op07引脚图及其功能介绍

op07引脚图及其功能介绍

op07 引脚图及其功能介绍

Op07 芯片是一种低噪声,非斩波稳零的双极性(双电源供电)运算放大器集成电路。由于OP07 管脚图OP07 具有非常低的输入失调电压(对于OP07A 最大为25μV),所以OP07 在很多应用场合不需要额外的调零措施。OP07 同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07 特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

op07 特点:

超低偏移:1501V 最大

低输入偏置电流:1. 8n&。

低失调电压漂移:0.5H7/C

超稳定,时间:2 H V/mont h 最大

op07放大器电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 图1 OP07外型图片 图2 OP07 管脚图 OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+ 图3 OP07内部

电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值 Sy mb ol 符号Parameter参数 Value 数值 Unit 单位 VC C Supply Voltage 电源电压±22 V Vid Differential Input Voltage差分输入电 压 ±30 V Vi Input Voltage 输入电压±22 V Top er Operating Temperature 工作温度 -40 to +105 ℃ Tst g Storage T emperature 贮藏温度 -65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明) Sy mb Parameter 参数及测试条件最小典最 Uni t

FPGA学习笔记之引脚分配

2016/2/10 笔记一:分配引脚的四种方法:(Quartus II 13.0sp1 (64-bit)) 1、常规方法,利用Pin Planner命令,适用于引脚使用比较少的工程,简洁方便; 2、使用.csv文件进行引脚分配: 步骤一:利用记事本新建一个.csv的格式文件,内容格式如图下图所示,然后保存; 步骤二:选择菜单栏Assignments-->Import Assignment,添加刚才生成的文件路径;

步骤三:点击OK,引脚分配完成。 注意:.csv文件保存路径不要有中文,建议保存在工程文件夹下。 3、使用.qsf文件进行引脚分配: 步骤一:在Quartus II中打开.qsf文件(系统默认生成.qsf文件,默认保存在该工程文件夹下) 步骤二:添加以下格式内容,格式如下图所示; 步骤三:点击保存,引脚分配完成。 4、使用.tcl文件进行引脚分配: 步骤一:生成.tcl文件,选择菜单栏Project-->Generate Tcl File For Project,点击OK,默认保存路径为该工程文件夹; 步骤二:添加以下格式内容,格式和.qsf文件格式一致; 步骤三:选择菜单栏Tool-->Tcl Scripts,选择生成的.tcl文件,点击Run,引脚分配完成。

说明:在实际的应用过程中,我们应该根据工程的子模块个数和引脚的使用多少来选择合适的引脚分配方式,笔者总结了以下几条:(不喜勿喷,还望多多赐教) 1、工程中使用的引脚数为个位数时,并且特别少,建议使用常规方法,利用Pin Planner 命令进行引脚分配; 2、工程中只有一个子模块时,如果引脚众多,尤其使用到数码管显示时,建议使用.tcl 文件进行引脚分配; 如图所示,.tcl文件中标识符和变量名已经给出,只需要输入对应引脚,比较方便。在多子模块的情况下,.tcl文件中没有给出标识符和变量名,这点需要注意。 3、多个子模块,使用引脚众多的情况下,利用.tcl文件、.csv文件和.qsf文件进行引脚分配大同小异,不过个人更喜欢利用.csv文件进行引脚分配,因为格式相对简单。

OP07功率放大器的应用实践

《基础强化训练》报告 题目:OP07功率放大器 专业班级:电子科学与技术0703班学生姓名:田鑫 指导教师:钟毅 武汉理工大学信息工程学院 2009年07月17日

基础强化训练任务书 学生姓名:田鑫专业班级:电子科学与技术0703班指导教师:钟毅工作单位:武汉理工大学 题目:protel应用实践—OP07功率放大器 ·初始条件:计算机;Microsoft Office Word软件;PROTEL软件 ·要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、绘制具有一定规模、一定复杂程度的电路原理图*.sch(自选)。可以涉及模拟、数字、高频、单片机、或者一个具有完备功能的电路系统。 2、绘制相应电路原理图的双面印刷版图*.pcb 3、对电路原理图进行仿真,给出仿真结果(如波形*.sdf、数据)并说明是否达到设计意图。 ·时间安排: 1、2009年7月13日集中,作基础强化训练具体实施计划与报告格式的要求说明;学生查阅相关资料,学习电路的工作原理。 2、2009年7月14日,电路设计与分析。 3、2009年7月15日至2009年7月16日,相关电路原理图和PCB版图的绘制。 4、2009年7月17日,上交基础强化训练成果及报告,进行答辩。 答疑地点:鉴主13楼电子科学与技术实验室。

