卫星通信抗干扰技术综述

卫星通信抗干扰技术综述
卫星通信抗干扰技术综述

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

卫星导航抗干扰技术应用

卫星导航抗干扰技术应用 发表时间:2018-11-15T20:03:58.540Z 来源:《基层建设》2018年第28期作者:倪大森 [导读] 摘要:抗干扰技术一直是卫星导航领域的研究热点。 天津七六四通信导航技术有限公司天津 300210 摘要:抗干扰技术一直是卫星导航领域的研究热点。在众多的抗干扰方法中,采用基于空时联合处理的阵列天线抗干扰是目前最有效且应用最广的一种方法。而对于阵列天线抗干扰,权值精度和权值更新速度是决定其抗干扰性能优劣的重要因素。当采用相同的自适应算法时,权值精度越高,权值更新速度越快,则抗干扰处理的效果越好。为此,在接下来的文章中,将围绕卫星导航抗干扰技术应用方面展开详细分析,希望能够给相关人士提供重要的参考价值。 关键词:卫星导航;抗干扰技术 引言:卫星导航定位系统提供精确的位置、时间和速度的同时,存在着信号微弱,易受干扰的天然弱点。在定位导航过程中,导航接收机的抗干扰能力是决定导航定位服务可用性的关键因素,伴随着卫星导航的推广应用和深入研究,抗干扰技术不断迭代更新。文章对卫星导航系统的抗干扰接收技术进行分析。 1.抗干扰技术分析 抗干扰是指设备能够防止经过天线输入端,设备的外壳以及沿电源线作用于设备的电磁干扰。雷达往往工作在复杂的电磁环境中,雷达抗干扰性能的优劣直接决定了整个雷达系统的性能。然而,如何评价雷达抗干扰性能的优劣,至今还没有公认的标准。因此人们难以把握雷达抗干扰能力的好坏,严重阻碍了雷达抗干扰技术和战术的发展。目前对于雷达抗干扰性能的评估,已经有了部分研究成果,但存在以下缺点:第一,干扰和抗干扰性能分开评估,没有把两者联系起来,这不符合实际情况;第二,由于雷达系统的复杂性,往往不能表征整个雷达的抗干扰性能,而仅从雷达采取的抗干扰措施或雷达本身固有的特性来研究;第三,度量值具有不可测性,计算繁琐 1.1虚拟卫星法 虚拟卫星法是在卫星导航抗干扰接收系统中广泛应用的一种方法,利用小型无人机或者地基发射装置播发模拟卫星信号,增强导航接收机的接收信号进而改善信噪比,从而实现抗干扰的目的。 1.2天线抗干扰法 天线抗干扰法是卫星导航抗干扰系统中的关键技术,其应用具有多种优势,技术操作简单,成本相对较低。天线抗干扰法可以通过提升波速发生量的方式来完成天线阵元的加权工作,从而将外界干扰信号的强度控制在较小的范围,减小或避免对导航接收机的影响。 1.3扩展频谱抗干扰法 这种方法可使导航接收机有效抑制干扰信号。采用直接序列扩频,当接收机解扩之后将有用的信号变成了窄带信号,原来一些频带比较窄的干扰信号就会变成宽带信号,从而使得信号中的大部分能量都被窄带滤波器滤除掉,提高了信干比。当前扩展频谱抗干扰法的应用十分广泛,尤其是在工业领域普及程度很高。 1.4光通信技术 光通信技术是卫星导航干扰接收系统的主要技术之一,是结合现代科学技术产生的一种新技术。与传统的卫星导航抗干扰技术相比较而言,光通信技术更高效、科学,但是其原理相对复杂,应用成本相对较高,当前还处于推广阶段。 1.5编码调制技术 编码调制技术在卫星导航抗干扰接收系统中的应用,可以借助卫星导航系统的修正、调整、编排优势,增强抗干扰接收系统稳定工作的持续性。 2.抗干扰导航接收机实现 2.1波束形成抗干扰方法 形成抗干扰波束并借助惯性测量数据或者卫星历史数据,可以抵御和消除外界的干扰信号,从而提高导航接收机的抗干扰能力。卫星信号和干扰信号都会通过全向天线阵列进入大动态射频转换器前端,大动态射频转换器对射频信号进行初步处理再移交后端的数模转换器。大动态射频转换器的设计,可以采用自动增益控制技术,在射频与中频之间设置多个程控衰减器,每一个衰减器都会使得信号逐渐衰减变小,而且信号是逐级衰减,防止其中的敏感元件出现饱和状态。这种衰减结构是比较灵活的,可以对进入模数转换器的信号电平进行精确控制,实现对信号与噪声之间的比值的优化。当射频转换器把信号变成中频的时候,数字化中频信号就会进入波束形成算法模块,同时,在惯性测量数据可用的情况下,还可以从惯性测量数据获得自身的姿态信息,并且可以结合卫星历史数据,通过波束控制模块产生波束自适应控制权值,然后将该值传输到波束形成算法模块中,波束形成算法模块根据波束自适应控制权值,对数字化中频信号进行自适应滤波,可以降低或者消除进入导航接收机的干扰信号影响。波束形成算法模块可以对输入的数字中频数据进行处理,并且可以得到所有通道的数字波束总和,根据这个值再进入导航接收机的捕获跟踪模块。在整个传输过程中,波束形成算法模块可以同时对都不同方向的波束进行控制,在卫星信号中如果存在干扰信号,则该模块可以对数据中的干扰成分进行降低或者完全消除,从而减少干扰信号对卫星信号带来的影响,得到更准确的定位结果。 2.2自适应零陷抗干扰方法 如果缺乏惯性导航设备、电磁罗经等设备的惯性测量数据,导航接收机很难确定卫星接收天线的姿态。此种情况下,自适应零陷抗干扰方法更合适,这种方法的基本原理是功率倒置算法,确保期望信号增益为常数时输出的功率最小。按照功率倒置算法所形成的天线方向图,可以在各个干扰方向上产生对应的零陷,零陷与干扰信号的强度成正比。当卫星信号从空中传输到导航接收机的天线时,信号电平会衰减得十分微弱,甚至低于噪声,所以算法不会剔除有效的卫星信号。算法在强干扰方向上产生零陷,可以有效抑制干扰信号的影响,提高导航接收机的信噪比[1]。 2.3抗干扰导航接收机实现技术 从抗干扰导航接收机的结构来看,卫星导航系统的抗干扰导航接收机主要有两个模块,一个是自适应抗干扰模块,一个是基带接收机模块。自适应抗干扰模块中一共有7组天线,这些天线的数据经过采集之后,可以通过FPGA的SRAM存储器将数据转存送入DSP中,再对数字进行加权计算,另外也可以利用上次计算所得到的权值在FPGA中对当前采样的数据做波束形成或者零陷滤波处理,最终生成I、Q两

