于RS485的多机通信程序主机端

于RS485的多机通信程序主机端
于RS485的多机通信程序主机端

于RS-485的多机通信程序(主机端)

//-----------------------函数声明,变量定义---------------------

#include ;

sbit RE_DE=P1^0;

#define COUNT 10 // 定义接收缓冲区大小

#define Slaver_NUM 10

unsigned char bdata flag; //在可位寻址去定义一个标志变量

sbit time_over_flag =flag^0; //接收超时标志unsigned char buffer[COUNT]; //定义缓冲区unsigned char point; //定义缓冲区位置指示unsigned char Slave_AD[Slaver_NUM]; //定义有效地址存放区

unsigned char ADD_num; //有效地址个数

unsigned char idata count_10ms; //用于表示有多少次10ms中断

unsigned char idata send_data[7]={

0x31,0x32,0x33,0x34,0x35,0x36,0x37}; //与定义发送数据,共7位

void UART_init(); //串口初始化函数

void COM_send(void); //串口接收函数

unsigned char CLU_checkdata(void); //计算校验位函数

//---------------------------------------------------------------

// 函数名称: UART_init()串口初始化函数

// 函数功能:在系统时钟为11.059MHZ时,设定串口波特率为9600bit/s

// 串口接收中断允许,发送中断禁止,设定定时器中断允许

//---------------------------------------------------------------

void UART_init()

{

//初始化串行设置

SCON =0x58; //选择串口工作方式为1,打开接收允许,TB8=1

TMOD =0x21; //定时器1工作在方式2,定时器0工作在方式1

TR1 =1; //启动定时器T1

ES=1; //允许串行口中断

PS=1; //设计串行口中断优先级

//初始化定时器1

TH1 =0xfd; //实现波特率9600(系统时钟11.0592MHZ)ET1 =0; //定时器1中断禁止

}

//---------------------------------------------------------------

// 函数名称: timer0_init()初始化定时器0

// 函数功能:设置timer0工作模式

//---------------------------------------------------------------

void timer0_init()

{

time_over_flag=0;

count_10ms=0;

ADD_num=0;

TL0=0x0F0; //T0用于产生10ms的中断

TH0=0x0D8; //50次T0中断产生1次超时溢出

ET0=1; //允许定时器0中断

}

//---------------------------------------------------------------

// 函数名称: system_init()系统初始化

// 函数功能:调用串口、定时器初始化函数,完成系统初始化

//---------------------------------------------------------------

void system_init(void)

{

//系统总设置

UART_init();

timer0_init();

EA =1; //单片机中断允许

}

//---------------------------------------------------------------

// 函数名称: com_interrup()串口接收中断处理函数// 函数功能:接收包括起始位"S"在内的十位数据到数据缓冲区

//---------------------------------------------------------------

com_interrupt(void) interrupt 4 using 3

{

unsigned char RECEIVR_buffer;

if(RI) //处理接收中断

{RI=0; //清除中断标志位

RECEIVR_buffer=SBUF; //接收串口数据

if(point==0) //如果还没有接收到起始位

{

if(RECEIVR_buffer==0xFE) //判断是否起始标志位{

buffer[point++]=RECEIVR_buffer;//把接收到的数据放入接收缓存区

}

else

point=0; //不是,继续等待起始位

}

else if(point>;0&&point<10) //判断是否接收够十位数据

buffer[point++]=RECEIVR_buffer; //不够,把接收到的数据放入接收缓存区

else if(point==10)

{

if(RECEIVR_buffer==0xEF) //判断结束标志位是否正确{

buffer[point]=RECEIVR_buffer; //把接收到的数据放入接收缓存区

Slave_AD[ADD_num++]=buffer[2]; //把接收到的地址放到地址存储器

//表示该地址有有效设备

}

else

point=0; //不是,继续等待起始位

}

else point=0; //缓冲区已满,清除缓存区内数据重新接收

}

if(TI) //串口发送中断

{

TI=0; //清除发送中断

}

}

//---------------------------------------------------------------

// 函数名称: timer0_interrup()

// 函数功能:定时器T0中断服务程序

// 函数说明:T0枚10ms中断一次,连续中断50次置time_over_flag=1;

//-----------------------------------------------

timer0_interrupt(void) interrupt 1 using 2

{

count_10ms++;

if(count_10ms==50)

{

ET0=0; //关闭定时器T0中断

TR0=0; //停止定时器T0

time_over_flag=1;//设置接收超时标志

count_10ms=0x00; //10ms计数器复位

}

else

{

TL0=0x0F0; //重装定时器初始值

TH0=0x0D8;

}

}

//---------------------------------------------------------------

// 函数名称: COM_send()串口发送函数

// 函数功能:把数据缓冲区的十位数据发送出去

//-----------------------------------------------

void COM_send(void)

{

RE_DE=1; //设置MAX483进入发送状态

for(point=0;point<=10,TI=1;point++) //连续发送十位数据

//把缓存区的数据都发送到串口

{

SBUF=buffer[point];

