超高分子量聚乙烯的性能特点,加工特点? 答:超高分子量聚乙烯为线型结构,其具有极佳的耐磨性,突出额高模量,高韧性,优良的自润滑性以及耐环境应力开裂性,摩擦系数低,同时还具有优异的化学稳定性和抗疲劳性。由于其相对分子质量极高,因而它的熔体粘度就极大,熔体流动性能非常差,几乎不流动,所以其不宜采用注射成型,宜采用粉末压制烧结。其与中相对分子质量聚乙烯、低相对分子质量聚乙烯、液晶材料或助剂共混后,具有了流动性。 2.硅烷交联两步法(水解、接枝) 两步法的原理是首先将乙烯基硅烷在熔融状态下接枝到聚乙烯分子上,在接枝过程中通常采用有机过氧化物作为引发剂。过氧化物受热分解产生的自由基能夺取聚乙烯分子链上的氢原子,所产生的聚乙烯大分子链自由基就能与硅烷分子中的双键发生接枝反应。接枝后的硅烷可通过热水或水蒸气水解而交联成网状的结构。 3.论述聚丙烯结构与性能特点,加工特性? 聚丙烯具有优良的抗弯曲疲劳性,强度、刚度、硬度比较高,具有优异的电绝缘性能,主要用于电信电缆的绝缘和电气外壳,具有良好的耐热性,在室温下不溶于任何溶剂,但可在某些溶剂中发生溶胀。耐候性差,易燃烧。 加工性能:

①其吸水率低,因此成型加工前不需要对粒料进行干燥处理。 ②聚丙烯的熔体接近于非牛顿流体,粘度对剪切速率和温度都比较敏感,提高压力或增加温度可以改善其熔体流动性。 ③聚丙烯是结晶类聚合物,所以成型收缩率比较大,且具有较明显的后收缩性。 ④聚丙烯受热时容易氧化降解,在高温下对氧特别敏感,为防止其在加工过程中发生热降解,一般在树脂合成时即加入抗氧剂。 ⑤聚丙烯一次成型性优良,几乎所有的成型加工方法都可适用,其中最常采用的是注射成型和挤出成型。 4.简述聚1-丁烯与其它聚烯烃相比,聚1-丁烯的特点? 1、具有刚性 2、较高的拉伸强度 3、好的耐热性 4、良好的化学腐蚀性以及抗应力开裂性,在油、洗涤剂和其它溶剂中,不会像高密度聚乙烯等其它聚烯烃一样产生脆化,只有在98%浓硫酸,发烟硝酸,液体溴等强度氧化剂的作用下,才会产生应力开裂。 5、优良的抗蠕变性,反复绕缠而不断,即使在提高温度时,也具有特别好的抗蠕变性 6、具有超高相对质量聚乙烯相媲美的非常好的耐磨性 7、可容纳大量的填料,在90-100℃下可长期使用。 5.论述聚氯乙烯结构与性质的关系?

主要材料损耗率

册说明 第八册《给排水、采暖、燃气工程》(以下简称本估价表) 适用于新建、扩建项目中的生活用给水、排水、燃气、采暖热源管道以及附件配件安装,小型容器制作安装。 二、以下内容执行其他册相应定额: 1.工业管道、生产生活共用的管道、锅炉房和泵类配管以及高层建筑物内加压泵间的管道执行第六册《工业管道工程》相应项目. 2。刷油、防腐蚀、绝热工程执行第十一册《刷油、防腐蚀、绝热工程》相应项目. 3.埋地管道的土石方及砌筑工程执行《自治区建筑工程计价定额》相应项目。 4。各类泵、风机等传动设备安装执行第一册《机械设备安装工程》相应项目。 5。锅炉安装执行第三册《热力设备安装工程》相应项目。 6。消火栓、水泵给合器安装执行第七册《消防及安全防落设备安装工程》相应项目。7。压力表、温度计执行第十册《自动化控制仪表安装工程》相应项目。 三、关于下列各项费用的规定: 1。脚手架搭拆费按人工费的5%计算,其中人工工资占25%。 2。高层建筑增加费(指高度在6层或20m以上的工业与民用建筑)按下表计算(其中全部为人工工资): 层数?9层以下 12层以下 (30m)? (40m)?15层以下 18层以下 (50m)? 21层以下 (60m)? (70m) 24层以下(80m) 按人工费的%?1?24?6?8?10 层数?27层以下 (90m) 30层以下 (100m) 33层以下 (110m)?36层以下 (120m) 39层以下 (130m)42层以下 (140m) 按人工费的%13 16?19 22?25 28 层数?45层以下 (150m) 48层以下 (160m)?51层以下 (170m)?54层以下 (180m) 57层以下 (190m)60层以下 (200m) 374043 46 按人工费的%3134? 3。超高增加费:定额中操作高度均以3.6m为界限,如超过3。6m时,其超过部分(指由