指导教师签名: 年月日系主任(或责任教师)签名: 年月日

摘要 (1) ABSTRACT (2) 1绪论 (3) 1.1Protel99SE简介 (3) 1.2PROTEL99SE系统组成 (3) 1.3PROTEL99SE功能特性 (4) 2设计内容及要求 (4) 2软件的选择 (4) 2.1设计目的及主要任务 (4) 2.1.1设计目的 (4) 2.1.2设计任务及主要技术指标 (5) 2.2设计要求 (5) 3OP07介绍 (5) 4OP07功放电路图 (7) 5OP07功放PCB板绘制 (10) 6OP07电路仿真 (13) 7心得与体会 (15) 8主要参考文献 (16)

QuartusII中FPGA管脚的分配策略

Quartus II中FPGA管脚的分配策略 编写:*** 校核: 审核: 二〇一年月日

目录 目录..........................................................................................I QUARTUS II中FPGA管脚分配策略.. (1) 1.FPGA管脚介绍 (1) 1.1.电源管脚 (1) 1.2.配置管脚 (2) 1.3.普通I/O管脚 (2) 1.4.时钟管脚 (2) 2.FPGA管脚分配方法 (3) 2.1.P IN P LANNER方式 (3) 2.2.I MPORT A SSIGNMENTS方式 (4) 2.3.T CL S CRIPTS方式 (6) 2.4.项目组统一使用方式 (9) 3.编写FPGA管脚分配文件 (10) 3.1.查看PDF格式的原理图 (10) 3.2.查看P RJ PCB格式的原理图 (11) 4.保存FPGA管脚分配文件 (12) 4.1.T CL格式或CSV格式 (12) 4.2.QSF格式 (12) 4.3.项目组统一使用格式 (12) 附录管脚类型说明 (13)

Quartus II中FPGA管脚分配策略 1. FPGA管脚介绍 FPGA的管脚从使用对象来说可分为两大类:专用管脚和用户自定义管脚。一般情况下,专用管脚大概占FPGA管脚数的20% ~ 30%,剩下的70% ~ 80%为用户自定义管脚。从功能上来说可分为电源管脚、配置管脚、时钟管脚、普通I/O管脚等。 下面以Altera公司的Cyclone IV E系列芯片EP4CE30F23C8为例,如图1所示,芯片总共包含484个芯片管脚。图中不同颜色的区域代表不同的Bank,整个芯片主要分为8个Bank,FPGA的各个管脚分布在不同的Bank中。 其中,三角形标记的管脚为电源管脚,正三角表示VCC,倒三角表示GND,三角内部的O表示I/O管脚电源,I表示内核电源。 圆形标记的管脚为普通用户I/O管脚,可以由用户随意使用。 正方形标记且内部有时钟沿符号的管脚为全局时钟管脚。 五边形标记的管脚为配置管脚。 图1 Wire Bond 1.1. 电源管脚 FPGA通常需要两个电压才能运行,一个是内核电压,另一个是I/O电压。每个电压通过独立的电源管脚来提供。内核电压是用来给FPGA内部的逻辑门和触发器供电。随着FPGA的发展,内核电压从5V、3.3V、2.5V、1.8V到1.5V ,变得越来越低。I/O电压用来给各个Bank供电,每个Bank 都有独立的I/O电压输入。一般情况下,内核电压会比I/O电压低。

仪表放大器的设计说明

目录 一、绪言 (7) 二、电路设计 (8) 设计要求 (8) 设计方案 (8) 1、电路原理 (8) 2、主要器件选择 (9) 3、电路仿真 (10) 三、电路焊接 (13) 四、电路调试 (14) 1、仪表放大电路的调试 (14) 2、误差分析 (15) 五、心得体会 (18) 六、参考文献 (19)

绪言 智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号围。本文从仪表放大器电路的结构、原理出发,设计出仪表放大器电路实现方案,通过分析,为以后进行电子电路实验提供一定的参考。 在同组成员帅威、智越的共同努力下,大家集思广益,深入探讨了实验过程中可能出现的各种问题,然后分工负责个部分的工作,我和帅威负责前期的电路设计和器件的采购,后期的焊接由智越完成,最后的调试由我们三个人共同完成。本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写,报告中难免会有不足或疏漏之处,还望大家指正为谢!