TI=0;

}

RE_DE=0; //设置MAX483进入接收状态

}

//---------------------------------------------------------------

// 函数名称: write_buffer()

// 函数功能:写发送缓冲区十位数据

//---------------------------------------------------------------

void write_buffer(unsigned char slaver_add)

{

unsigned char i;

TB8=1; //打开多机通信方式

buffer[0]=0xFE;

buffer[1]=slaver_add;

for(i=2;i<9;i++) //连续发送十位数据

//把缓存区的数据都发送到串口

{

buffer[i]=send_data[i-2];

}

buffer[9]=0xEF;

}

//---------------------------------------------------------------

// 函数名称:主函数

// 函数功能:调度个子函数,完成通信过程

//---------------------------------------------------------------

void main(void)

{

unsigned char i=0;

system_init(); //系统初始化

do{ //查旬0到10好地址有没有对应设备

write_buffer(i++); //写查询第i号设备的发送信息

COM_send(); //调用发送函数,完成发送

timer0_init(); //完成一次查询,重新初始定时器0,准备下一次查询

}

while(time_over_flag&&i<10);

}

rs485总线通讯协议

竭诚为您提供优质文档/双击可除 rs485总线通讯协议 篇一:Rs485通讯协议说明 摘要:阐述了Rs-485总线规范,描述了影响Rs-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。 关键词:Rs-485现场总线信号衰减信号反射 当前自动控制系统中常用的网络,如现场总线can、profibus、inteRbus-s以及aRcnet的物理层都是基于 Rs-485的总线进行总结和研究。 一、eiaRs-485标准 在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在Rs-422标准的基础上,eia研究出了一种支持多节点、远距离和接收高灵敏度的Rs-485总线标准。 Rs-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 接收器的输入电阻Rin≥12kΩ 驱动器能输出±7V的共模电压

输入端的电容≤50pF 在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”)因为Rs-485的远距离、多节点(32个)以及传输线成本低的特性,使得eiaRs-485成为工业应用中数据传输的首选标准。 二、影响Rs-485总线通讯速度和通信可靠性的三个因素 1、在通信电缆中的信号反射 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。

(完整版)51单片机实现双机通信(自己整理的)

1号机程序 #in clude #defi ne uint un sig ned int #defi ne uchar un sig ned char sbit p10=P1 A 0; uchar a,b,kk; //uchar code d_c[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; void delay_ms(uchar y) { uchar i; while(y__) for(i=0;i<120;i++) 5 } void put(uchar x) // 发送函数 { SBUF=x; //SBUF:串行口数据缓冲器 while (TI==0); 〃等待发送结束 TI=0; } P £j £fA>l3 旳 4阳 1370 丘阳 H 鮎口 PDLWAJil- PDSA>f POfiAME PQ TiJT FZ^KS 畑 阳pz- A A-m FZW11 PZ.AtZ FZj9jAl4 PZ.TW? P3£VR : iD paimcc P3.sii nrn pjjfflrn F3.WTI] M*Tl pgtjgQIH F3.7/IF 1E 11 左边1号机,右边2号机, ,功能实现 帕叶DO ■ 口 IJApi FDJ H [I Z — 观旧 IP 口 .hQKD* *QAADf H ^ 弓 H.Lta RQfMM FZJWS pz. iwe F2JKA-IDI P2JTA11I F2.HW1Z P2JSM13 F2W.14 F2JM1S F3Ji nHX& gj.im:& riaiWTO rjjfWTT F3.1/W f3AT1 P3JillW F3JMF ■T2 1E

RS485主从式多机通讯协议

RS485主从式多机通讯协议 一、数据传输协议 此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如何回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。 此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息按本协议发出。 1、数据在网络上转输 控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。 主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则从设备不作任何回应。协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。 从设备回应消息也由协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误(无相应的功能码),或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 2、在对等类型网络上转输 在对等网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。 在消息位,本协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。 3、查询—回应周期 (1)查询 查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。错误检测域为从设备提供了一种验证消息内容是否正确的方法。 (2)回应 如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。 二、传输方式 控制器能设置传输模式为RS485串行传输,通信参数为9600,n,8,1。在配置每个控制器的时候,在一个网络上的所有设备都必须选择相同的串口参数。 地址功能代码数据数量数据1 ...….数据n CRC字节 每个字节的位 · 1个起始位 · 8个数据位,最小的有效位先发送 · 1个停止位 错误检测域 · CRC(循环冗余码校验) 三、消息帧