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

低介电常数材料论文

低介电常数材料的特点、分类及应用 胡扬 摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其 在集成电路工艺中的应用。指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。 关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材 料 ;Air-Gap 1.引言 随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。 这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。 2.背景知识 低介电常数材料大致可以分为无机和有机聚合物两类。目前的研究认为,降低材料的介电常数主要有两种方法: 其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。材料分子密度的降低有助于介电常数的降低。这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。 针对降低材料自身极性的方法,目前在0.18mm技术工艺中广泛采用在二氧化硅中掺杂氟元素形成FSG(氟掺杂的氧化硅)来降低材料的介电常数。氟是具有强负电性的元素,当其掺杂到二氧化硅中后,可以降低材料中的电子与离子极化,

常用建筑材料重量损耗率参考表

常用建筑材料重量损耗率参考表 序号名称规格(mm)用于部位单位重量(kg)运输途中损耗(% 场内搬运损耗(%损耗率(% 一、砖瓦类 1 统一砖240X 115X 53 基础墙块 2.6 0.5 0.5 0.5 2统一砖240X 115X 53地面、屋面,空斗墙块2.6 0.5 0.5 1.5 3统一砖240X 115X 53烟囱、水塔块2.6 0.5 1 3 4统一砖240X 115X53 方砖柱块 2.6 0.5 0.5 3 5统一砖240X 115X53 圆砖柱块 2.6 0.5 0.5 7 6统一砖240X 115X53 墙体块 2.6 0.5 0.5 0.4 7八五砖_ 220X 105X43 墙体块 1.76 0.5 0.5 0.4 8多孔砖(20 孔)240X 115X 90 墙体块 3.45 0.5 0.5 1 9kk 300X 200X 115 墙体块7.3 0.5 0.5 1 10耐火砖230X 115X 65 墙体块 3.7 0.5 0.5 2 11麻石砖197X 76地坪块0.5 0.5 2 12劈裂墙地砖194X94X 11地坪块0.57 0.5 0.5 2.5 13 广场砖100X 100X 18 地坪100 块36.35 0.5 0.5 1.5 14硅酸盐砌块C型,190墙体立方米1600 0.25 0.25 0.5 15加气砌块200X 300X 600墙体立方米600 1.5 1.5 4 16加气混凝土块200X 300X 600墙身保温立方米600 1.5 1.5 2