第一章电路设计 一、设计要求 1、电路放大倍数>3000倍 2、输入电阻>3000kΩ 3、输出电阻<300Ω 二、设计方案 1、电路原理 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

op07放大器电路图设计

莈螃莃莈虿肁膆op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 袃膅薈蒁膁螄蒈特点: 蚃蚈罿莀薆蚈膀超低偏移:150μV最大。 低输入偏置电流:1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 袈螀薀肃螈螇肂图1 OP07外型图片 芈蚀袅羈蕿节蒄图2 OP07 管脚图 膄蒃膇莁蒂芆肇OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+

芅芇衿薂袄膇肀图3 OP07内部电路图 蒇蚀螁蚆莇蚈莄ABSOLUTE MAXIMUM RATINGS 最大额定值 芈羁膃薇 葿蒃螂 Sy mb ol 符号肁羅螆芁蚃薄蚇Parameter参数 薃袆蝿袃莆螆肀 Value 数值 Unit 单位 VC C Supply Voltage 电源电压±22 V Vid Differential Input Voltage差分输入电 压 ±30 V Vi Input Voltage 输入电压±22 V Top er Operating Temperature 工作温度 -40 to +105 ℃ Tst g Storage T emperature 贮藏温度 -65 to +150 ℃ 电气特性

在Quartus II中分配管脚的两种常用方法

在Quartus II中分配管脚的两种常用方法. 示范程序 seg7_test.v 此例化文件共需要17个管脚。接下来我和大家一起讨论使用QII分配管脚的两种常用方法。 方法一:Import Assignments 步骤1:使用记事本或类似软件新建一个txt文件(或csv文件),按如下格式编写管脚分配内容(不同的开发版,其内容也不同,本文以我使用的艾米电子2C8开发版为范例)。注意:To和Location两个关键字中间有一个半角逗号。

图1 pin.txt 步骤2:在QII软件中,选择“Assignments ——Import Assignments”。如图所示,导入xxx.txt文件即可。 图2 导入pin.txt 步骤3:在QII软件中,选择“Assignments ——Pin”标签(或者点击按钮),打开Pin Planner,验证管脚是否分配正确。

图3 验证管脚是否分配正确 方法二:source xxx.tcl 步骤1:在QII软件中,使用“Assignments ——Remove Assignments”标签,移除管脚分配内容,以确保此次操作,分配的管脚没有因为覆盖而出现错误的情况。

图4 Remove Assignments 注:在未执行任何管脚分配操作新工程中,可跳过步骤1。 步骤2:使用记事本或类似软件新建一个tcl文件,按如下格式编写管脚分配内容(不同的开发版,其内容也不同,本文以我使用的艾米电子2C8开发版为范例)。 注意关键字set_location_assignment和-to的用法。

图5 pin.tcl 步骤3:执行pin.tcl 方法1:在QII软件中,使用“View ——Utility Windows ——Tcl Console”标签,打开Quartus II Tcl Console。执行语句: 图6 source pin.tcl 方法2:在QII软件中,使用“Tools ——Tcl Scripts …”标签,打开Tcl Scripts。