什么是RS485通信接口

什么是RS485通信接口 通信概述 通信设备从早期的邮件,电报,电话,传真,传呼机,手机,电脑,一路发展下来,而且随着科技的发展,世界必将由一个网络组成,所以,在未来开发的设备中,也必然要求大部分的设备都带有通信的功能。 设备与设备之间互相通信,就要有一座桥梁把二者连接起来,那就是传输通路与通信协议。传输通路由传输介质与传输接口组成,传输介质可分为有线和无线传输介质两大类。 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质为:铜线和玻璃纤维。 铜线具有便宜,安装容易的特点,在现在工业应用中普遍应用,在应用中主要有两种基本的铜线类型:双绞线和同轴电缆。双绞线可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干扰,对于一些要求比较高的项目上,还需要给双绞线加上屏蔽层;同轴电缆由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按阻抗值不同,同轴电缆可分为基带和宽带两种,同轴电缆是目前局域网与有线电视网中普遍采用的比较理想的传输介质。 所谓玻璃纤维介质,就是指现在所流行的光纤传输,他的两边有一个激光发生器与一个激光接收器,组成一整套通信线路,由于光纤传输距离远,因此现很多在工程都是采用“光端机+光纤”的模式。 结合我在工程中经常应用的通信模式,与“南方的老树51CPLD开发板”上具有的RS232通信、RS485通信两种,详细讲解下这两种通信方式的应用。 什么是RS232接口 首先介绍下什么是RS232接口,什么是RS485接口。

RS232接口是1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。DB25的串口一般只用到的管脚只有2(RXD)、3(TXD)、7(GND)这三个,随着设备的不断改进,现在DB25针很少看到了,代替他的是DB9的接口,DB9所用到的管脚比DB25有所变化,是2(RXD)、3(TXD)、5(GND)这三个。因此现在都把RS232接口叫做DB9。 元器件常识:市场上把公头的接插件叫做DRXX,母头的叫DBXX,比如我们电脑上的串口,在市场上叫做DR9,不是DB9,很多人都误叫做DB9,实际上的DB9是两个把两个DR9互相连接在一起的接口。 在文章中,我把所有的串口设备接口都统一叫做RS232接口。 三、什么是RS485接口 由于RS232接口标准出现较早,难免有不足之处,主要有以下四点: (1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL电路连接。 (2)传输速率较低,在异步传输时,波特率为20Kbps;因此在“南方的老树51CPLD开发板”中,综合程序波特率只能采用19200,也是这个原因。 (3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。 (4)传输距离有限,最大传输距离标准值为50英尺,实际上也只能用在50米左右。 针对RS232接口的不足,于是就不断出现了一些新的接口标准,RS-485就是其中之一,它具有以下特点:

51单片机实现双机通信(自己整理的)

左边1号机,右边2号机,,功能实现 1号机程序 #include #define uint unsigned int #define uchar unsigned char sbit p10=P1^0; uchar a,b,kk; //uchar code d_c[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; void delay_ms(uchar y) { uchar i; while(y--) for(i=0;i<120;i++) ; } void put(uchar x) //发送函数 { SBUF=x; //SBUF:串行口数据缓冲器 while(TI==0); //等待发送结束 TI=0; } void main() { uchar j; SCON=0x40; //串行口工作方式1,8位通用异步发送器

— TMOD=0x20; //定时器1工作方式2 PCON=0x00; //波特率不倍增 TH1=0xf4; TL1=0xf4; //波特率2400 TR1=1; //定时器1开始计时 P2=0xc0; while(1) { if(p10==0&&j==0) { delay_ms(15); while(p10==0); kk=1; P2=0xf9; j=1; } if(p10==0&&j==1) { delay_ms(15); while(p10==0); kk=2; P2=0xa4; j=2; } if(p10==0&&j==2) { delay_ms(15); while(p10==0); kk=3; P2=0xb0; j=0; } if(kk==1) put('A'); if(kk==2) put('B'); if(kk==3) put('C'); delay_ms(10); } }

RS-485通信原理

一、RS485串口通信电路图 二、VxWorks中基于RS485总线得串口通信协议及实现 摘要:本文介绍了在嵌入式实时操作系统Vxworks下串行设备得驱动架构及实现,提出了一种基于RS-485总线得新型串口通信协议,重点讨论了基于这种协议得应用程序得设计方法,发送时主要采用了总线仲裁机制,接收时主要采用了字符合法性校验、长度校验、内容得CRC校验,提高了系统得通信效率与稳定性。 关键词:VxWorks;RS-485;通信协议;总线仲裁;CRC校验 1 引言 随着信息技术与互联网得飞速发展,以及计算机、通讯、数码产品等领域得高速增长,数字化时代已经来临。嵌入式设备就是数字化时代得主流产品,嵌入式软件就是数字化产品得核心,作为嵌入式软件得基础与关键,嵌入式操作系统在产业发展过程中扮演着越来越重要得角色,应用遍及工业自动化、网络通信、航空航天、医疗仪器等领域。 2 RS-485总线 RS-485总线接口就是一种常用得串口,具有网络连接方便、抗干扰性能好、传输距离远等优点。RS-485收发器采用平衡发送与差分接收,因此具有抑制共模干扰得能力,加上收发器具有高得灵敏度,能检测到低达200mv得电压,可靠通信得传输距离可达数千米。使用RS-485总线组网,只需一对双绞线就可实现多系统联网构成分布式系统、设备简单、价格低廉、通信距离长。 3 VxWorks中串口驱动得实现