17混凝土空心小型砌块立方米600 1.5 1.5 3

高介电系数电介质材料的研究现状及发展

高介电系数电介质材料的研究现状及发展 摘要:随着信息、电子和电力工业的快速发展,以低成本生产具有高介电常数损耗的聚合物基复合材料成为行业关注的热点。因此,研究具有高介电常数的聚合物基复合材料具有十分重要的学术意义和实用价值。高介电常数的聚合物基电介质材料无论是在电力工程,还是在微电子行业都具有十分重要的作用。研究以纳米和微米尺度的高介电常数的制品,采用特殊的工艺制备了高介电常数的聚合物基纳米功能电介质复合材料。研究了制备工艺、添加物含量、以及微米/纳米等因素对复合电介质材料介电性能的影响。以及利用碳纳米管掺杂聚合物制备柔性高介电常数复合材料的研究现状。 关键词:高介电性能复合材料碳纳米管聚合物介电损耗 1电介质材料的应用领域 碳纳米管由于其独特的力学、磁学、电学等性能,在电介质材料领域其应用已涉及电极材料、纳米电子器件、复合材料等多方面逐渐形成了材料界和凝聚态物理界的前沿和热点。其中,具有高介电常数的聚合物基复合材料更是受到广泛的关注。这是因为,在电气工程领域,这类复合材料具有高介电常数、低密度以及易于低成本加工等优点,因此既可用作高储能密度电容器的介质材料,也可用作高压电缆均化电场的应力锥材料。在微电子领域,通过选择合适的聚合物基体,可以在印制电路板上快速大规模的制备高电容的嵌入式微电容器,这种高电容的微电容器可以保证集成电路的高速和安全运行。在微机电和生物工程领域,这类高介电常数柔性复合材料可被用于人工肌肉和药物释放智能外衣材料等。通常,提高聚合物基复合材料介电常数的方法主要是,将高介电常数的陶瓷粉末利用特殊的复合工艺添加到聚合物基体中形成。 2聚合物基复合体系的介电性 聚合物基复合体系的介电性能依赖于各组分材料的物理性质、复合材料的制备工艺、填料与聚合物间的表面与界面以及介电常数增加的机理等,特别是利用渗流效应提高材料的介电常数时,填料的形状和尺寸会大大影响复合材料的介电性能。如多壁碳纳米管(MWNT)改性前后填充的聚合物基复合材料的介电性能为主要内容,对引起复合材料介电性能和渗流阈值的差异进行了比较详细地分析。同时,基于研究的结果,展望了这类材料的未来发展动向。近年来,具有良好的压电和热电效应的柔性聚合物材料受到关注,特别是具有铁电性能的含氟聚合物。但是,在这些材料的一些应用领域(例如高储能电容器等),要求聚合物具有高的介电常数。由于这类材料本身的介电常数较高(接近10),所以选用PVDF作为基体材料,制备碳纳米管填充的复合材料,并研究复合材料的形貌、晶体结构和介电性能等。 3高介电常数高分子复合材料的研究进展

材料的介电常数测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tg δ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 本实验的目的: 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q 表的工作原理; 3、掌握室温下用高频Q 表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量C x 与同样大小的介质为真空的电容器的电容量C o 之比值,被称为该电介质材料的相对介电常数。 o x C C = ε 式中:C x —电容器两极板充满介质时的电容; C ο —电容器两极板为真空时的电容; ε —电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tg δ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。 在工程中,常将介电损耗用介质损耗角正切tg δ来表示。tg δ是绝缘体的无效消耗

建筑工程常用材料损耗标准

骨架用料核算 吊架轻钢龙骨 ①吊顶龙骨架: 主龙骨+副龙骨=M (单位:米)损耗:3% M总=1.03M ②辅件: 吊件--用于悬吊主龙骨 挂件--用于将副龙骨与主龙骨挂接接插件--用于副龙骨接头处的挂接连接件--用于主龙骨接头处的连接上人主龙骨吊件:每米 1~1.5件

不上人主龙骨吊件:每米 0.5~1件 副龙骨挂件:挂件数量=副龙骨总数×1.3/2 接插件:接插件=副龙骨总数/吊顶框架分格边长 ③吊件材料: 自制吊件:吊杆材料、吊点铁杆、射钉或膨胀螺栓、吊杆螺母。 a 上人龙骨架的吊杆用φ8左右的钢条,并在吊杆的一端做一段长为30mm的螺纹。 b 不上人龙骨可用10#镀锌铁丝做吊杆。 c 吊杆、吊点铁件的数量等于吊顶吊点数,或略多。 d 射钉、膨胀螺栓和吊杆螺母数量是吊点的两倍。 ④其它材料: 油漆是吊件、吊杆防锈材料,可按每公斤油漆涂刷100㎡来计。每公斤防锈漆需配半公斤松节水和0.25公斤棉维丝。 隔墙龙骨架材料 沿顶、沿地和加强龙骨,竖向龙骨、横撑龙骨和配件。

