实验5 静态电阻应变仪的使用与桥路连接讲课讲稿

实验5   静态电阻应变仪的使用与桥路连接讲课讲稿
实验5   静态电阻应变仪的使用与桥路连接讲课讲稿

实验5静态电阻应变仪的使用与桥路连

实验静态电阻应变仪的使用与桥路连接

一、实验目的

1.掌握在静载荷下,使用静态电阻应变仪单点应变和多点应变测量的方法。

2.熟悉电阻应变片半桥、全桥的接线方法并测定等强度梁逐级加载的应变值。

二、试验设备及仪器

1.等强度梁

2.静态电阻应变仪

3.数字万用表、游表卡尺

三、实验原理

L等强度梁的应力

等强度梁如图3—1所示,其截面为矩形;高为A;宽度6,随J的变化而变化,有效长度段的斜率为tga

h——等强度梁截面高度;

在等强度梁的上表面粘贴纵向电阻应变片,用电阻应仪可以测得在外力户作用下的应变值‘,根据虎克定律可得到应力实验值,即可将实验测得的应力值实与理论应力值dg加以比较分析。

四、电阻应变法

电阻应变法测量主要由电阻应变片和电阻应变仪组成。

1,电阻应变片

电阻应变片(简称应变片)是由很细的电阻丝绕成栅状或用很薄的金属箔腐蚀成栅状,

并用胶水粘在两层绝缘薄片中制成的,如图2—1所示。栅的两端各焊一小段引线,以供试验时与导线联接。

实验时,将应变片用专门的胶水牢固地粘贴在构件表面需测应变片。当该部位沿应变片L方向产生线变形时,应变片亦随之一起变形,应变片的电阻值也产生了相应的变化。

其中 R——应变片的初始电阻值;

ΔR——应变片电阻变化值;

K——应变片的灵敏系数,表示每单位应变所造成的相对电阻变化。由制造厂家抽

样标定给出的,一般K值在2.0左右。

2.电阻应变仪

由电阻应变片将构件应变‘转换成电阻片的电阻变化AR,而应变片所产生的电阻变化是很微小的。通常用惠斯顿电桥方法来测量,如图3—2所示。电阻构成电桥的四个桥壁。在对角节点AC上接上电桥工作电压正,另一对角点BD为电桥输出端,输出端电压Ueo。当四个桥臂上电阻值满足一定关系时,电桥输出电压为零,此时,称电桥平衡。由电工原理可知,电桥的平衡条件为

(3-4)

若电桥的四个桥臂为粘贴在构件上的四个应变

片,其初始电阻都相等,即R1 ,R2 ,R3和R4构件受力前,电桥保持平衡,即U BD。构件受力后,应变片各自受到应变后分别有微小电阻

变化ΔR1 ,ΔR2 ,ΔR3和ΔR4这时,电桥的输出电压将有增量ΔU BD,即

若四个电阻应变片的灵敏系数K都相同,则

上式表明,应变片感受到的应变通过电桥可以线性转变为电压(或电流)信号,将此信号进一步放大,处理就可用应变仪应变读数ε仪表示出来。即此式为电阻应变仪的基本工作原理。

若四个桥臂都接入应变片,称“全桥接法”。若只在AB和BC上接入应变片,而另外两个桥臂CD.DA利用仪器内部的标准电阻,则称“半桥接法”。这时,应变仪读数与测量电桥两应变片的应变为

应变片的电阻值对温度的变化十分敏感,在测量过程中若温度有变化,将影响测试精度。在半桥测试中,将应变片只:,贴在被测试件表面,而R:为温度补偿片。电阻应变片R1粘贴在与被测试件材料相同的小试块上,放置在被测试件附近,但其不受力。由式(3—6)可知,电阻应变片R1与R2由于温度变化而产生的温度影响将相互抵消,从而使应变仪测量结果ε仪为由加载引起的应变。

为简便起见,以上讨论中,假设R1 =R2 =R3 =R4。实际上,四个电阻片的电阻值是不可能完全相等的;电桥工作电源亦为交流电。所以,设有电阻平衡,电容平衡调节装置。在未加载之前,预调平衡后,方可进行测量。常用的静态电阻应变仪有YJ9—25型、YJ—28型等。