fpga引脚分配

FPGA管脚分配需要考虑的因素 在芯片的研发环节,FPGA验证是其中的重要的组成部分,如何有效的利用FPGA的资源,管脚分配也是必须考虑的一个重要问题。一般较好的方法是在综合过程中通过时序的一些约束让对应的工具自动分配,但是从研发的时间段上来考虑这种方法往往是不可取的,RTL 验证与验证板设计必须是同步进行的,在验证代码出来时验证的单板也必须设计完毕,也就是管脚的分配也必须在设计代码出来之前完成。所以,管脚的分配更多的将是依赖人,而非工具,这个时候就更需要考虑各方面的因素。 综合起来主要考虑以下的几个方面: 1、FPGA所承载逻辑的信号流向。 IC验证中所选用的FPGA一般逻辑容量都非常大,外部的管脚数量也相当的丰富,这个时候就必须考虑到PCB设计时的布线的难度,如果管脚的分配不合理,那么有可能在PCB设计时出现大量的交叉的信号线,这给布线带来很大的困难,甚至走不通,或者是即便是布线走通了,也有可能由于外部的延时过大而不满足时序方面的要求。所以在管脚分配前对FPGA工作的环境要相当的熟悉,要对其中的信号来自哪里去向何方非常的清楚,这就按照连线最短的原则将对应的信号分配到与外部器件连线最近的BANK中,2、掌握FPGA内部BANK的分配的情况。 现在FPGA内部都分成几个区域,每个区域中可用的I/O管脚数量各不相同。在IC验证中都是采用了ALTERA 与XILINX系列的FPGA ,这两个厂商的FPGA中内部BANK 的分配有一定的差异,这可以在设计中查阅相关的手册。下面与ALTERA中Stratix II 系列的FPGA内部BANK的分配为例来进行说明。 图中详细说明了FPGA内部BANK的分配情况和每个BANK中所支持的I/O标准。根

protel+课程设计—OP07功率放大器

课程设计任务书 学生姓名: \ 专业班级:\ 指导教师:工作单位: \ ·题目: protel 应用实践—OP07功率放大器 ·初始条件:Protel99se ·要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、绘制具有一定规模、一定复杂程度的电路原理图*.sch(自选)。可以涉及模拟、数字、高频、单片机、或者一个具有完备功能的电路系统。 2、绘制相应电路原理图的双面印刷版图*.pcb 3、对电路原理图进行仿真,给出仿真结果(如波形*.sdf、数据)并说明是否达到设计意图。 ·时间安排: 于1—15周在本人电脑上完成,16周星期一老师检查。 ·说明: 1、每个同学必须完成以上3个任务(不是任选); 2、电路图的规模、复杂度:规模越大、越复杂,分数越高;制图结果的美观性、可读性:制图越美观、可读性越好,分数越高; 3、实习报告的质量:报告要写得条理清楚、图文并茂,体现制图和仿真分析(包括必要的计算)的过程;

4、仿真提倡对所绘制的原理图*.sch进行全面仿真,如果不能做到全面仿真成功,则要说明原因,但要完成局部电路的仿真; 5、电路选择不可过分简单,元件种类(包括电源和信号源)少于5种,或者元件个数少于10个将导致不及格。 指导教师签名: 年月日 系主任(或责任教师)签名: 年月日

Protel应用实践 --OP07功率放大器 目录 摘要 (1) ABSTRACT (2) 1 设计目的 (3) 2 软件的选择 (4) 3 OP07介绍 (6) 4 OP07功放电路图 (8) 5 OP07功放PCB板绘制 (12) 6 OP07电路仿真 (16) 7 收获、体会及建议 (19) 8主要参考文献资料 (20)

OP07C中文资料

OP07C中文资料 篇一:op07管脚、原理及其应用电路中文资料 一、Op07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 二、OP07特点: 超低偏移: 150μV最大。 低输入偏置电流:。 低失调电压漂移:μV/℃。 超稳定,时间: 2μV/month最大 高电源电压范围:±3V至±22V 三、OP07内部结构原理图 四、OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源 + ABSOLUTE MAXIMUM RATINGS 最大额定值 五、OP07典型应用电路

图4 输入失调电压调零电路 图5 典型的偏置电压试验电路 图6 老化电路 图7 典型的低频噪声放大电路 图8 高速综合放大器 图9 选择偏移零电路 图10 调整精度放大器 图11高稳定性的热电偶放大器 图12 精密绝对值电路 篇二:OP07中文 op07 的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。特点: 超低偏移: 150μV最大。低输入偏置电流:。低失调电压漂移:μV/℃。超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V 工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,