VxWorks 操作系统就是美国Wind River公司设计开发得嵌入式实时操作系统(RTOS),就是嵌入式开发环境得关键组成部分。Vxworks 操作系统得I/O 系统可以提供简单、统一、与任何设备无关得接口。这些设备包括:面向字符设备、随机块存储设备、虚拟设备、控制与监视设备以及网络设备。Vxworks 得I/O 系统包括基本I/O 系统与缓冲I/O 系统,具有比其她I/O 系统更快速,兼容性更好得特性。这对于实时系统就是很重要得。 3、1 串口驱动架构 基于vxWorks得串口设备驱动程序架构,对vxWorks得 虚拟设备ttyDrv进行封装,向上将TTY设备安装到标准 得I/O系统中,上层应用通过标准得I/O 接口完成对硬 件设备得操作,向下提供对实际硬件设备得底层设备驱 动程序。其软件架构如图1所示。 由图1可知,串口设备驱动由两部分组成,一部分为对 ttyDrv进行封装,将串行设备安装到标准得I/O系统中, 提供对外得接口;另一部分为串行设备驱动程序,提供 对硬件设备得基本操作。 虚拟设备ttyDrv管理着I/O系统与真实驱动程序之间 得通信。在I/O系统方面,虚拟设备ttyDrv作为一个字 符型设备存在,它将自身得入口点函数挂在I/O系统上, 创建设备描述符并将其加入到设备列表中。当用户有I/O请求包到达I/O系统中时,I/O系统会调用ttyDrv相应得函数响应请求。同时,ttyDrv管理了缓冲区得互斥与任务得同步操作。另一方面,ttyDrv负责与实际得设备驱动程序交换信息。通过设备驱动程序提供得回调函数及必要得数据结构,ttyDrv将系统得I/O 请求作相应得处理后,传递给设备驱动程序,由设备驱动程序完成实际得I/O操作。 3、2 驱动初始化 串口设备得初始化xxDevInit流程如图2。 设备驱动得初始化过程首先调用系统函数ttyDrv(),该 函数通过调用iosDrvInstall()将ttyOpen()、 ttyIoctl()、tyRead()、tyRead、tyWrite安装到系统 驱动函数表中,供I/O系统调用。 接着根据用户入参对串口芯片寄存器进行初始化,安装 驱动函数指针。 最后调用系统函数ttyDevCreate()创建ttyDrv设备。 该函数初始化设备描述符,调用tyDevInit()函数初始

单片机双机通信系统的课程设计

一.课程设计的目的及基本要求: 实践课程是使学生融会贯通本课程所学专业理论知识,完成一个较完整的设计计算和安装调试过程,以加深学生对所学理论的理解与应用,认识和熟悉元器件和电子测量仪器的性能指标,了解解决实际问题的一般过程,培养学生综合运用基础理论知识和专业知识去解决实际工程设计问题的能力。通过电子技术的综合性工程训练,使学生达到以下的目的和要求: 1、结合模拟电路、数字电路、可编程逻辑 器件、单片机电子线路CAD等课程中所学的 理论知识,按要求独立设计方案,培养学生 独立分析与解决问题的能力; 2、学会查阅相关手册和资料,通过查阅手 册和资料,进一步熟悉常用电子器件的类型 和特性,并掌握合理选用的原则; 3、学会使用常用电子元器件(包括中规模 芯片、专用芯片和可编程器件);

4、掌握基本的现代电子技术设计工具和EDA (Electronic design automation)技术; 5、掌握电子电路的安装与调试技术,进一 步熟悉电子仪器的使用方法; 6、认真撰写总结报告,培养严谨的作风和 科学的态度; 二.课程设计的主要内容: 课题十九单片机双机通信系统 基本要求:设计两个单片机最小系统,能实现有线通信,一方为发送,另一方为接收。 提高要求:两个单片机最小系统能相互通信,并能实现校验。 三.具体要求和时间安排: 每一个学生在教师指导下,独立完成一个应用系统。工作量如下: 1、电路原理图(A3幅面)1张,要求Protel软件绘制; 2、pcb版图(A3及以上幅面)1张;