大学-关于通信的论文解析

通信电子战系统现状及应对 自海湾战争以来,电子战的威力已被世界所公认。电子战是现代高技术战争中的一个攻防兼备的双刃“杀手锏”,其作战目的是降低或削弱敌方战斗力并保持和增 强己方战斗力。电子战要“消灭”的不是敌人的有生力量,而是通过攻击或瘫痪敌方的,军事信息系统和降低敌方精确制导武器系统的攻击效率,使其丧失战斗力。电子战使用的武器不是枪炮、飞机、军舰、导弹等有形的硬杀伤武器,而是一种无形且有声的电磁能和定向能。电子战往往是在明火执仗的战争之前发起,战争尚未打响,电子战已先期进行。因此电子战是一种先机制敌、不见“刀光剑影”的特殊战争。电子战发展的历史虽不到百年,但其成功的战例却充满着不同时期战争的历史舞台,从日俄战争,第二次世界大战末的英美联军诺曼底登陆战役,越南战争和中东战争,直至海湾战争,电子战都充分显示了其巨大的威力。人们从这些成功的战例中吸取了丰富的营养,并根据现代战争的发展和高技术进步的推动,不断地深化对电子战理论、作战思想、作战方法和新技术、新装备的研究,把电子战这一新的军事科学技术推向一个新的历史台阶。从电子战发展现状、电子战发展趋势、电子战发展对策等几方面进行全面综述,并对我军电子战研究提出几点思考和建议。 电子战主要包括:即电子支援措施(ESM、电子对抗措施(ECM、电子反对抗措施;通信对抗措施既是电子对抗的重要组成部分,又是通信的伴生物,它的主要任务是:截收、检测、测向定位和识别敌方的通信信号,进而采取通信干扰措施,达到阻止破坏或削弱敌人C4I系统,同时又要保护己方通信畅通是双方在通信领域内为争夺制电磁权而展开的电子对抗,专家认为:未来战争,交战双方谁赢得了制电磁权,谁就赢 得战争的主动权,乃至整个战争。 一、外军通信干扰系统现状 外军通讯干扰系统主要包括固定、载式、和便携式三种,由于载式(车载、机载、舰载系统良好的机动性,能够尽可能的靠近被干扰的通信系统,因此应用的比较广泛。 (一车载式系统:

浅谈卫星导航抗干扰技术的发展

浅谈卫星导航抗干扰技术的发展 【摘要】卫星导航在现在的军事领域起到了至关重要的作用,本文介绍了卫星的干扰类型和工作原理。然后介绍了现有的几种抗干扰技术、工作原理和特点。最后,对卫星导航的抗干扰技术进行了预测。 【关键词】卫星导航;干扰技术;抗干扰技术 卫星导航在社会生活和军事领域当中起到了越来越多的作用,从日常的定位,到军用的精确制导,都离不开卫星导航。然而,在实际应用当中,由于种种原因,卫星系统会受到干扰,影响了使用国和用户的。因此,如何提高卫星系统的抗干扰的技术是当前各国研究者重点的研究课题[1]。本文介绍了干扰的类型和工具原理,抗干扰技术的分类和发展动向,为我国的卫星导航抗干扰技术的发展提供借鉴。 1.干扰的类型 对卫星的导航一般主要分为干扰型和压制型两种,由于卫星导航也是电子系统的一个集成,因此,一般的电子干扰技术也能用在对卫星的干扰上。 1.1压制式干扰 压制式的干扰就是利用特殊的发射装置对卫星发射电磁信号,让卫星不能正常的接受和发射信号,也无法进行导航。这种干扰方式的特点是技术难度低,使用相对简单,功率大的。但这种干扰方式也会使本方的导航通讯出现不畅,因此,使用范围比较受限制[2]。 1.2干扰型干扰 与压制式干扰不同,干扰型干扰向卫星发射假的信号,造成卫星的导航信息不准确,或者发出错误的信号,起不到应有的导航作用。这种干扰方式的特点是技术难度比较高,需要知道所要干扰的卫星系统的具体工作参数,虽然效果要比压制式干扰好,且不影响本方正常的通讯,但是掌握难度非常的高。 2.抗干扰技术的发展 所谓的抗干扰就是利用特定的手段对卫星的信息接收,传送方式和功率等进行处理,使卫星能够分辨有用和无用信号,正确的接收所需要的信号。在卫星抗干扰技术中主要有以下几种。 2.1伪卫星法 伪卫星法就是在地面设定发射装置,或者发射无人驾驶飞行器,或者小卫星

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

卫星导航系统接收机抗干扰关键技术综述

卫星导航系统接收机抗干扰关键技术综述 卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。 1 卫星导航系统抗干扰技术 卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。 1.1 自适应滤波技术 自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。 1.2 卡尔曼滤波技术 卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。卡尔曼滤波技术不仅用于估计一维的平稳的随机过程,而且可以用于多维的非平稳随机过程估计。卡尔曼滤波技术实质上属于一种最优估计方法。虽然卡尔曼滤波技术操作简单,应用范围十分广泛,但有一个基本要求,就是必须在计算机上实现。 2 抗压制式宽带干扰技术 2.1 压制式宽带干扰的工作原理 所谓压制式干扰,就是指干扰信号的强度远远高于经过扩散后的卫星信号强度,进而使卫星导航系统接收机无法获取准确信号,从而达到干扰卫星导航系统的目的。压制式干扰有窄带压制式和宽带压制式干扰。窄带单频连续波干扰,是一台干扰机对卫星导航系统发射单频信号,当单频信号与用伪码调制的宽带进行混频后,就输出宽带干扰信号。宽带扩频相关干扰,原理是利用卫星信号的伪码序列与干扰信号的伪码序列的强关联性来干扰接收机的接受能力。这种干扰可以以较小的干扰功率就能达到有效干扰目的。 2.2 自适应阵列天线技术 阵列天线的结构决定抗干扰性能,阵列天线的几何结构对抗干扰性能的影响主要体现在三个方面。第一,阵列天线的阵元间隔。第二,阵列天线的几何布局。第三,阵列天线的阵元个数。确定阵元间的相对距离,要考虑的因素有,较小的阵元之间的间隔形成的互藕效应,和半波长的阵元间隔形成的旁瓣。一般的阵元间隔选择半波长,能够有效避免大的旁瓣的产生,并且此时的互藕效应最小。阵列天线的几何结构布局不同,对应的最佳阵元的个数就不同。所以在进行干扰抑制性能的量化比较时,不能将阵元个数相同的,但阵元几何结构不同