墙高小于 3.2m的间隔墙,常采用截取竖向龙骨来取代加强和横撑龙骨,以减少所需龙骨的品种。 采用自攻螺钉、电焊、铆接的方式减少配件的品种。 ①沿顶沿地龙骨 (隔墙长度×2+门窗框数量)×1.05 ②竖向龙骨 ?隔墙面积小,实数竖向龙骨数量×隔墙高度 ?隔墙面积≥200㎡ a 按图纸上每米隔墙中竖向龙骨的根数乘上隔墙总长度,得出总根数。 b 隔墙高度乘上竖向龙骨总根数,得出总长度。 M总=M墙×G根×M高×1.05 (m×根/m×m) ③辅助材料 平头自攻螺钉、膨胀螺栓、水泥钉、电焊条、铝平头抽芯铆钉等紧固件,以及固定门框用的铁脚件。 a 平头自攻螺钉常用M4×20或M5×20,用量 1kg/100㎡。 b 膨胀螺栓和水泥钉主要用来固定沿地、沿顶或沿墙龙骨,可按每米隔墙4只。

材料的介电常数测试

介质损耗和介电常数测量实验 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tg δ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 一、实验目的 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q 表的工作原理; 3、掌握室温下用高频Q 表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量C x 与同样大小的介质为真空的电容器的电容量C o 之比值,被称为该电介质材料的相对介电常数。 o x C C = ε 式中:C x —电容器两极板充满介质时的电容;

C ο —电容器两极板为真空时的电容; ε —电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tg δ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。 在工程中,常将介电损耗用介质损耗角正切tg δ来表示。tg δ是绝缘体的无效消耗的能量对有效输入的比例,它表示材料在一周期内热功率损耗与贮存之比,是衡量材料损耗程度的物理量。 RC tg ωδ1 = tg 式中:ω —电源角频率; R —并联等效交流电阻; C —并联等效交流电容器 凡是体积电阻率小的,其介电损耗就大。介质损耗对于用在高压装置、高频设备,特别是用在高压、高频等地方的材料和器件具有特别重要的意义,介质损耗过大,不仅降低整机的性能,甚至会造成绝缘材料的热击穿。

介电常数

介电常数 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中)的比值即为相对介电常数(permittivity,不规范称dielectric constant),又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。 介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*10^(-12)F/m。需要强调的是,一种材料的介电常数值与测试的频率密切相关。 一个电容板中充入介电常数为ε的物质后电容变大εr倍。电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 根据物质的介电常数可以判别高分子材料的极性大小。通常,介电常数大于3.6的物质为极性物质;介电常数在2.8~3.6范围内的物质为弱极性物质;介电常数小于2.8为非极性物质。 测量方法 相对介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。然后相对介电常数可以用下式计算 εr=Cx/C0 在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053.因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。(参考GB/T 1409-2006) 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 "介电常数" 在工具书中的解释: 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对于介电材料,相对介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为8 3.83,与温度有关。 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释: 1.介电常数是指物质保持电荷的能力,损耗因数是指由于物质的分散程度使能量损失的大小。理想的物质的两项参数值较小 文献来源介电常数与频率变化的关系2.其介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子.通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越强