3、设计说明书(20-30页)1本,内含能编译通过的源程序(有必要的注释)。

RS485通讯协议

RS485 通讯协议 RS-232与RS-422之间转换原理和接法 通常我们对于视频服务器、录像机、切换台等直接播出、切换控制主要使用串口进行,主要使用到RS-232、RS-422与RS-485三种接口控制。下面就串口的接口标准以及使用和外部插件和电缆进行探讨。 RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。例如:视频服务器都带有多个RS422串行通讯接口,每个接口均可通过RS422通讯线由外部计算机控制实现记录与播放。视频服务器除提供各种控制硬件接口外,还提供协议接口,如RS422接口除支持RS422的Profile 协议外,还支持Louth、Odetics、BVW等通过RS422控制的协议。 RS-232、RS-422与RS-485都是串行数据接口标准,都是由电子工业协会(EIA)制订并发布的,RS-232在1962年发布。RS-422由RS-232发展而来,为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(速率低于100Kbps时),并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和突保护特性,扩展了总线共模范围,后命名为TIA/EIA485-A标准。 1. RS-232串行接口标准 目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。收、发端的数据信号是相对于信号地。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在5~-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回 TTL电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20Kbps。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。 2. RS-422与RS-485串行接口标准 (1)平衡传输 RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2V~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。 (2)RS-422电气规定 由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。RS-422的最大传输距离为

RS485通讯几种常见问题

485通讯常见问题 1.MAX488/MAX490在点对点通信中工作很正常,为何在点对多点通信时无法正常通信? 由于MAX488/MAX490没有发送使能控制,因而其输出无法处于高阻态,当多个输出被连接在一起时(即点对多点通信时),差分输出信号线被多个发送器驱动(通常为TXD=1对应的电平状态);当某个节点开始通信,且发送TXD=0对应的差分电平时,A,B两线上将形成很大的短路电流,若长时间工作,则接口芯片将损坏;而这种情况不会在点对点通信中发生,且不会出现在点对多点通信中的处于点的一方,这也是象MAX488/MAX490以及其它一些没有发送使能控制的接口的适用范围。以上是造成这个问题的原因,当然,类似情况也会出现在那些带使能控制而软件没有编程控制使能的接口芯片中。 2.RS-485/RS-422接口为何在停止通信时接收器仍有数据输出? 由于RS-485/RS-422在发送数据完成后,要求所有的发送使能控制信号关闭且保持接收使能有效,此时,总线驱动器进入高阻状态且接收器能够监测总线上是否有新的通信数据。但是由于此时总线处于无源驱动状态(若总线有终端匹配电阻时,A和B线的差分电平为0,接收器的输出不确定,且对AB线上的差分信号的变化很敏感;若无终端匹配,则总线处于高阻态,接收器的输出不确定),容易受到外界的噪声干扰。当噪声电压超过输入信号门限时(典型值±200mV),接收器将输出数据,导致对应的UART接收无效的数据,使紧接着的正常通讯出错;另外一种情况可能发生在打开/关闭发送使能控制的瞬间,使接收器输出信号,也会导致UART错误地接收。 解决方法: 1)在通讯总线上采用同相输入端上拉(A线)、反相输入端下拉(B线)的方法对总线进行钳位,保证接收器输出为固定的“1”电平; 2)采用内置防故障模式的MAX308x系列的接口产品替换该接口电路; 3)通过软件方式消除,即在通信数据包内增加2-5个起始同步字节,只有在满足同步头后才开始真正的数据通讯。 3.采用RS-485/RS422接口通讯时,在什么条件下需要采用终端匹配?电阻值如何确定?如何配置终端匹配电阻?

ZNJC2 RS485通讯 modbus 协议

_ MODBUS 通讯协议说明 1. 通讯相关的参数 2.通讯说明 2.1 数据格式说明 控制器采用RS-485总线,协议符合ModBus 规约,数据格式有标准MODBUS-RTU 、 非标准MODBUS-RTU(16进制)和ASC(ASC Ⅱ码)3种格式。 数据传输均采用8位数据位、1位停止位、无奇偶校验位。波特率可设为2400、4800、9600和19200 bit/s 。 通讯传送分为独立的信息头,和发送的编码数据。以下的通讯传送方式定义与RTU 通讯规约相兼容: 2.2 非标准MODBUS-RTU(16进制)数据格式详细说明 下面以RTU(16进制)数据格式进行详细说明,ASC Ⅱ码数据格式只是把16进制代码 转换成ASC Ⅱ码字符。 地址码:这个字节表明由用户设定地址码的从机将接收由主机发送来的信息。并且每个从机都有具有唯一的地址码,并且响应回送均以各自的地址码开始。主机发送的地址码表明将发送到的从机地址,而从机发送的地址码表明回送的从机地址。 功能码:通讯传送的第二个字节。ModBus 通讯规约定义功能号为01H 到7FH 。本控制器利用其中的一部分功能码。作为主机请求发送,通过功能码告诉从机执行什么动作。作为从机响应,从机发送的功能码与从主机发送来的功能码一样,并表明从机已响应主机进行操作。如果从机发送的功能码的