卫星通信基础知识五EIRGT值的意义完整版

卫星通信基础知识五E I R G T值的意义 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

卫星通信基础知识(五)EIRP值,G/T值的意义 在卫星通信中常常看到 EIRP、G/T 他们是什么意思呢 EIRP EIRP(Effective Isotropic Radiated Power)有效全向辐射功率 EIRP也称为等效全向辐射功率,它的定义是地球站或卫星的天线发送出的功率(P)和该天线 增益(G)的乘积,即: EIRP=P*G 如果用dB计算,则为 EIRP(dBW) = P(dBW) + G(dBW) EIRP表示了发送功率和天线增益的联合效果。 EIRP是卫星通信和无线网络中的一种重要参数。有效全向辐射功率EIRP为卫星转发器在指定 方向上的辐射功率。它为天线增益与功放输出功率之对数和,单位为dBW。EIRP的计算公式为 EIRP = P – Loss + G式中的P为放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,G 为卫星天线的发送增益。 通过对比同一颗通信卫星的C频段EIRP分布图和Ku频段EIRP分布图可知,C频段转发器的服务区大,通常覆盖几乎所有的可见陆地,适用于远距离的国际或洲际业务;Ku频段转发器的服务区小,通常只覆盖一个大国或数个小国,只适用于国内业务。C频段转发器的EIRP通常为36到 42dBW,G/T通常为-5到+1dB/k,地面天线的口径一般不小于1.8米;Ku频段转发器的EIRP通常为44到56dBW,G/T通常为-2到+8dB/k,地面天线口径有可能小于1米。另一方面,C频段因为电波 传播通常不受气候条件的影响,适用于可靠性较高的业务;Ku频段转发器则因电波传播可能遭受降雨衰耗的影响,只适用于建网条件较差、天线尺寸和成本受限的业务。下表是亚洲卫星公司四颗卫星的最大EIRP、G/T值 地面站性能指数G/T值是反映地面站接收系统的一项重要技术性能指标。其中G为接收天线增益,T 为表示接收系统噪声性能的等效噪声温度。G/T值越大,说明地面站接收系统的性能越好。 目前,国际上把G/T≥35dB/K的地面站定为A型标准站,把G/T≥31.7dB/K的站定为B型标准站,而把G/T<31.7dB/K的站称为非标准站。

卫星通信技术及其发展趋势

卫星通信技术及其发展趋势 朱军王培国 (成都军区) 摘要:综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。 关键词:卫星通信CDMA 抗干扰MPLS 发展趋势 卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。 1 卫星通信网络的定义 卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。 当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。 2 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现

全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。 2.2 抗干扰技术 现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。 卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。 传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。 特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大。 2.3 基于MPLS的移动卫星通信网络体系构架 MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

卫星通信抗干扰系统

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简 单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放 重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的

卫星通信抗干扰技术及其发展趋势概述

卫星通信抗干扰技术及其发展趋势概述 摘要现代通信的发展过程,卫星通信技术作为主要通信方式,在社会环境和自身条件等因素的干扰下,信号传输会随之受到直接影响,若要全面提升信息的传输效果,则应该加强卫星通信的抗干扰技术研究,同时对其发展趋势进行深入了解,以促进现代通信的发展。文章首先分析卫星通信抗干扰,其次进行抗干扰技术的阐述,最后研究其发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 卫星通信技术是指:将人造卫星作为中继站,利用无线电波实现地球间的有效通信,以组成角度进行分析发现,系统主要包括:地球站和通信卫星。在我国科学技术持续发展下,卫星通信技术随之取得明显进步,除了可以弥补其他通信存在的问题,而且还能广泛应用音频广播和大众传媒等领域,与此同时,工作人员还应进行卫星通信抗干扰技术的优化和完善。 1 卫星通信抗干扰的浅析 对于卫星通信来讲,可能会对其造成干扰因素比较多样化,按照其来源进行划分发现,其主要包括以下几点内容:首先,通信系统干扰,卫星通信技术发展中,与以往技术相比较发现,其卫星间隔随之出现较大变化,即由5°转变为2.5°,在缩短卫星间隔的同时,使卫星间干扰明显增加。其次,卫星通信和地面系统之间存在干扰情况,其主要表现在无线通信方面,例如:调频广播或雷达系统等,同时还包括医院或工程等设备干扰[1]。最后,自然因素干扰,如雨衰等,在电波空中传输过程,在穿过雷电和雨水区域时,此区域内障碍物、雨滴的存在,均会对电波起到衰减作用,实际衰减情况和雨滴半径存在较大联系。与此同时,日凌和电离层的闪烁情况,均属于自然界常见干扰类型,如果电磁波出现在电离层中,往往会因为电离层缺少稳定特点,使其信号出现延迟突变等问题,最终造成电离层出现闪烁情况,需要工作人员予以重视。 2 卫星通信常见抗干扰技术 2.1 天线抗干扰技术 在卫星通信系统中,因其具有覆盖广的特点,使其经常面临不同干扰,在不同抗干扰技术在中,天线抗干扰属于比较常见技术,包括自适应调零技术等。对于智能天线应用,主要是按照无线信道变化进行天线图方向的调整,从而保证天线各项性能处于良好状态,以便于对不同干扰因素进行有效控制。在智能天线中,其构成部分包括:信号通道与天线阵列等,需要特别注意:短时间内对干扰方向予以判断,同时调至零标准尤为重要,要求人员对其予以重视[2]。 2.2 限幅技术