集成电路中低介电常数介质发展概述

超大规模集成电路中低介电常数介质研究进展 集成电路发展,从1947年肖克利和他的两助手布拉顿、巴丁在贝尔实验室发明的世界上第一个晶体管算起,到今天也有60多年的时间了,其间各种创新,层出不穷。集成电路技术发展的过去很多年一直遵循摩尔定律,而随着期间尺寸的缩小,摩尔定律也受到一定限制,因此,后摩尔定律就相应的被提出来。然而器件尺寸是否会一直缩小,能否缩小到超过原子之间的限度,以及如果可能缩小到超过原子限度之后所带来的一些列串扰等问题,都需要我们进一步去探索。不管遵循怎样的规则,目的都是为了缩小器件尺寸,减小功耗,增加集成度等,来进一步提升器件及电路本身性能。可以预见,未来超大规模集成电路技术将会依赖于三个关键技术:1.精细加工(13nmEUV曝光、X射线曝光与分辨率增强技术);2.互连线(0.13特征尺寸之后的铜互连与低K介质的可靠性);3.新型器件结构和材料体系(金属栅氧化层高K材料、CMOS层间低K材料、SOI材料和应变Si)。其中互连线技术中之所以会注重低K材料,因为低K材料在解决互连线中的RC延迟问题占有重要地位。 我们都知道摩尔定律指的是集成电路的集成度每3年提高约4倍,而特征尺寸缩小约1/2。当特征尺寸减小到0.18um时,伴随金属连线截面和间距的减小,互联结构中的电阻和电容迅速增大,由此引起的互连延迟将超过电路的本征延迟,将成为制约集成电路性能的主要瓶颈。在以往的集成电路中,一直都是使用铝或铝合金与二氧化硅的互连技术,因为SiO2具有极好的热稳定性和抗湿性,是金属互连线间的主要绝缘材料,而金属铝则是则是芯片中电路互连导线的主要材料。但是随着集成电路技术的进步,具有高速度、高器件密度、低功耗及低成本的芯片越来越成为超大规模集成电路的主要产品。此时,芯片中的导线密度不断增加,导线宽度和间距不断减小,互连中的电阻R和电容C所产生的寄生效应越来越明显,因此,以铝或铝合金与二氧化硅的互连技术已经面临很大的挑战。尤其是当器件尺寸缩小到0.25um以后,克服阻容迟滞(RC Delay)而引起的信号传播延迟、线间干扰及功率耗散等,成为集成电路工艺技术发展不可回避的课题。金属铜(Cu)的电阻率为(~1.7uΩcm),比金属铝的电阻率(~3.0uΩcm)低约40%,因而,铜线替代传统的铝线就成为集成电路工艺的发展方向。如今,因为大马士革及双大马士革工艺的出现,铜线工艺已经成为集成电路工艺的重要领

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4-3 194-252 极地冰3-3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5-8 78-157 永冻土1-8 106-300 沿岸砂干燥10 95 砂干燥3-6 120-170 砂湿的25-30 55-60 粉沙湿的10 95 粘土湿8-15 86-110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩5-8 106-120 石灰岩7-9 100-113 白云岩 6.8-8 106-115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤4-5 134-150 石英 4.3 145 混凝土6-8 55-112 沥青3-5 134-173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

2007第二期勘察科学与技术 电磁波在部分常见介质中的传播参数(Thepropagationparametersoftheelectromagneticwaveinthemedium)

的矿物对其介电常数的影响。研究表明,土壤中含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1??常见介质的电性参数值 媒?????质电导率/(S/m)介电常数???(相 对值) 电磁波速度/ (m/ns) 空??气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰???岩(干)10-97 0.11 灰???岩(湿) 2.5х10-28~10 0.11~0.095 粘???土(湿)10-1~1 8~12 0.11~0.087 混?凝?土10-9~10-86~15 0.12~0.077 钢?????筋∞∞ 表1??常见介质的物理参数 介质电导率/Sm 相对介电常 数速度/(m/ns) 衰减系数/ (dB/m) 空气0 1 0.3 0 花岗岩(干)10-8 5 0.15 0.01~1 玄武岩(湿)10-28 0.15 0.01~1 灰岩(干)10-97 0.11 0.4~1 砂(干)10-7~10-34~6 0.15 0.01 粘土(湿)10-1~1 8~12 0.06 1~300 页岩(湿)10-17 0.09 1~100 砂岩(湿)4×10-2 6 土壤 2.6~40 0.13~0.095 20~30 混凝土 6.4 0.12 钢筋 拉托维亚雷达系统公司Zond-12e探地雷达

