金属学(铁)及其热处理微观结构原理简析

金属学(铁)及其热处理微观结构原理简析
金属学(铁)及其热处理微观结构原理简析

金属学(铁)及其热处理微观结构原理简析

铁与热处理:按铁金属原本面目讲:铁在液态下,晶粒的晶核是呈十字形,固化后的晶粒在三维空间呈柱型枝晶状(或称树状晶),晶粒内部的原子以金属键有规则地连接,形成晶粒内部的晶格式结构。晶粒之间以枝晶相互交叉联接(晶须理论支持),形成了晶粒之间连接的组织机构。铁是同素异构晶体,其晶粒内部原子晶格式的结构排列不是理想化的,有点、线、面的缺陷;碳原子的半径大于铁的晶格空隙半径,晶格排列理想情况下它进入不了铁的晶粒内部,但由于铁的晶粒内部的局部有晶格排列缺陷,少量碳原子就趁机进入了铁的晶格排列的缺陷处,形成晶粒的局部含碳原子,也就成为了“相”结构;面心与体心立方晶体的晶格排列结构不同,间隙就不同;同样的缺陷数量,含碳量就会不同,面心立方结构下的饱和含碳量是0.77%,体心立方结构下的饱和含量是0.0218%。两个结构的饱和含碳量是35倍的差距,这几十倍的差距就凸显了碳原子降低晶体同素异构转变温度、转变速度、结构变化析出碳原子的重大作用,例如:所有的碳钢、合金钢的淬火都必须加热到晶粒的面心立方结构状态,就是利用此状态的晶格缺陷空间大、含碳量就大而导致的同素异构转变温度低与转变速度慢的特点,得到硬度高的结构。

渗碳体与晶粒缺陷处的碳原子在铁中的含量是少数,但它们极像一个染色剂,碳原子遍布于晶粒内部的缺陷处,渗碳体飘浮在晶粒的晶界上。渗碳体Fe3C熔点1227℃度,含碳量是6.69%,具有复杂的晶体结构,高温时会变得很软,会被温度变化时,柱状晶粒生长产生的体积变化挤的变形,不同温度下有不同的变形;碳钢在含碳量相同时,相同的参数温度下有形状大致相同的碳化物形状。柱型枝晶状晶粒之间的枝晶联接形成(晶须理论支持)的组织机构在机械轧制时,可出现方向纤维性,典型表面可见的是晶界上的碳化物被拉长变形。铁的性能是由结构决定的,例如,奥氏体不锈钢是不导磁的,铁素体不锈钢是导磁的,马氏体不锈钢是导磁不太好的,但奥氏体不锈钢是面心立方结构,铁素体不锈钢是体心立方结构,马氏体不锈钢是不稳定的体心正方结构,结构才能决定是否导磁,与碳无关,与合金无关;就硬度而言:碳钢面心立方结构下的硬度低于体心立方结构下的硬度,体心立方结构下的硬度低于体心正方结构下的硬度,也是结构决定的;就体积而言:面心立方结构下的晶胞体积大于体心立方结构下的晶胞体积,所以,体心立方结构下的硬度就大于面心正方结构下的硬度,晶粒的体积大小也改变硬度,但与碳无关;就含碳量而言,奥氏体的硬度低于铁素体,但奥氏体的含碳量远远大于铁素体,说明含碳量的多与少决定不了钢的硬度,硬度与钢的碳含量的多与少无关。就碳化物Fe3C的硬而脆而言,马氏体中渗碳体Fe3C的含量是很少的,但马氏体它很硬。退火状态的碳钢,渗碳体Fe3C含量高,但它的硬度并不高。各方面的事实证明:铁的性能必须是由结构决定的。

铁碳平衡图已清楚地表明,727℃度PSK线是碳钢与铸铁的共析转变温度线,实际就是同素异构转变温度线,它是纯铁的912℃度同素异构转变G点,在α-Fe晶体内碳原子增多到0.0218%的饱和含量后,由G点下降到P点。γ-Fe结构下晶体晶格缺陷处的饱和含碳量是0.77%。在γ-Fe结构下,当碳含量大于0.77%时,就在727℃度同素异构转变前,随着温度的下降,碳原子先从过饱和、后从次过饱和的晶粒内部缺陷处先后溢出,成为二次渗碳体,直至全部成为饱和的γ-Fe结构下的晶粒,到727℃度进行同素异构转变;当碳含量少于0.77%时,就在727℃度同素异构转变前,随着温度的下降,稍欠饱和含碳量的γ-Fe晶粒先转变为铁素体,转变后的铁素体缺陷处马上挤出碳原子再补充到原晶粒较缺乏碳原子的γ-Fe晶粒缺陷处,使之成为饱和含碳量的γ-Fe晶粒再进行铁素体转变,这个循环转变过程直至到727℃度的同素异构转变。碳原子的作用就是将纯铁的912℃的同素异构转变温度恒定降低到极限的727℃度。碳与钢的硬度无关,只是将同素异构转变温度下降,转变温度下降的后果就是晶粒体积的缩小温区扩大,从912℃度下降到727℃度,以及淬火时晶体转变温度与速度降低可轻易得到马氏体。

无论过冷度的大与小,碳钢只要发生γ-Fe向α-Fe的同素异构转变,就必定有珠光体产生(0.0218C%以上),这是结构转变时,大量碳原子被挤出结构内部,挤到晶粒的晶界处,聚集化合成荧光闪亮的金属碳化物Fe3C小球,继而与多个铁素体晶粒机械混合的原因。晶胞的参数已表明:α-Fe晶胞的晶格常数为2.86埃,晶胞体积(2.86)3=23.39, 晶格间隙半径为0.36埃,铁原子半径为1.23埃;γ-Fe晶胞的晶格常数为3.56埃,晶胞体积(3.56)3=45.11, 晶格间隙半径为0.52埃,铁原子半径为1.26埃。α-Fe晶胞的参数远远小于γ-Fe晶胞的参数,光体积就基本小了一半,连铁原子半径都变小。所以,转变后的α-Fe晶粒,已在结构的