FPGA引脚分配方法

第二种:建立TCL文件进行管脚分配。这种方法比较灵活,是比较常用的。 这种方法具有分配灵活,方便快捷,可重用性等多方面优点。方法如下: 选择Projects菜单项,并选择Generate tcl file for project选项,系统会为你自动生成相应文件,然后你只要向其中添加你的分配内容就可以了。还有一种方法就是直接用new ,新建一个TCL文件即可,具体不再细讲。 下面是我分配的内容一部分,可供大家参考。 set_global_assignment -name FAMILY Cyclone set_global_assignment -name DEVICE EP1C3T144C8 set_global_assignment -name ORIGINAL_QUARTUS_VERSION 8.0 set_global_assignment -name PROJECT_CREATION_TIME_DATE "19:14:58 JANUARY 06, 2009" set_global_assignment -name LAST_QUARTUS_VERSION 8.0 set_global_assignment -name USE_GENERATED_PHYSICAL_CONSTRAINTS OFF -section_id eda_palace set_global_assignment -name DEVICE_FILTER_PACKAGE "ANY QFP" set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region" set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region" set_global_assignment -name DEVICE_FILTER_PIN_COUNT 144 set_global_assignment -name DEVICE_FILTER_SPEED_GRADE 8 set_global_assignment -name FITTER_EFFORT "STANDARD FIT" set_global_assignment -name BDF_FILE topDesign.bdf set_global_assignment -name QIP_FILE nios.qip set_global_assignment -name QIP_FILE altpll0.qip

基于OP07的信号发生器设计

《基于OP07的波形发生器设计》报告 题目:基于OP07的波形发生器 姓名: 考号:

目录 第一章引言 (1) 第二章芯片介绍 (1) 2.1 OP07 功能介绍 (2) 2.2 OP07 引脚功能说明 (3) 第三章软件介绍 (4) 3.1 Protues 功能介绍 (5) 第四章设计的内容及要求 (6) 4.1 设计的目的 (7) 4.2 设计任务的主要技术指标 (8) 第五章设计电路的选择与参数计算 (9) 5.1 电路的选择 (10) 5.2 参数计算 (11) 第六章焊接电路与调试 (12) 6.1 电路焊接与焊接注意事项 (13) 6.2 电路调试流程与调试注意事项 (14) 6.3 调试结果 (15) 第七章结论与心得 (16) 参考文献 (17) 附录元件清单 (17)

第一章引言 信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。电路形式可以采用由运放及分离元件构成;现采用分立元件设计出能够产生3种常用实验波形的信号发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波。再确定各元件的参数,通过调整和模拟输出,并在实验室对电路仿真进行调试,观察效果并与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。 关键词:信号发生器 第二章芯片介绍 2.1 OP07功能介绍 OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25uF),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特定,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面, 特定: 超低偏移:150uV最大。 低输入偏置电流:1.8nA。 低失调电压漂移:0.5uV/℃。 超稳定、时间:2uV/month最大。 高电源电压范围:±3V至±22V。

OP07运放实用资料

op07中文资料 时间:2009-05-16 07:42:22 来源:资料室作者: op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。我一直用+12V,-12V双电源供电。 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+ 图3 OP07内部电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值 Sym Parameter参数Value数值Unit 单位bol 符号

VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,T amb = 25 ℃(除非另有说明)Sym bol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃≤T amb ≤ +70℃ - 60 1 5 2 5 μV Long Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性 -0.42 μV/M o DVio Input Offset Voltage Drift 输入失调电压漂移-0.51. 8 μV/ ℃ Iio Input Offset Current输入失调电流0℃≤T amb≤ +70℃-0.86 8 nA DIio Input Offset Current Drift 输入失调电流漂移-155 pA/ ℃ Iib Input Bias Current输入偏置电流0℃≤T amb ≤ +70℃-1.8 7 9 nA DIib Input Bias Current Drift 输入偏置电流漂移-155 pA/ ℃ Ro Open Loop Output Resistance 开环输出电阻-60-ΩRid Differential Input Resistance 差分输入电阻-33-MΩRic Common Mode Input Resistance 共模输入电阻-12-GΩ

QuartusII中分配管脚的两种常用方法

小時不識月Stupid & Hungry 时常记记,以防忘记!FPGA相关事宜,请在新浪微博@COM张一同讨论。。。[原创].在Quartus II中分配管脚的两种常用方法 示范程序 seg7_test.v 此例化文件共需要17个管脚。接下来我和大家一起讨论使用QII分配管脚的两种常用方法。方法一:Import Assignments

步骤1:使用记事本或类似软件新建一个txt文件(或csv文件),按如下格式编写管脚分配内容(不同的开发版,其内容也不同,本文以我使用的艾米电子2C8开发版为范例)。 注意:To和Location两个关键字中间有一个半角逗号。 图1 pin.txt 步骤2:在QII软件中,选择“Assignments ——Import Assignments”。如图所示,导入xxx.txt文件即可。 图2 导入pin.txt