超低介电常数聚合物

高性能聚合物 结课作业 题目:超低介电常数集合物的研究进展 班级: 学号: 姓名: 学科、专业:

随着电子信息技术的突飞猛进, 电子产品正朝着轻量薄型化、高性能化和多功能化的方向发展。进入21世纪以来, 特别是近几年, 超大规模集成电路(ULSI: Ultra Large Scale Integrated Circuit)器件的集成度越来越高, 比如我们熟知的Intel公司所生产的酷睿2双核处理器的特征尺寸已经达到65nm. 当器件的特征尺寸逐渐减小时即集成度不断提高时, 会引起电阻- 电容(RC) 延迟上升,从而出现信号传输延时、噪声干扰增强和功率损耗增大等一系列问题[1 ], 这将极大限制器件的高速性能。降低RC延迟和功率损耗有两个途径, 一是降低导线电阻R, 也就是用铜( 20℃时电阻率为11678μΩ·m) 取代传统的铝( 20℃时电阻率为21655μΩ·m) 来制备导线, 另外一个同时也是更重要的是降低介质层带来的寄生电容C。由于电容C正比于介电常数ε, 所以就需要开发新型、低成本以及具有良好性能的低介电常数(ε < 3) 材料来代替传统的SiO2 (ε约为410) 作介质层。而对用于金属间的介电材料, 除了满足介电性能的要求外, 还必须具有较高的热稳定性, 因为在器件的制造过程中需经历较高的加工温度, 例如金属互联线的成型就需要在400~450℃的高温条件下进行。因此制备低介电常数材料成为现在人们研究的热点。 为获得低介电常数, 必须选用非极性分子材料。对于非极性分子, Clausius-Mosotti 方程将介电常数ε与极化率α联系起来[ 2 ] : 式中N 为单位体积内的极化分子数, α为分子极化率, 是电子和离子极化率之和, ε0为真空电容率(或称为真空介电常数) 。由上式可知降低材料介电常数的途径有: (1) 降低分子极化率α, 即选择或研发低极化能力的材料; ( 2) 减小单位体积内极化分子数N, 这可以通过向材料中引入空隙加以实现。 对于用于介电材料的聚合物而言,除了要求其有低的介电常数以外还要求其它性能也能满足集成电路对材料的要求,如良好的热稳定性,低的吸湿性,易于蚀刻,良好的力学性能,低的热膨胀系数,与不同的导体有良好的粘结性和高温下不与金属导体反应等特性。热性能一直作为用于介电材料聚合物的重要考查项目。这是因为集成电路在布线完成后需要在400 ℃~500 ℃的温度下进行1h 以上的退火处理,要求用于集成电路的层间材料能在承受这一温度几个小时。 1.降低聚合物介电常数的方法和原理 通常降低聚合物材料介电常数的方法有:增加聚合物材料的自由体积,引入氟原子和生成纳米微孔材料。短的侧链,柔性的桥结构和能限制链间相互吸引的大的基团都可以增加聚