缺陷处上容不了过多的碳原子,只能被挤出去,被挤出到晶界上的碳原子立即吸收铁原子化合成金属碳化物Fe3C。当外部环境的过冷度达到一定程度后(共析钢为例),过冷度的强大动力就刺激地将铁的同素异构转变温度改变,这时碳钢的同素异构特性成为结构改变的约束作用。强大的过冷动力使最大约束作用温度(或共析转变)降低190℃,到530℃左右(C曲线鼻头温度)。此时铁本质的同素异构转变的约束作用就作用影响上下各190℃左右;530℃左右为最强,上温度727℃为最弱,下温度340℃左右为最弱。同素异构转变的约束影响是以530℃为最大,727℃与340℃为最小并呈正态曲线分布。

理论分析上,过冷奥氏体等温转变时(以共析钢为例),低于340℃温度以后就需要马上进行同素异构转变,但由于碳原子的降低转变温度作用,出现过冷奥氏体,碳原子的作用就是在晶粒内部推迟同素异构转变(可视为晶粒局部杂质影响),推迟温度的多少由含碳量决定,这时是过冷奥氏体在降低晶格的转变温度与速度。过冷奥氏体在C曲线图340℃上也表现出一个拐点,340℃温度以下是过冷奥氏体在推迟晶格的同素异构转变。淬火的同素异构转变就是目前教科书上讲的马氏体相变,由于碳原子与过冷度的作用,这个转变过程变得很长,为Ms到Mf一段温区。证据表明:“马氏体相变仅仅是点阵的改组而没有化学成份的变化”,这是告诉我们,强大的过冷动力强制γ-Fe晶粒缺陷处的碳原子来不及从缺陷处挤出,晶格转变后被迫留在了原γ-Fe晶粒的缺陷处。因为,1、碳原子本身对晶体生长就具有降温降速作用,它降低晶体的转变温度与速度;2、马氏体体心正方结构的晶胞体积大于体心立方结构的晶胞体积并与面心立方结构的晶胞体积相同,造成晶粒缺陷处的三维空间在淬火前后基本不变,碳原子就不会被挤出来。马氏体在淬火后,渗碳体Fe3C很少,这是因为碳原子没有从晶粒内部析出,就没有产生新的渗碳体Fe3C,只存在淬火前的二次渗碳体,这也是马氏体硬度高的重要原因之一。马氏体是过冷动力强制脱离晶格向体心立方结构的正常转变,非正常转变为体心正方晶格的结构,外部的强大过冷动力也使在缓慢转变中的(Ms→Mf区间)晶格扭曲变形。由于同素异构转变的约束影响作用,马氏体在室温下依然会向体心立方结构逐渐回变,逐渐回变是铁金属本身所固有的性能,是脱离外力影响回归自然的正常表现。

碳原子是在晶粒内部缺陷处影响铁的晶格的转变温度与速度,阻挠晶粒变化;过冷度是在晶粒外部影响铁的晶格的转变温度与速度,使晶粒的晶胞变形与结构不能完成向体心立方结构的转变;碳是所有合金元素中对铁晶粒影响最敏感的元素;碳化物是无用有害的残渣;少量碳化物在晶界的形态变化是在标示晶粒结构与晶粒大小与形态发生变化。强大的过冷动力、碳原子在晶粒缺陷处的降温、降速、不析出作用,同素异构的结构转变特性,三个方面成就了马氏体。铁、碳相结构平衡状态图的重新认识:铁是由众多晶粒组成的,每一个晶粒100%都有缺陷,晶格排列的局部出现点、或线、或面的缺陷,碳原子就乘机加入到缺陷处成为“固溶体”,也就是“相结构”。铁是同素异构晶体,在高温的面心立方晶格时,碳原子加入晶格缺陷处成为的“固溶体”,称“奥氏体”相结构;在低温的体心立方晶格时,碳原子加入晶格缺陷处成为的“固溶体”,称“铁素体”相结构。碳原子在钢中的含量是很少的,面心立方结构状态下,高温1147℃有最大含碳量,是2.06%,最低温度727℃含碳量为0.77%,是饱和含量;727℃以下温度是体心立方结构,碳的饱和含量是0.0218%,是少的可怜的万分之二。实验研究中,所有固溶体的碳原子团只能在高倍显微镜下,在众多晶粒的海洋中寻觅它的踪迹。碳在钢中的含量是极少的,铁、碳相结构平衡状态图只是一个标示少量碳原子对晶粒生长变化影响的试验总结图,例如,纯铁的912℃同素异构转变,在碳原子的作用下,在铁碳图上标示从G点降到727℃度的P点,后又成为PSK平行线。PSK平行线是表示无论钢与铸铁的含碳量多么大,同素异构转变最低温度不变。P点与S点的意义非常重要,最重要的意义是表明不同晶格结构下的饱和含碳量,给予了一个量的概念。

当含碳量大于2.06%到6.68%之间时,铁中的渗碳体就可以石墨化成为灰口铸铁了;当含碳量大于6.68%以后,就成为不能使用的、又脆又硬的铸铁渣了。珠光体没有成核、晶核长大的形成过程:栽什么树苗,结什么果;撒什么种子,开什么花。铁是从液态时产生晶核开始,最后长成为室温下的体心立方晶体结构这个花。当代教科书中介绍的珠光体,也有成核、晶核长大的形成过程,即珠光体是有种子晶核的。那么种子发芽、开花的珠光体结构是什么?它的数学表达式是什么?空间的模型是什么?从面心立方晶体产生出晶核的结构原因是什么,难道用几张不同温度下的照片表示其形状有变化与说明它存在的温区,就能说它是一个结构。珠光体在钢中的含量是很少的,珠光体是渗碳体与铁素体的机械混合物。