步骤3:在QII软件中,选择“Assignments ——Pin”标签(或者点击按钮),打开Pin Planner,验证管脚是否分配正确。 图3 验证管脚是否分配正确 方法二:source xxx.tcl 步骤1:在QII软件中,使用“Assignments ——Remove Assignments”标签,移除管脚分配内容,以确保此次操作,分配的管脚没有因为覆盖而出现错误的情况。

图4 Remove Assignments 注:在未执行任何管脚分配操作新工程中,可跳过步骤1。 步骤2:使用记事本或类似软件新建一个tcl文件,按如下格式编写管脚分配内容(不同的开发版,其内容也不同,本文以我使用的艾米电子2C8开发版为范例)。 注意关键字set_location_assignment和-to的用法。

Quartus II中FPGA管脚的分配策略

Quartus II中FPGA管脚分配策略Quartus II中FPGA管脚的分配策略 编写:*** 校核: 审核: 二〇一年月日

目录 目录 目录..........................................................................................I QUARTUS II中FPGA管脚分配策略.. (1) 1.FPGA管脚介绍 (1) 1.1.电源管脚 (1) 1.2.配置管脚 (2) 1.3.普通I/O管脚 (2) 1.4.时钟管脚 (2) 2.FPGA管脚分配方法 (3) 2.1.P IN P LANNER方式 (3) 2.2.I MPORT A SSIGNMENTS方式 (3) 2.3.T CL S CRIPTS方式 (6) 2.4.项目组统一使用方式 (8) 3.编写FPGA管脚分配文件 (9) 3.1.查看PDF格式的原理图 (9) 3.2.查看P RJ PCB格式的原理图 (10) 4.保存FPGA管脚分配文件 (11) 4.1.T CL格式或CSV格式 (11) 4.2.QSF格式 (11) 4.3.项目组统一使用格式 (11) 附录管脚类型说明 (12)

Quartus II中FPGA管脚分配策略 1.FPGA管脚介绍 FPGA的管脚从使用对象来说可分为两大类:专用管脚和用户自定义管脚。一般情况下,专用管脚大概占FPGA管脚数的20% ~ 30%,剩下的70% ~ 80%为用户自定义管脚。从功能上来说可分为电源管脚、配置管脚、时钟管脚、普通I/O管脚等。 下面以Altera公司的Cyclone IV E系列芯片EP4CE30F23C8为例,如图1所示,芯片总共包含484个芯片管脚。图中不同颜色的区域代表不同的Bank,整个芯片主要分为8个Bank,FPGA的各个管脚分布在不同的Bank中。 其中,三角形标记的管脚为电源管脚,正三角表示VCC,倒三角表示GND,三角内部的O表示I/O管脚电源,I表示内核电源。 圆形标记的管脚为普通用户I/O管脚,可以由用户随意使用。 正方形标记且内部有时钟沿符号的管脚为全局时钟管脚。 五边形标记的管脚为配置管脚。 图1 Wire Bond 1.1.电源管脚 FPGA通常需要两个电压才能运行,一个是内核电压,另一个是I/O电压。每个电压通过独立的电源管脚来提供。内核电压是用来给FPGA内部的逻辑门和触发器供电。随着FPGA的发展,内核电压从5V、3.3V、2.5V、1.8V到1.5V ,变得越来越低。I/O电压用来给各个Bank供电,每个Bank都有独立的I/O电压输入。一般情况下,内核电压会比I/O电压低。

IC应用电路图全集

IC应用电路图全集 一.UC3906应用电路 图为环境参数测试仪蓄电池充电器的实际应用电路。其中,电池额定电压为12V,容量为7Ah,VIN=1 8V,VF=13.8V,VOC=15V,Imax=500mA,IOCT=50mA。由于充电器始终接在蓄电池上,为防止蓄电池电流倒流入充电器,在串联调整管与输出端之间串入一只二极管。同时,为了避免输入电源中断后,蓄电池通过分压电阻R1、R2、R3放电,使R3通过电源指示晶体管(脚7)接地。 图3 12V密封铅酸电池双电平浮充充电器电路图 18V输入电压加入后,Q1导通,开始恒流充电,充电电流为500mA,电池电压逐渐升高。当电池电压达到过充电压VOC的95%(即14.25V)时,电池转入过充电状态,充电电压维持在过充电电压,充电电流开始下降。当充电电流降到过充电终止电流(IOCT)时,UC3906的脚10输出高电平,比较器LM339输出低电平,蓄电池自动转入浮充状态。同时充足电指示发光管发光,指示蓄电池已充足电。 二.uln2003的应用电路 ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。 该电路的特点如下: ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路 直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。