完整word版,介电常数与好三因素间的关系

介电常数与耗散因数间的关系 介电常数又称电容率或相对电容率,是表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。其表示电介质在电场中贮存静电能的相对能力,例如一个电容板中充入介电常数为ε的物质后可使其电容变大ε倍。介电常数愈小绝缘性愈好。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数还用来表示介质的极化程度,宏观的介电常数的大小,反应了微观的极化现象的强弱。气体电介质的极化现象比较弱,各种气体的相对介电常数都接近1,液体、固体的介电常数则各不相同,而且介电常数还与温度、电源频率有关有些物质介电常数具有复数形式,其实部即为介电常数,虚数部分常称为耗散因数。 通常将耗散因数与介电常数之比称作耗散角正切,其可表示材料与微波的耦合能力,耗散角正切值越大,材料与微波的耦合能力就越强。例如当电磁波穿过电解质时,波的速度被减小,波长也变短了。 介质损耗是指置于交流电场中的介质,以内部发热的形式表现出来的能量损耗。介质损耗角是指对介质施加交流电压时,介质内部流过的电流相量与电压向量之间的夹角的余角。介质损耗角正切是对电介质施加正弦波电压时,外施电压与相同频率的电流之间相角的余角δ的正切值--tgδ. 其物理意义是:每个周期内介质损耗的能量//每个

周期内介质存储的能量。 介电损耗角正切常用来表征介质的介电损耗。介电损耗是指电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象。原因是电介质中含有能导电的载流子,在外加电场作用下,产生导电电流,消耗掉一部分电能,转为热能。任何电介质在电场作用下都有能量损耗,包括由电导引起的损耗和由某些极化过程引起的损耗。 用tgδ作为综合反应介质损耗特性优劣的指标,其是一个仅仅取决于材料本身的损耗特征而与其他因素无关的物理量,tgδ的增大意味着介质绝缘性能变差,实践中通常通过测量tgδ来判断设备绝缘性能的好坏。 由于介电损耗的作用电解质在交变电场作用下将长生热量,这些热会使电介质升温并可能引起热击穿,因此,在绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数,即电介质损耗角正切tgδ较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3--300兆赫兹)对介电常数大的材料(如木材、纸张、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热速度更快、热效率更高,而且热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 在绝缘设计时,必须注意材料的tgδ值。若tgδ过大则会引起严重发热,使绝缘材料加速老化,甚至导致热击穿。 一下例举一些材料的ε值:

材料的介电常数测试

介质损耗和介电常数测量实验 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tgδ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 一、实验目的 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q表的工作原理; 3、掌握室温下用高频Q表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量Cx与同样大小的介质为真空的电容器的电容量Co之比值,被称为该电介质材料的相对介电常数。 式中:Cx —电容器两极板充满介质时的电容; Cο—电容器两极板为真空时的电容; ε—电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tgδ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。