最高位 (比如功能码大于7FH),则表明从机没有响应操作或发送出错。 数据区:数据区是根据不同的功能码而不同。 CRC码:二字节的错误检测码。 当通讯命令发送至仪器时,符合相应地址码的设备接通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息中包括地址码、执行动作的功能码、执行动作后结果的数据以及错误校验码。如果出错就不发送任何信息。 2.2.2 信息帧格式: (1)地址码: 地址码是信息帧的第一字节(8位),从1到255。这个字节表明由用户设置地址的从机将接收由主机发送来的信息。每个从机都必须有唯一的地址码,并且只有符合地址码的 从机才能响应回送。当从机回送信息时,相当的地址码表明该信息来自于何处。 (2)功能码: 主机发送的功能码告诉从机执行什么任务。表2列出的功能码都有具体的含义及操作。 (3 数据区包含需要从机执行什么动作或由从机采集的返送信息。这些信息可以是数值、参考地址等等。例如,功能码告诉从机读取寄存器的值,则数据区必需包含要读取寄存器 的起始地址及读取长度。对于不同的从机,地址和数据信息都不相同。 (4)错误校验码: 主机或从机可用校验码进行判别接收信息是否出错。有时,由于电子噪声或其它一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或从机对在传送过程 中出错的信息不起作用。这样增加了系统的安全和效率。错误校验采用CRC-16校验方法。 注: 信息帧的格式都基本相同:地址码、功能码、数据区和错误校验码。 2.2.3 错误校验 参与冗余循环码(CRC)计算的包括:地址码、功能码、数据区的字节。 冗余循环码包含2个字节,即16位二进制。CRC码由发送设备计算,放置于发送信息的尾部。接收信息的设备再重新计算接收到信息的 CRC码,比较计算得到的CRC码是否与接收到的相符,如果两者不相符,则表明出错。 CRC码的计算方法是,先预置16位寄存器全为1。再逐步把每8位数据信息进行处理。在进行CRC码计算时只用8位数据位,起始位及停止位,如有奇偶校验位的话也包括奇偶校验位,都不参与CRC码计算。 在计算CRC码时,8位数据与寄存器的数据相异或,得到的结果向低位移一字节,用0填补最高位。再检查最低位,如果最低位为1,把寄存器的内容与预置数相异或,如果最低位为0,不进行异或运算。 这个过程一直重复8次。第8次移位后,下一个8位再与现在寄存器的内容相异或,这个过程与以上一样重复8次。当所有的数据信息处理完后,最后寄存器的内容即为CRC码值。 计算CRC码的步骤为: (1).预置16位寄存器为十六进制FFFF(即全为1)。称此寄存器为CRC寄存器; (2).把第一个8位数据与16位CRC寄存器的低位相异或,把结果放于CRC寄存器; (3).把寄存器的内容右移一位(朝低位),用0填补最高位,检查最低位(注意:这时的最低位指移位前 的最低位,不是移位后的最低位); (4).如果最低位为0:重复第3步(再次移位)

RS485通信网络功能

RS-485通信网络功能 一 RS485接口 RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。 在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:(1)共模干扰问题:RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。(2)EMI问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。 由于PC机默认的只带有RS232接口,有两种方法可以得到PC上位机的RS485电路:(1)通过RS232/RS485转换电路将PC机串口RS232信号转换成RS485信号,对于情况比较复杂的工业环境最好是选用防浪涌带隔离珊的产品。(2)通过PCI多串口卡,可以直接选用输出信号为RS485类型的扩展卡。 二RS485布网 网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:(1)采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。有些网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。(2)应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。总之,应该提供一条单一、连续的信号通道作为总线。在RS485组网过程中另一个需要注意的

三菱FX3U 485无协议通讯程序详解(含程序)

三菱FX2N PLC串行通讯指令(FNC 80 RS) 串行通讯指令(FNC 80 RS) 1、指令格式:[RS D0 K8 D10 K8] 发送数据帧起始地址和数目↓ 接收数据帧起始地址和数目 2、功能和动作: ※RS指令是为使用RS232C、RS-485功能扩展板及特殊适配器,进行发送和接收串行数据的指令。 ※传送的数据格式在后面讲述的特殊寄存器D8120设定。RS指令驱动时即使改变D8120的设定, 实际上也不接收。 ※在只发送的系统中,可将接收数设定为K0。(K表示常数) ※在只接收的系统中,可将发送数设定为K0。 ※在程序中可以多次使用RS指令,但在同一时间必须保证只有一个RS指令被驱动。 ※在一次完整的通讯过程中,RS指令必须保持一直有效,直至接收数据完成。 D8120说明: ※根据MD320的通讯协议,无帧头和帧尾,则(bit9,bit8)=(0,0)。 ※bit13~15是计算机链接通讯时的设定项目,使用RS指令时必须设定为0。 ※RS485未考虑设置控制线的方法,使用FX2N-485-BD、FX0N-485ADP时,(bit11,bit10 )=(1,1)。 ※若PLC和变频器之间的通讯参数如下:8位数据位,无校验,2位停止位,波特率9600,无帧头无帧尾,无协议模式,则D8120=H0C89(H表示16进制)(0000 1100 1000 1001B) M8002 │──||────────── [ MOV H0C89 D8120 ]