而铁素体是碳在α-Fe中的固溶体,α-Fe结构只能溶解微量的碳,现代教科书说是0.028%,也就是十万分之二十八,在钢中的铁素体就很少。当铁素体已很少的时候,它与渗碳体的机械混合物又能有多少呢?所以珠光体在碳钢中只有很少的含量。Fe3C中的碳原子是面心立方结构在同素异构转变时被挤出来的,为什么说是被挤出来的呢,看教科书中以下的数据就能充分说明:面心立方结构下晶格常数为3.56埃,晶胞体积(3.56)3=45.11埃, 配对12个原子,晶胞中实际包含4个原子,晶格间隙半径为0.52埃,铁原子半径为1.26埃,致密度实际应为0.7424(教科书0.74有误)。体心立方结构下晶格常数为2.86埃,晶胞体积(2.86)3=23.39埃, 配对8个原子,晶胞中实际包含2个原子,晶格间隙半径为0.36埃,铁原子半径为1.23埃,致密度实际应为0.6662(教科书0.68有误)。体心立方结构下的晶格常数、晶胞体积、晶格间隙半径比面心立方结构小的多,光晶胞体积就小了一半,连铁原子半径都小了。所以体心立方结构就溶入不了很多的碳原子(晶粒内部的缺陷已小得多了),在同素异构转变时只有被逼出的份了,所以α-Fe中只能有0.028%的碳原子含量。Fe3C中的碳原子从转变中的γ-Fe内被逼出后,在晶界上立即化合成Fe3C,转而与最近晶粒局部处的铁素体(逸出碳原子的晶粒缺陷部位)混合,成为珠光体。而转变完成的α-Fe内部只有0.028%的碳原子了。

珠光体是结构转变逼出了碳原子的原理,它不是晶核生成、再在此晶核上长大的原理,所以珠光体就没有晶体结构,也无数学公式,只是一个混合体。珠光体名称的确定,是以碳钢表面出现晶莹闪亮的球体现象认名的,因为荧光球体是处在晶粒外表面的晶界上,就显得众多,就像一个染色剂,少许一点就染遍全体,实际钢的碳含量早已确定其成份多少了。应该说,有碳才有珠光体,纯铁就没有珠光体。又可以推理地说,被结构逼出的碳原子就是所谓的“晶核种子”。实际上珠光体的生成、演变,就是一个碳原子逸出、汇聚的过程,如教科书讲的碳浓度、高碳区、贫碳区等,但一定不是生核的原理,就是一个结构转变时,多余的碳原子先后逸出,又去了哪里,化合成什么的问题。至于硬度,它与渗碳体、碳化物、相结构无关,那是晶体结构导致的问题,此处不谈。钢铁的发蓝(发黑)处理:1.钢铁的高温发蓝(发黑)处理工艺:钢铁的氧化处理俗称发蓝(发黑),因氧化处理后的工件表面生成的氧化膜为黑色而得名。现代工业上钢铁发蓝主要采用高温型和常温型两种工艺,无论高温还是常温发蓝,膜厚均只有0.6~1.5微米,对工件的精度没有影响,钢铁经发蓝处理后可提高其耐蚀性和润滑性。

钢铁发蓝具有成本低、工效高、保持精度、又无氢脆危险的特点,常用作机械、精密仪器、兵器和日常用品的一般防护,装饰。一些对氢脆很敏感的弹簧、细铁丝和薄钢片也常采用发蓝处理的方式进行防护。以下将重点介绍钢铁高温发蓝的工艺和方法:高温发蓝是将钢铁浸入浓的氢氧化钠溶液中,在大于100℃的高温下氧化处理,氧化膜的主要成分是四氧化三铁(Fe3O4),膜层颜色一般呈现黑色、蓝黑色,主要取决于钢铁的成分、表面状态和氧化工艺规范。其处理工艺如下:脱脂---水洗---酸洗除锈(化学蚀刻)---水洗---发黑---水洗---皂化---油封---检验---包装。在这里将重点介绍发黑剂的成分及工艺参数,高温发黑剂主要由氢氧化钠和亚硝酸钠组成,氢氧化钠的浓度为550~650g/L,亚硝酸钠浓度为150~200g/L,温度为120~150℃,时间40~120min,新配置溶液一般需要加入一些铁屑,给发黑剂做老化,其含量为0.5~2.0g/L。需要注意的是油封时需采用脱水防锈油就行封闭。

2.钢铁的常温发蓝(发黑)处理工艺:传统的高温氧化法存在着碱浓度高,温度高、能耗大、时间长、生产效率低等缺点,容易出现红色挂灰,对于含硅、锰、镍、铬量高的合金钢及铸钢很难获得理想的外观,为节省能源,克服高温存在的问题,目前已开发出常温的发黑剂,常温发黑剂主要是以磷酸盐为主,其稳定性和黑度也有提高,具有节能、效率高、成本低等优点,已得到广泛应用。其基本原理如下:在酸性条件下,钢铁与铜离子发生置换反应,析出的铜形成Fe-Cu电偶加速成膜: Fe + Cu2+ == Cu + Fe2+