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

导航战及GPS干扰导航战是指在战场环境下用电子干扰的方法对敌

1. 导航战及GPS干扰 导航战是指在战场环境下,用电子干扰的方法对敌方导航系统进行干扰或攻击,使其不能正常导航或降低导航精度,并对敌方对己方导航系统所实施的干扰进行抗干扰,使其在干扰条件下仍能高精度地工作。 GPS干扰: (1) 瞄准式阻塞干扰 保证阻塞式干扰在GPS 接收机的带宽内产生均匀的干扰频谱(梭状和连续波) , 在时域上呈等幅包络, 该干扰信号的功率达到一定程度时, 便可对GPS 信号产生全面的阻塞作用. (2) 伪随机噪声阻塞干扰 人为地产生伪随机码噪声, 这些伪随机码噪声在被GPS 接收机相关解扩过程后的信号功率只要大于GPS 接收机的干信比, 就足以有效干扰GPS接收机. (3) 转发式欺骗干扰 将某一区域内GPS 卫星信号通过一些特殊的设备(如DRFM) 进行降频、采样、存储、延时、调制、再升频后转发出去. 这样在空中就形成与GPS接收机真实信号相参性很好的欺骗信号, 通过GPS接收机相关解扩后, 起到欺骗使用. 这些信号人为地改变了在空中的传输时间、相位和频率. 最终使得GPS 接收机的定位精度产生很大误差. (4) 组合干扰 由于每一种干扰方式的优缺点不尽相同, 为了取长补短, 我们可以同时采用两种或两种以上的干扰方式, 以求达到更好的干扰效果. 如伪随机噪声阻塞干扰与转发式欺骗干扰的组合. 2. GPS抗干扰措施 由于GPS空间卫星的设计起点主要考虑战争环境下导航和定位的军事安全,而没有把干扰环境下的工作能力提到突出的位置。实际上,GPS卫星信号到达地面用户时其信号很弱,信噪比很低,从而导致了GPS用户接收机很容易遭受欺骗性干扰和压制性干扰。加上导航战中民用频段的军用化,导致美国与其敌对双方突出较量于战场,迫使其GPS系统不得不采取抗干扰措施或者改革其体制。为此,美军正在从GPS卫星、地面控制站、用户接收设备等方面采取措施,提高该系统的抗干扰能力。其中主要包括:①提高GPS星座后续星的发射功率,研制第三代GPS卫星;②军用GPS接收机采用保密结构、自适应调零天线、抗干扰信号处理技术;③在武器应用方面,特别强调复合使用GPS与惯性制导系统(INS),“联合直接攻击弹药”(JDAM)就是如此;④研制GPS干扰源探测定位系统。 2.1 美国GPS抗干扰技术研究现状: 一、研制抗干扰GPS 接收机天线。 美国陆军航空与导弹司令部导弹研究发展与工程中心将投资“创新研究”工程,研制小型廉价的GPS 接收机天线,用于各种导弹和火箭弹上的GPS 接收机。目前这类弹药上的GPS 接收机天线对干扰信号的跟踪和抑制过程需要50 秒,而有效制导多管火箭炮和陆军战术导弹系统要求该过程不能超过10 毫秒,所以必须使用小于10 ×10 ×2. 5cm3 的天线。“创新研究”计划的目标是研制一种可抗连续波、宽带噪声、脉冲等多种干扰的抗干扰GPS 接收机天线,并用其取代现有天线。如果获得成功,将制造10 套天线用于飞行等各种试验。

相关文档
最新文档