5、相关标志位: 一.基本指令介绍 ※M8122:数据发送请求标志 当PLC处于接收完成状态或接收等待状态时,用脉冲触发M8122,将使得从D0开始的连续8个数据被发送。当发送完成后,M8122自动被复位。当RS指令的驱动输入X0变为ON状态时,PLC就进入接收等待状态。 ※M8123:数据接收完成标志 当M8123置位时,表明接收已经完成,此时需要将接收到的数据从接受缓冲区转移到用户指定的数据区,然后手工复位M8123。复位M8123后,则PLC再次进入接收等待状态。 如果指定的接收长度为0,则M8123不动作,也不进入接收等待状态。从这个状态想进入接收等待状态,必须使接受长度≥0,然后对M8123进行ON→OFF操作。 ※M8129:通讯超时标志 接收数据中途中断时,那个时点开始如果在D8129中规定的时间内不再重新开始接收,作为超时输出标志M8129变为ON状态,则接收结束。M8129需手工复位。 二.详细程序(与英威腾GD20变频器测试通讯成功的案例)

RS485通信协议

串行数据通信的协议从RS-232到千兆位以太网,虽然每种协议都有特定的应用领域,但任何情况下我们都必须考虑成本和物理层(PHY)性能。 本文主要介绍RS-485协议及该协议所适合的应用。同时给出了根据电缆长度、系统设计以及元件选择来优化数据速率的方法。 传输协议 什么是RS-485?Profibus又是什么?与其它串行协议相比,它们的性能如何?适用于哪些应用?为了回答这些问题,我们对RS-485 物理层(PHY)、RS-232和RS-422的特性、功能进行了总体比较[1](本文中的RS表示ANSIEIA/TIA标准)。 RS-232是一个最初用于调制解调器、打印机及其它PC外设的通讯标准,提供单端20kbps的波特率,后来速率提高至1Mbps。RS-232的其它技术指标包括:标称±5V发送电平、±3V接收电平(间隔/符号)、2V共模抑制、2200pF最大电缆负载电容、300最大驱动器输出电阻、3k最小接收器(负载)阻抗、100英尺(典型值)最大电缆长度。RS-232只用于点对点通信系统,不能用于多点通信系统,所有RS-232系统都必须遵从这些限制。 RS-422是单向、全双工通信协议,适合嘈杂的工业环境。RS-422规范允许单个驱动器与多个接收器通信,数据信号采用差分传输方式,速率最高可达50Mbps。接收器共模范围为±7V,驱动器输出电阻最大值为100,接收器输入阻抗可低至4k。 RS-485标准 RS-485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线。该规范满足所有RS-422的要求,而且比RS-422稳定性更强。具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V)。 接收器输入灵敏度为±200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV。最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、±5V(最大值)。 驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器。对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高。RS-485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375)。 采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻。RS-485已经成为POS、工业以及电信应用中的最佳选择。较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输。更高的接收器输入阻抗还允许总线上挂接更多器件。

RS485通信原理

RS485通信原理 1. RS-485的电气特点:逻辑“1”以两线间的电压差为+(2—6)V表示;逻辑“0”以两线间的电压差为-(2—6)V表示。接口旌旗灯号电平比RS-232-C 降低了,就不易破坏接口电路的芯片,且该电平与TTL电平兼容,可便利与TTL 电路连接。 2. RS-485的数据最高传输速度为10Mbps 。 3. RS-485接口是采取均衡驱动器和差分接收器的组合,抗共模干才能加强,即抗噪声干扰性好。 4. RS-485接口的最大年夜传输距离标准值为4000英尺,实际上可达 3000米,别的RS-232-C接口在总线上只许可连接1个收发器,即单站才能。而RS-485接口在总线上是许可连接多达128个收发器。即具有多站才能,如许用户可以应用单一的RS-485接口便利地建立起设备收集。 因RS-485接口具有优胜的抗噪声干扰性,长的传输距离和多站才能等上述长处就使其成为首选的串行接口。因为RS485接口构成的半双工收集一般只需二根连线,所以RS485接口均采取樊篱双绞线传输。 RS485接口连接器采取DB-9的9芯插头座,与智能终端RS485接口采取DB-9(孔),与键盘连接的键盘接口RS485采取DB-9(针)。 RS485编程 串口协定只是定义了传输的电压,阻抗等,编程方法和通俗的串口编程一样RS-232与RS-422之间转换道理和接法 平日我们对于视频办事器、录像机、切换台等直接播出、切换控制重要应用串口进行,重要应用到RS-232、RS-422与RS-485三种接口控制。下面就串口的接口标准以及应用和外部插件和电缆进行商量。 RS-232、RS-422与RS-485标准只对接口的电气特点做出规定,而不涉及接插件、电缆或协定,在此基本上用户可以建立本身的高层通信协定。例如:视频办事器都带有多个RS422串行通信接口,每个接口均可经由过程RS422通信线由外部计算机控制实现记录与播放。视频办事器除供给各类控制硬件接口外,还供给协定接口,如RS422接口除支撑RS422的Profile协定外,还支撑 Louth、Odetics 、BVW等经由过程RS422控制的协定。 RS-232、RS-422与RS-485都是串行数据接口标准,都是由电子工业协会(EIA)制订并宣布的,RS-232在1962年宣布。RS-422由RS-232成长而来,为改进RS-232通信距离短、速度低的缺点,RS- 422定义了一种均衡通信接口,将传输速度进步到10Mbps,传输距离延长到4000英尺(速度低于100Kbps时),并许可在一条均衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、均衡传输规范,被定名为TIA/EIA-422-A标准。为扩大应用范围,EIA又于 1983年在RS-422基本上制订了RS-485标准,增长了多点、双向通信才能,即允很多个发送器连接到同一条总线上,同时增长了发送器的驱动才能和冲突保护特点,扩大了总线共榜样围,后定名为TIA/EIA-485-A标准。 1. S-232串行接口标准 今朝RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速度串行通信中增长通信距离的单端标准。RS-232采取不均衡传输方法,即所谓单端通信。收、发端的数据旌旗灯号是相对于旌旗灯号地。典范的RS-232旌旗灯号在正负电平之间摆动,在发送数据时,发送端驱动器输出