溶液中的SeO32-与Fe、Cu2+反应形成黑膜:3Fe + Cu2+ + SeO32- + 6H+ == 3Fe2+ CuSe(黑色)+ 3H2O

常温发黑的工艺流程如下:脱脂---水洗---酸洗除锈(化学蚀刻)---水洗---发黑---水洗---皂化---油封---检验---包装发黑剂的主要成分为亚稀酸盐和硫酸铜,硫酸铜为发黑主剂,硫酸铜含量低黑度不好,含量大于5g/L 则铜置换过快,引起结合力不牢,一般控制在2g/L~4g/L,亚稀酸是氧化剂,其浓度控制在3g/L~5g/L。发黑时间控制在3~5min,一般采用一次发黑,特殊情况下也可以采用二次发黑,二次发黑步骤:一次发黑后,将工件取出停留2~3分钟,再浸入发黑液中2~3分钟。取出水洗,继续完成后面的步骤。

金属学及热处理习题参考答案

第一章金属及合金的晶体结构 一、名词解释: 1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。2.非晶体:指原子呈不规则排列的固态物质。 3.晶格:一个能反映原子排列规律的空间格架。 4.晶胞:构成晶格的最基本单元。 5.单晶体:只有一个晶粒组成的晶体。 6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7.晶界:晶粒和晶粒之间的界面。 8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9.组元:组成合金最基本的、独立的物质称为组元。 10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。 二、填空题: 1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。 7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。 8.金属晶体中最主要的面缺陷是晶界和亚晶界。

金属学(铁)及其热处理微观结构原理简析

金属学(铁)及其热处理微观结构原理简析 铁与热处理:按铁金属原本面目讲:铁在液态下,晶粒的晶核是呈十字形,固化后的晶粒在三维空间呈柱型枝晶状(或称树状晶),晶粒内部的原子以金属键有规则地连接,形成晶粒内部的晶格式结构。晶粒之间以枝晶相互交叉联接(晶须理论支持),形成了晶粒之间连接的组织机构。铁是同素异构晶体,其晶粒内部原子晶格式的结构排列不是理想化的,有点、线、面的缺陷;碳原子的半径大于铁的晶格空隙半径,晶格排列理想情况下它进入不了铁的晶粒内部,但由于铁的晶粒内部的局部有晶格排列缺陷,少量碳原子就趁机进入了铁的晶格排列的缺陷处,形成晶粒的局部含碳原子,也就成为了“相”结构;面心与体心立方晶体的晶格排列结构不同,间隙就不同;同样的缺陷数量,含碳量就会不同,面心立方结构下的饱和含碳量是0.77%,体心立方结构下的饱和含量是0.0218%。两个结构的饱和含碳量是35倍的差距,这几十倍的差距就凸显了碳原子降低晶体同素异构转变温度、转变速度、结构变化析出碳原子的重大作用,例如:所有的碳钢、合金钢的淬火都必须加热到晶粒的面心立方结构状态,就是利用此状态的晶格缺陷空间大、含碳量就大而导致的同素异构转变温度低与转变速度慢的特点,得到硬度高的结构。 渗碳体与晶粒缺陷处的碳原子在铁中的含量是少数,但它们极像一个染色剂,碳原子遍布于晶粒内部的缺陷处,渗碳体飘浮在晶粒的晶界上。渗碳体Fe3C熔点1227℃度,含碳量是6.69%,具有复杂的晶体结构,高温时会变得很软,会被温度变化时,柱状晶粒生长产生的体积变化挤的变形,不同温度下有不同的变形;碳钢在含碳量相同时,相同的参数温度下有形状大致相同的碳化物形状。柱型枝晶状晶粒之间的枝晶联接形成(晶须理论支持)的组织机构在机械轧制时,可出现方向纤维性,典型表面可见的是晶界上的碳化物被拉长变形。铁的性能是由结构决定的,例如,奥氏体不锈钢是不导磁的,铁素体不锈钢是导磁的,马氏体不锈钢是导磁不太好的,但奥氏体不锈钢是面心立方结构,铁素体不锈钢是体心立方结构,马氏体不锈钢是不稳定的体心正方结构,结构才能决定是否导磁,与碳无关,与合金无关;就硬度而言:碳钢面心立方结构下的硬度低于体心立方结构下的硬度,体心立方结构下的硬度低于体心正方结构下的硬度,也是结构决定的;就体积而言:面心立方结构下的晶胞体积大于体心立方结构下的晶胞体积,所以,体心立方结构下的硬度就大于面心正方结构下的硬度,晶粒的体积大小也改变硬度,但与碳无关;就含碳量而言,奥氏体的硬度低于铁素体,但奥氏体的含碳量远远大于铁素体,说明含碳量的多与少决定不了钢的硬度,硬度与钢的碳含量的多与少无关。就碳化物Fe3C的硬而脆而言,马氏体中渗碳体Fe3C的含量是很少的,但马氏体它很硬。退火状态的碳钢,渗碳体Fe3C含量高,但它的硬度并不高。各方面的事实证明:铁的性能必须是由结构决定的。 铁碳平衡图已清楚地表明,727℃度PSK线是碳钢与铸铁的共析转变温度线,实际就是同素异构转变温度线,它是纯铁的912℃度同素异构转变G点,在α-Fe晶体内碳原子增多到0.0218%的饱和含量后,由G点下降到P点。γ-Fe结构下晶体晶格缺陷处的饱和含碳量是0.77%。在γ-Fe结构下,当碳含量大于0.77%时,就在727℃度同素异构转变前,随着温度的下降,碳原子先从过饱和、后从次过饱和的晶粒内部缺陷处先后溢出,成为二次渗碳体,直至全部成为饱和的γ-Fe结构下的晶粒,到727℃度进行同素异构转变;当碳含量少于0.77%时,就在727℃度同素异构转变前,随着温度的下降,稍欠饱和含碳量的γ-Fe晶粒先转变为铁素体,转变后的铁素体缺陷处马上挤出碳原子再补充到原晶粒较缺乏碳原子的γ-Fe晶粒缺陷处,使之成为饱和含碳量的γ-Fe晶粒再进行铁素体转变,这个循环转变过程直至到727℃度的同素异构转变。碳原子的作用就是将纯铁的912℃的同素异构转变温度恒定降低到极限的727℃度。碳与钢的硬度无关,只是将同素异构转变温度下降,转变温度下降的后果就是晶粒体积的缩小温区扩大,从912℃度下降到727℃度,以及淬火时晶体转变温度与速度降低可轻易得到马氏体。 无论过冷度的大与小,碳钢只要发生γ-Fe向α-Fe的同素异构转变,就必定有珠光体产生(0.0218C%以上),这是结构转变时,大量碳原子被挤出结构内部,挤到晶粒的晶界处,聚集化合成荧光闪亮的金属碳化物Fe3C小球,继而与多个铁素体晶粒机械混合的原因。晶胞的参数已表明:α-Fe晶胞的晶格常数为2.86埃,晶胞体积(2.86)3=23.39, 晶格间隙半径为0.36埃,铁原子半径为1.23埃;γ-Fe晶胞的晶格常数为3.56埃,晶胞体积(3.56)3=45.11, 晶格间隙半径为0.52埃,铁原子半径为1.26埃。α-Fe晶胞的参数远远小于γ-Fe晶胞的参数,光体积就基本小了一半,连铁原子半径都变小。所以,转变后的α-Fe晶粒,已在结构的