ULN2003工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受 50V的电压,输出还可以在高负载电流并行运行。 ULN2003采用DIP—16或SOP—16 塑料封装。 本设计选用GALl6V8为环形脉冲分配器,ULN2003(国产型号为5G1413)是七路达林顿驱动器阵列,是个集电极开路(OC)输出的反向器.最大驱动电流可以达到500mA。通常应用时是把负载步进电机的一端接到VD D(12V)上,另一端接到输出引脚上,如16脚。为了防止程序进入死循环,增加了外部的硬件看门狗定时器MAX813L,其内部的看门狗定时器监控UP/UC的工作。如果在1.6s内未检测到其工作,内部的定时器将使看门狗输出WDO处于低电平状态,WDO将保持低电平直到在WDI检测到UP/UC的工作。将WR和WDO连接可使看门狗超时产生复位。采用两片ULN2003分别驱动X、Y方向的步进电机。具体硬件电路如图1所示。 · [图文] MAX16806 350mA线性HB LED驱动器IC应用电路 · [图文] LM3445应用电路 · [图文] MAX4471,MAX267,MAX9028组成的低功耗的放大器 · [图文] 三种波形函数振荡器电路 · [图文] lm111应用电路 · [图文] BL8505应用电路 · [组图] UTC34088应用电路 (双极型线性集成电路) · [图文] TCN75A典型应用电路

OP07中文资料(内部)

op07中文资料 op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流: 1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。我一直用+12V,-12V双电源供电。 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+ 图3 OP07内部电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值 Sym bol Parameter参数Value数值Unit 单位符号

VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Tem perature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tam b = 25 ℃(除非另有说明)Sy mb ol 符号Parameter 参数及测试条件 最 小 典型最大 Uni t 单 位 Vio Input Offset Voltage 输入失调电压0℃ ≤ Tam b ≤ +70℃ - 60 150 250μV Long Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的 稳定性 -0.42 μV/ Mo DVi o Input Offset Voltage Drift 输入失调电 压漂移 -0.5 1.8 μV/ ℃ Iio Input Offset Current输入失调电流 0℃≤Tamb≤ +70℃ -0.8 6 8nA DIio Input Offset Current Drift 输入失调电 流漂移 -1550 pA/ ℃ Iib Input Bias Current输入偏置电流 0℃≤Tamb ≤ +70℃ - 1.8 7 9 nA DIib Input Bias Current Drift 输入偏置电流 漂移 -1550 pA/ ℃ Ro Open Loop Output Resistance 开环输 出电阻 -60-Ω Rid Differential Input Resistance 差分输 入电阻 -33-MΩ Ric Common Mode Input Resistance 共 模输入电阻 -120-GΩ

OP07中文资料

op07中文资料数据手册 时间:2009-05-16 07:42:22 来源:资料室作者: op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。我一直用+12V,-12V双电源供电。 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+ 图3 OP07内部电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值 Sym Parameter参数Value数值Unit 单位bol 符号

VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,T amb = 25 ℃(除非另有说明)Sym bol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃≤T amb ≤ +70℃ - 60 1 5 2 5 μV Long Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性 -0.42 μV/M o DVio Input Offset Voltage Drift 输入失调电压漂移-0.51. 8 μV/ ℃ Iio Input Offset Current输入失调电流0℃≤T amb≤ +70℃-0.86 8 nA DIio Input Offset Current Drift 输入失调电流漂移-155 pA/ ℃ Iib Input Bias Current输入偏置电流0℃≤T amb ≤ +70℃-1.8 7 9 nA DIib Input Bias Current Drift 输入偏置电流漂移-155 pA/ ℃ Ro Open Loop Output Resistance 开环输出电阻-60-ΩRid Differential Input Resistance 差分输入电阻-33-MΩRic Common Mode Input Resistance 共模输入电阻-12-GΩ

相关文档
最新文档