基于51单片机的双机串行通信

机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级: xxxxxx 学号: 13xxxxxxxxx : xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计 1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:

rs485通信协议介绍

附录:RS485串行通讯协议 1 主要性能 本变频器通过内置的RS485标准接口,能与个人计算机、PLC 或同系列的变频器等连接,进行主从式、异步半双工串行通信。其主要性能参见下表: 项目 规范 适用机型 ALPHA3000系列变频器 物理级 EIA RS485 传输线 屏蔽双绞线 配线最长长度 500米 连接台数 主机一台,从机31台 传输速度 19200bps,9600bps,4800bps,2400bps,1200bps,600bps,300bps 数据交换方式 异步串行、半双工 传送协议 点对点或广播 字长 11位 停止位长度 1位 帧长 14字节固定 奇偶校验 奇校验 出错检查方式 异或校验 2硬件连接 2.1硬件联接如下图: 图 1 多 台变 频器 用主 机控 制连 接示 意图 图中的MASTER (主机)是ALPHA3000变频器、PC 机或可编程控制器(PLC ),图中的SLAVE (从机,在虚线框内)是变频器。变频器做为主机,只要将从机的RS485端子和主机的RS485同名端子相联接即可;如果用PC 机或PLC 做为主机,则要在主机和总线之间增加一个RS485的转接器。RS458串行总线接口最多可连接31台变频器做从机,每一个从机变频器都有一个唯一的号码(ID ),主机依靠ID 来识别每一台从机。

2.2 RS485转换器 RS485转换器采用DB9/DB9外形,带孔的 一端为RS232,带针的一端为RS485。转换器 外带接线转换头把RS485端的DB9接线转换为 螺丝接线柱,便于通讯线缆的安装和拆卸。接 线转换头上“A+”为485收/发正端,“ B-” 为485收/发负端,“GND”为485地线。 RS485接口组成半双工网络,一般只需二根连线,为获得良好的抗噪声干扰性和较长的传输距离,建议采用屏蔽双绞线传输。 3通讯协议 3.1概述 3.1.1通讯方式 采用USS协议。主机和从机之间用轮询的方式来进行通讯。由主机启动每一次通信,主机向从机变频器发送任务报文,从机接到主机的任务命令后返回响应报文并执行相应动作。除了发送响应报文外,从机只能处于接收状态。主机为变频器时,由功能号D033设置最大从机ID号。从机必须是从1开始,连续编号到D033设定的值。当主机为PC机或PLC时可以通过建立轮询表来改变查询顺序和查询周期,轮询表可以只包含部分从机,任意顺序,可以出现重复的号码。 主机的每一次查询都是以一个报文(帧)的数据传送给从机,所有的从机都能接收数据,从机如果检测到报文中的ID和本机的ID相同,则对报文的数据做出处理,并在规定的时间内发送响应报文给主机。如果检测到报文中的ID和本机的ID不同,则不处理报文,保持原工作状态。 3.1.2 控制方式说明: 在本机键盘或者端子控制时(功能A001设为0、1、2),通讯只能查看参数,所有的写入操作都被忽略。 通讯控制不能修改功能A001、A005、C001、D028、D032、D033的值。 在通讯控制方式时,本机键盘只可以修改功能A001、A005、C001、D022、D028、D032、D033的值,其中,对于功能D028的修改只有重新上电 开机才能生效。其它功能参数只能查看。 在通讯控制方式时,本机端子的使用参考特殊命令G05说明。 3.2数据格式 3.2.1报文格式

相关文档
最新文档