金属学与热处理实验报告

金属学与热处理 名词解释: 1-热处理:热处理是将钢在固态下加热到预定的温度,并在该温度下保持一定的速度冷却到室温的一种热加工工艺。 2-加工硬化: 3固溶体: 4奥氏体 5正火 6-枝晶偏析:在一个晶粒内部化学成分不均匀的现象。称为晶粒。由于固溶体通常呈树枝状,是枝干和枝间的化学成分不同,所以称为枝晶偏析。 问答:1为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么? 答:(1)在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。这就说明。对于结晶过程而言,结晶能否发生。取决于固相的自由能是否低于液相的自由能。如果液相的自由能高于固相的自由能那么液相将自发的转变的固相即金属发生结晶,从而使系统的自由能降低。处于更为稳定的状态。液相金属和固相金属的自由能之差,就是

促使这种转变的驱动力。(2)影响过冷度的因素是:金属的本性和纯度的不同,以及冷却速度的差异。 2简述马氏体的两种形态及分别的力学性能。 答:马氏体的两种形态分别是板条状马氏体和片状马氏体。板条马氏体(位错)片状马氏体(挛晶) 半条状马氏体的韧性比片状马氏体好。片状马氏体的硬度比板条状马氏体的好。 3:形核率的影响因素。 答:形核率受两个方面因素的影响。一方面是随着过冷度的增加,临界晶核半径和形核功都随之减小,结果使晶核易于形成,形核率增加;另一方面,无论是临界晶核的形成。还是临街晶核的长大都必须伴随着液态原子向晶核的扩散迁移,没有液态原子向晶核上的迁移,临街晶核就不可能形成,及时形成了也不可能长大成为稳定晶核。 4.为什么铸铁比钢的铸造性能好? 答:金属的铸造性包括金属的流动性、收缩性和偏析倾向。流动性决定了液态金属充满铸型的能力。收缩性随着含碳量的增加。钢液温度与液相线温度之差增加体积收缩增大。含碳量增高凝固温度范围变宽。凝固收缩增大。固相先和液相线的水平距离和垂直距离

《金属学及热处理》_崔忠圻编_机械工业出版社_课后习题答案

第一章习题 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c, c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面

间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有

几种材料微观结构分析方法简介

几种材料微观结构分析方法简介 Introduction to several materials microstructure analysis method 黑道梦境间谍 指导教师:XXX 摘要:材料的微观世界丰富多彩,处处蕴含着材料之美.然而如何分析材料的微观结构是一个很重要的问题.本文章将介绍几种分析材料微观结构的方法, 通过微观结构分析仪器来对微观材料结构进行探索 关键词:材料微观结构X射线激光拉曼光谱电子显微分析方法

1 引言 材料科学在21世纪的地位愈发重要,各种各样的材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。材料科技是未来高科技的基础, 而微观材料分析方法是材料科学中必不可少的实验手段。因此, 微观材料分析方法对材料科学甚至是整个科技的发展都具有重要的意义和作用. 2 X射线分析 X射线是一种波长很短的电磁波,这是1912年由劳埃M.von Laue指导下的著名的衍射实验所证实的。X射线衍射是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法。这种方法是建立在一定晶体结构模型基础上的间接方法,即根据与晶体样品产生衍射后的X射线信号的特征去分析计算出样品的晶体结构与晶格参数,并且可以达到很高的精度。然而由于它不是显微镜那样可以直接观察,因此也无法把形貌观察与晶体结构分析微观同位地结合起来。由于X射线聚焦的困难,所能分析样品的最小区域(光斑)在毫米数量级,因此对微米及纳米级的微观区域进行单独选择性分析也是无能为力的。 通常获得X射线是利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(A,称为靶)和阴极(C,灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在阳极和阴极间加以直流高压U(数千伏至数十千伏),则阴极产生的大量热电子e将在高压电场作用下飞向阳极,在它们与阳极碰撞的瞬间产生X射线,如图1.1所示。 因此,产生X射线的条件是: 1产生自由电子; 2使电子作定向的高速运动; 3在其运动的路径上设置一个障碍物使电子突然减速或停止。 用仪器检测此X射线的波长,发现其中包含两种类型的波谱,即连续X射线波谱和特征X射线波谱。 其中特征X射线是:当加于X射线管两端的电压增高到与阳极靶材相应的某一特定值UK时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材料的标志或特征,故称为特征X射线谱。特征谱只取决于阳极靶材元素的原子序数。 3 激光拉曼光谱分析 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射 (Rayleighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉

金属学与热处理原理哈工大考研初试经典题目呕心沥血总结

金属学与热处理原理哈工大考研初试经典题目呕心沥血总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

哈工大金属学与热处理原理初试经典试题呕心沥血总结题记:权威的答案是考研专业课成功的保证!!!希望这份资料,能够照亮每一个苦苦求学的孩子通往哈工大的漫漫征程。 分享人:刚爷闯天下 第三章 什么是成分过冷画图说明成分过冷是如何形成的(以固相中无扩散,液相中只有扩散而无对流搅拌的情况为例说明)并说明成分过冷对晶体长大方式及铸锭组织的影响。 成分过冷:实质是液相成分变化引起过冷状况发生变化。 异分结晶必然导致溶质在液、固相中的浓度变化,而固溶体的平衡结晶温度则随合金成分的不同而变化,进而引起过冷状况变化。 自己把图画上(共五个) 假设液态金属中仅扩散,即扩散不能充分进行。 ,故将溶质排到界面前由图(a)结晶的固相成分总是低于平衡成分C o 沿,由于不能充分扩散,便在界面处产生溶质浓度梯度薄层。结合图(c)(d),固溶体平衡结晶温度随溶质浓度的变化而变化。将实际温度分布(b)与平衡结晶温度分布(e)叠加,便在固液界面前一定范围的液相中出现了过冷区域。平衡结晶温度与实际结晶温度之差为过冷度,这个过冷度是由于液相中成分变化引起的,故称为成分过冷。 成分过冷对晶体长大方式的影响: 随着成分过冷的增大,固溶体晶体由平面状向胞状、树枝状的形态发展 成分过冷对铸锭组织的影响: 固溶体合金的铸锭组织也是由表层细晶区、柱状晶区、中心等轴晶区组成。当溶质含量固定时,随着G/√R的增加成分过冷区下降,铸锭组织由等轴晶向柱状晶发展;当G/√R固定时,随着浓度的增加,成分过冷区增大,铸锭组织由柱状晶向等轴晶过度,有利于等轴晶形成。 (注:液相中的温度梯度G越小,成长速度R和溶质的浓度C o越大,则有利于形成成分过冷。) 第四章 试述铁碳合金平衡组织中铁素体和渗碳体的形态、特征和数量对合金组织和性能的影响。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型晶胞中的原子 数原子半 径 配位 数 致密度 体心立方 2 a 4 38 68% 面心立方 4 a 4 212 74% 密排六方 6 a 2 112 74% 晶格类型fcc(A1) bcc(A2) hcp(A3) 间隙类型正四面 体 正八面 体 四面体扁八面体四面体 正八面 体 间隙个数8 4 12 6 12 6 原子半径 r A a 4 2a 4 3 2 a 间隙半径 r B () 4 2 3a -()42 2 a -()43 5a -()43 2a -()42 6a -()21 2a - 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶

混凝土设计原理第3章答案

思考题-答案 3.1 什么是结构上的作用?按时间的变异,作用分为哪几类?什么是作用效应? 答:作用是指施加在结构上的力(直接作用,也称为荷载)和引起结构外加变形或约束变形的原因(间接作用)。 按时间的变异,作用可分为永久作用、可变作用、偶然作用。 作用效应是指由作用在结构上引起的内力(如弯矩、剪力、轴力和扭矩)和变形(如挠度、裂缝和侧移)。当作用为直接作用时,其效应通常称为荷载效应,用S表示。 3.2 什么是设计基准期?建筑结构和桥涵结构的设计基准期分别是多少? 答:设计基准期是确定可变作用及与时间有关的材料性能等取值而选用的时间参数。建筑结构的设计基准期为50年,公路桥涵结构的设计基准期为100年。 3.3 什么是设计使用年限?建筑结构的设计使用年限是如何规定的? 答:设计使用年限是设计规定的结构或结构构件不需进行大修即可按其预定目的使用的时期,建筑结构的设计使用年限按下表采用。 建筑结构的设计使用年限 3.4 结构有哪些功能要求?结构可靠性的概念是什么?结构可靠性与可靠度的关系如何? 答:工程结构在规定的设计使用年限内应满足《统一标准》(GB50068-2001)规定的下述3项功能要求: (1)安全性:在正常施工和正常使用时,能承受可能出现的各种作用;在设计规定的偶然事件(如罕遇地震)发生时及发生后,仍能保持必需的整体稳定性。 (2)适用性:在正常使用时具有良好的工作性能,如不发生影响正常使用的过大变形、过宽裂缝和过大的振幅或频率等。 (3)耐久性:在正常维护下具有足够的耐久性能。如结构材料的风化、老化和腐蚀等不超过一定的限度。 结构可靠性是指结构在规定的时间内,在规定的条件下,完成预定功能的能力,是结构安全性、适用性和耐久性的总称。 结构可靠度是指结构在规定的时间内,在规定的条件下,完成预定功能的概率。可见,结构可靠度是结构可靠性的概率度量,可靠性是一个定性概念,而可靠度则是一个定量概 念。 3.5 什么是结构的极限状态?承载能力极限状态与正常使用极限状态又如何定义?各有哪些标志? 答:整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态。极限状态分为承载能力极限状态和正常使用极限状态两类。 承载能力极限状态对应于结构或结构构件达到最大承载力、出现疲劳破坏或达到不适于继续承载的变形。其标志有: (1)整个结构或结构的一部分作为刚体失去平衡(如倾覆等); (2)结构构件或连接因超过材料强度而破坏(包括疲劳破坏),或应过度变形而不适于继续承