高导热率及低介电常数的AlN_PI纳米复合薄膜研究

高导热率及低介电常数的AlN/PI纳米复合薄膜研究3 郝晓静1,2,党智敏1,2,徐海萍1,2 (1.北京化工大学纳米材料先进制备技术与应用科学教育部重点实验室,北京100029; 2.北京化工大学北京市新型高分子材料制备及工艺重点实验室,北京100029) 摘 要: 通过将纳米氮化铝加入到原位聚合而成的聚酰亚胺中以提高纳米复合薄膜的导热系数。采用KH550偶联剂对氮化铝粒子表面进行物化处理,以提高有机-无机两相界面的结合力。采用SEM、T GA 等对材料的微观结构、热性能等进行了研究。结果显示无机粒子在纳米复合薄膜中分散均匀,并在保持较低的介电性能同时提高了复合材料的热稳定性和导热性能。这样的材料在电子封装材料和印刷线路板中具有很大的应用前景。 关键词: 纳米复合薄膜;聚酰亚胺;耐高温;导热系数;介电性能 中图分类号: TM282文献标识码:A 文章编号:100129731(2007)1021618203 1 引 言 微型化已经成为印刷线路板和电子封装材料发展的主要方向之一,其中聚合物基电子封装材料在电子器件封装应用中具有广阔前景[1,2]。在实际电工和电子应用领域中,除了考虑电介质材料具有低的介电常数外,还必须尽可能使其具有较大的热导率,以满足线路板和器件日益增大的导热(散热)需求[3~5]。聚酰亚胺(PI)具有较低的介电性能可以降低超大规模集成电路(UL SI)的互连延迟、串扰和能耗,使其在封装材料和介电层中有较高的研究价值[6~8],但是PI的低导热性能限制了其在电子材料中的广泛应用。无机粒子氮化铝(AlN)具有较低的热膨胀系数、较低的电容率,同时具有较好的机械强度以及良好的化学、热稳定性,使其在高导热陶瓷材料中应用广泛[9,10]。在PI中填充AlN以提高材料的导热性能引起了人们的关注。王家俊等的研究工作得出[11]:当直径为2.0μm AlN的体积分数道道60%,样品厚度为3mm时,AlN/PI复合材料的导热系数为4.28W/(m?K)。但采用粒径较大的微米级AlN填充,尤其是无机粒子含量较高时较难成膜,不利于用于层间介质绝缘材料,同时高的填充量会降低复合材料的强度,限制其应用范围。纳米粒子的掺杂可以使基体的性能得到很大的提高,因此AlN/PI纳米复合材料引起越来越多的重视。Chen等的研究结果显示将纳米级的AlN粒子可以很好分散在PI中,但是复合材料的介电常数会有较大的提高,限制电子封装材料的应用,并且实验的工艺耗时较长,不利于工业化[12]。 在我们实验中,设计将具有较低介电常数和较高热导率纳米粒径的AlN在PI聚合过程中原位复合,以获得热导率大幅增加的复合电介质薄膜。为了改变纳米粒子的团聚状态,使用前采用KH550作为偶联剂对AlN纳米粒子进行改性来降低其表面自由能,并改善其在PI基体中的分散性。结果显示,得到的AlN/ PI纳米复合杂化薄膜在较低的无机粒子填充量下获得了较高的导热系数,同时具有很低的介电常数,这样的性能对电子封装材料和印刷线路板是必要的。 2 实 验 2.1 AlN/PI纳米复合杂化薄膜的制备 采用4,42二胺基二苯醚(ODA,化学纯,上海三爱思试剂有限公司)和均苯四甲酸酐(PMDA,化学纯,国药化学试剂有限公司)通过原位缩聚的简单工艺合成了聚酰亚胺,并选用纳米级的AlN填充获得纳米复合材料。首先将AlN(纳米级,合肥纳米科技有限公司)纳米粒子溶于乙醇/水(体积比100/10)溶剂,在室温下超声30min得到白色悬浮液。把一定量的KH550滴加到上述悬浮液中,磁力搅拌2h。待乙醇挥发完后,将AlN粒子在真空烘箱50℃下干燥2h,最终得到偶联剂包覆的AlN纳米粒子。将包覆好的AlN超声分散,加入到溶解有ODA的DMAc(N,N2二甲基乙酰胺,化学纯,北京益利化学)中,在机械搅拌下分批加入PMDA聚合得到聚酰胺酸/氮化铝的悬浊液,然后将其在平板玻璃上铺膜,在烘箱中按照80、120、180、240、300℃各1h梯度升温亚胺化,最终得到AlN/PI 纳米复合杂化薄膜。 2.2 性能表征 采用扫描电镜(SEM,H ITAC HI S24700)观察材料中二组分的分散及界面状况;使用热失重分析仪(T GA,N ETZSC H T G209C)记录复合材料的的热失重曲线,氮气条件下升温速率10℃/min。导热系数使用的是导热系数分析仪(hot disk t hermal constant s analyzer2500);材料的介电性能测试在阻抗分析仪 8161功 能 材 料2007年第10期(38)卷 3基金项目:国家自然科学基金资助项目(50677002);教育部博士点基金资助项目(20050010010);北京市自然科学基金资助项目(2063031) 收到初稿日期:2007203229收到修改稿日期:2007205216通讯作者:党智敏 作者简介:郝晓静 (1981-),女,河北邯郸人,在读硕士,师承于党智敏教授,从事于聚合物基功能电介质材料研究。

相关文档
最新文档