金属学与热处理教学大纲

《金属学与热处理》课程教学大纲 课程名称:金属学与热处理课程代码: 05224040 课程类型:专业必修课程 学分:3 总学时:48 理论学时:32 实验学时:16 先修课程:高等数学材料力学适用专业:材料成型与控制技术、模具设计与制造 一、课程性质、目的和任务 本课程是“材料成型与控制技术、模具设计与制造”专业的专业必修课,是学习材料专业课的技术基础课。它在基础课和专业课之间起桥梁作用。只有在修完本课程之后,才能进入其他专业课的学习。开设该课程的目的主要是向学生阐述金属学与热处理的基础知识,任务是使学生通过该课程的学习,掌握金属材料的成份、组织结构、热处理工艺与性能之间的相互关系及其变化规律,熟悉热处理基本工艺和常用工程材料的种类、成份、组织、性能特点,为后续专业课的学习奠定基础。 二、教学基本要求 1、知识、能力、素质的基本要求 通过本课程的学习,应使学生掌握金属学与热处理的基础知识,即金属及合金的成分、组织、结构与性能之间的相互关系及其变化规律;初步学会使用金相显微镜对金属及合金的组织进行观察及相应的实验能力;具备能用所学理论对金属材料热处理的一些实际工程问题进行分析的素质。 2、教学模式基本要求(课程主要教学环节要求,教学方法及手段要求) 本课程的特点是理论抽象,空间结构多且复杂,理论性叙述多,计算内容少。针对这些特点,在教学时应尽量结合工程实例来加深对基础理论的理解;有关金属组织的认识和识别对初学者来说是难度很大的内容,必须配合实验来加深认识。 三、教学内容及要求 第一章金属的晶体结构 要求学生掌握三种常见金属的晶体结构、晶体学基本概念、实际金属中三类晶体缺陷、合金中的两类基本相。 第二章纯金属金属的结晶 要求学生掌握结晶的规律,结晶基本过程以及结晶后获得细晶粒的方法,了解晶核长大机理、铸锭组织形成过程、铸锭组织结构与性能特点。 第三章二元合金相图 要求学生掌握二元合金相图的建立方法,熟悉匀晶相图.共晶相图、包晶相图的结构,正确地分析相应合金的结晶过程,画出示意图,并能熟练地运用杠杆定律计算相组成物的相

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

材料微观结构与性能分析报告

实用标准 完成时间:2016年XX月XX日

摘要 材料分析检测技术,是关于材料成分、结构、微观形貌的检测技术及相关理论基础的研究,在众多领域的研究和生产中被广泛应用。本报告以Mg/Al扩散焊接接头的检测分析为例,分别介绍了扫描电镜(SEM)、X光衍射技术(XRD)、电子探针(EPMA)等材料微结构表征手段和显微硬度、断裂强度测试等材料力学性能测试手段的具体应用。 关键词:材料分析;微观形貌;力学性能 Abstract Material analysis and testing technology are detection technologies and theoretical foundations about material composition, structure, microstructure. They are widely used in many fields of research and production. This report introduce the detection of Mg/Al diffusion bonding joint as an example, and discusses the application progress of X-ray diffraction technology in material analysis, such as SEM, XRD, EPMA which are used for material microstructure analysis and microhardness, breaking strength which are used for mechanical properties testing. Keywords: materials analysis; microstructure; mechanical properties

金属学与热处理章节重点总结

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是 自由能差降低(△F)是自由能增加,阻力是自身放热

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

金融市场微观结构理论概述

金融市场微观结构理论 杨长汉1 金融市场微观结构理论是证券投资理论中的一个新兴的理论分支,并且在诞生以后就得到了迅速的发展。金融市场微观结构理论要说明的就是在一定的市场微观结构下,证券资产的价格是如何形成的,从而揭示证券市场中的微观结构如何对证券资产价格的形成过程产生影响。我们知道,一般的市场结构指整个金融市场的组织结构,并具有不同的划分方法,比如金融市场按照期限可分为资本市场和货币市场、按照地域可分为国内金融市场和国际金融市场;按照交易对象可分为债券市场、股票市场、外汇市场、黄金市场、期货市场以及期权市场等等。而这里所说的金融市场微观结构从狭义上来讲是指资产价格的发现机制,但金融市场微观结构也有广义的概念,包括价格的发现机制、信息的传播机制以及清算机制等方面。 一、金融市场微观结构理论的发展历程2 (一)20世纪70年代以前:金融市场微观结构理论的思想萌芽 我们知道,金融市场微观结构理论主要说明的就是在金融市场上,既定的交易规则以及微观主体的行为如何对证券价格的形成过程产生影响。因此,金融市场微观结构理论的思想渊源应该是微观经济理论中的价格理论。 微观经济理论中价格理论主要包括古典经济学派的的供求价格论和新古典经济学派的均衡价格论。 1 古典经济学派的供求价格决定论 最早对供求价格论进行论述的是古典经济学派的斯密(Smith)和李嘉图(Ricardo),他们在配第(Petty)劳动价值论的基础上,提出了价格决定的供求学说。 随后,法国经济学家古诺(Cournot,1838)发展了供求价格理论,他认为经济中的需求和供给都可以用一定的数学模型来表示,它们都与价格存在一定的函数关系。古诺的论述是后来微观经济理论中价格理论的重要思想来源。在19世纪以后,西方经济学理论体系是新古典 1文章出处:《中国企业年金投资运营研究》杨长汉著 杨长汉,笔名杨老金。师从著名金融证券学者贺强教授,中央财经大学MBA教育中心教师、金融学博士。中央财经大学证券期货研究所研究员、中央财经大学银行业研究中心研究员。 2(美)莫林.奥哈拉著.杨之曙译.市场的微观结构理论[M].北京:中国人民大学出版社,2007年.

建筑结构原理及设计复习大纲doc

建筑结构原理及设计复习大纲 1.构筑物:人们一般不进入其内生活或直接进行生产活动的建筑,如烟囱、水塔等。广义地说,道路、桥梁、铁路、水利工程等都属构筑物之列。(名词解释) 2.建筑结构:建筑物的空间骨架系统,是建筑物得以存在的基本物质要素。(名词解释) 3.建筑结构设计的基本问题可以归纳为合理确定受力体系以充分发挥材料的性能,把安全性、可靠性、经济性要求统一起来。 4.建筑结构的组成:竖向承重结构体系、水平承重结构体系、下部结构三部分组成。 5.竖向承重结构体系:是沿高度方向的结构体系,有墙体结构、框架结构、框架—剪力墙结构、筒体结构等。 6.建筑材料分类:混凝土结构、钢结构、钢-混凝土组合结构、砌体结构、木结构和混合结构等。 7.混凝土结构包括:素混凝土结构、钢筋混凝土结构和预应力混凝土结构三类。 8.砌体结构的优缺点:(重分值的大题,要背) 砌体结构是指用砖、砌块、石块等块体和砂浆砌筑而成,以墙、柱作为建筑物主要受力构件的结构,是砖砌体、砌块砌体和石砌体结构的统称。 优点: (1)可因地制宜,就地取材; (2)可以利用工业废料生产砌块,具有显著的社会效益和环保效益; (3)有良好的耐火性能、化学稳定性和大气稳定性; (4)施工简单,不需要特殊的施工设备; (5)在一定的使用功能条件下,砌体房屋工程造价比较低。 缺点: (1)与其他结构材料相比,砌体的抗压强度较低,结构构件截面尺寸大,材料用量多; (2)砌体的抗拉、抗弯和抗剪强度更低,因而仅能用于墙、柱等受压构件中;(3)自重大,在地震中遭受的地震作用也大,抗震性能差; (4)烧制黏土砖要破坏大量农业用地,消耗大量的能源。 9.主体结构体系:一般是指竖向承重结构体系,承受竖向荷载也承受水平方向的荷载。主要有墙体结构体系、框架结构体系、框架—剪力墙结构体系和筒体结构体系等。 10.框架结构体系:是指由梁和柱为主要结构构件组成的承受竖向和水平作用的结构。全部由框架组成的房屋承重结构称为框架结构体系。框架结构体系承受竖向荷载是合理的,(判断题)但由于构建截面尺寸小,结构的抗侧移刚度小,在水平作用下水平位移较大,所以属于柔性结构体系,建造高度受到限制。(名词解释) 11.框架-剪力墙结构体系:框架—剪力墙结构是由框架和剪力墙共同承受竖向和水平作用的结构。(判断题) 12.筒体结构的特点:空间工作性能强,结构受力更合理,抗侧移刚度大,位移小,建造高度可以更大。 13.高层建筑结构的定义:以10层或10层或28M以上的建筑为高层建筑。建筑高度超过30层或100M的称为超高层建筑。

金属学与热处理课后习题问题详解(崔忠圻版)

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留应力(主要是第一类应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

最全的金属学与热处理知识总结

钢的热处理总结 晶向指数[UVW],晶向族;晶面指数(hkl),晶面族{hkl};六方晶系晶向指数[uvw]→u=(2U-V)/3,v=(2V-U)/3,t=-(u+v),w=W→[uvtw] 1. 空间点阵和晶体点阵:为便于了解晶体中原子排列的规律性,通常将实体晶体结构简化为完整无缺的理想晶体。若将其中每个院子抽象为纯几何点,即可得到一个由无数几何点组成的规整的阵列,称为空间点阵,抽象出来的几何点称为阵点或结点。由此构成的空间排列,称为晶体点阵;与此相应,上述空间点阵称为晶格。 2. 热过冷:纯全属在凝固时,其理论凝固温度(T m)不变,当液态金属中的实际温度低于T m 时,就引起过冷,这种过冷称为热过冷。 3. 成分过冷:在固液界面前沿一定范围内的液相,其实际温度低于平衡结晶温度,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别引起的,称为成分过冷。成分过冷能否产生及程度取决于液固界面前沿液体中的溶质浓度分布和实际温度分布这两个因素。 4. 动态过冷度:当界面温度T i

6. 能量起伏:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 7. 均匀形核:液相中各个区域出现新相晶核的几率都是相同的,是液态金属绝对纯净、无任何杂质,喝不喝型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的理想过程。临界半径 8. 非均匀形核:液态金属中总是存在一些微小的固相杂质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,需要的过冷度较小。 临界半径 非均匀形核的临界球冠半径与均匀形核的临界半径是相等的。 晶核长大的微观结构:光滑界面和粗糙界面。 晶粒大小的控制:控制过冷度;变质处理;振动、搅动。 表面细晶区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。 柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。 中心等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。 10. 固溶体与金属化合物的区别:固溶体晶体结构与组成它的溶剂相同,而金属化合物的晶体结构与组成它的组元都不同,通常较复杂。固溶体相对来说塑韧性好,硬度较低,金属化合物硬而脆。 11. 影响置换固溶体溶解度的因素:原子尺寸因素;电负性因素;电子浓度因素;晶体结构因素。

相关文档
最新文档