在等强度梁的上下表面粘贴四枚应变片R1 ,R2 ,R3和R4。在温度补偿块上粘贴二枚应变片R5和R6如图3—3所示。

a,半桥接线法

接线方式如图3—4(d)所示。朋桥臂接上R1和R2,3,4,BC桥臂接上温度补偿片, R5或R6,DC,AD桥臂为应变仪内部的电阻R。

由式(3—5)可知,其输出只有应变ε1,即应变仪读数ε1=ε仪。若梁上表面应变片R1与梁下表面应变片R2接成半桥,如图3—4(b)所示。此时输出为ε1-ε2即ε仪

=2ε

1

6.全桥接线法

若将试件上表面的电阻应变片R1和R3和温度补偿片R5和R6,组成全桥,如图3—4(f)所示,其输出为ε1+ε3,即应变仪读数2ε1=ε仪

若应变片R1和R3,(上面受拉)与R2和R4(下面受压)接成全桥,如图3—4(d)所示。

其输出为ε1+ε2 +ε3+ε4即应变仪读数4ε1=ε仪。

可见,在实验中采用恰当的布片与接桥方法,可以抵消测量片的温度效应,实行自动温度补偿,提高应变测量的灵敏度及不同应力的分离。

3.电阻应变仪的操作程序

YJABA-P10R型静态电阻应变仪,如图3—5所示。

(1)调整灵敏系数K

在YJ28A—P10R静态电阻应变仪的前面板的A、B、C接线柱上接上标准电阻,此时后面板的两位开关处在“测量”,用起子调节前面板R0,使示值为零,即预调平衡。

将后面板的两位开关拨向“标定”,调节后面板灵敏度旋钮,使显示值为测点应变片灵敏系数K的对应数值。如应变片的灵敏系数K=2.0时,显示值为10000。

取下前面板上的标准电阻,将后面板的两位开关拨向“测量”,电阻应变仪的灵敏系数已

调整好,可接线准备测量。

(2)单点应变测量

将电阻应变片分别接到前面板A、B、C、D接线柱上,可实行单点半桥、单点全桥测量。此时,应变仪前面板上方的旋钮置在“R。”位;用起子调节R。。使示数为零,即电桥平衡。施加荷载,开始应变测量,示值为该点荷载作用下的应变读数。

(3)多点应变测量

YJ28—PIOR静态电阻应变仪后面板上有A1、B1、C1、D1至A10、B10、C10、D10个接线柱,其分别接上电阻应变片,可实行(1—10)多点半桥、全桥测量。

测量前,预调平衡。将应变仪前面板右上部旋钮置在“厂位,用起子调节左下部“广位,使显示数为零,则表示A1、B1、C1、D1组成的电桥平衡。同理依次将右上部旋置于“2”……“10"位,调节对应左下部的“2”……“10",即各点预调平衡。施加载荷开始测量,前面板右上方旋钮置在“1”位,显示数为第一点的应变读数;旋钮置在哪位,显示数则为那一点的应变读数。

五、等强度梁的应变测量

应变多点测量,此时将等强度梁上四枚应变片及温度补偿片,用半桥连接到应变仪上,

逐级加载时,测定各应变片的应变值。测试数据记录在表一中。

分别按图3—4所示的各种接线法接成桥路,测定等强度梁在各级加载下的应变值,测试数据记录在表二中。

六、实验方法和步骤

1.测量等强度梁的几何尺寸,l,b,x,h。

2.电阻应变仪的调整。(按调整灵敏系数K,接线平衡及测量等程序

进行)

3.半桥多点测量,将4枚应变片分别接到应变仪上,平稳逐级加载,ΔP=4.9N测定相应的应变值。

4.分别按图3—5所示各种接线法接成桥路,测定在逐级加载下的应变值。

5.由式(3—1)计算等强度梁在ΔP下的应力理论值Δσ理。

6.计算不同应变片不同组桥时测定的等强度梁的应力实验值Δσ实。实,并与应力理论值比较分析误差。

七,实验数据记

试验报告格式参考 静态电阻应变仪的使用

试验一电阻应变片的粘贴技术与静态电阻应变仪的使用一、试验目的 (1)掌握电阻应变片的选用原则和方法。 (2)学习常温用电阻应变片粘贴技术。 (3)熟悉静态电阻应变仪的操作规程。 (4)掌握静态电阻应变仪单点测量与多点测量的基本原理。 (5)学会电阻应变片作半桥及全桥测量的接线方法。 (6)验证电桥的桥路特性,测取不同接桥方式的桥路桥臂的灵敏系数。 二、试验设备及器材 (1)等强度梁一根。 (2)万用表。 (3)粘结剂(502快干胶及305型AB胶、丙酮等)。 (4)常温用电阻应变片。 (5)电烙铁、镊子、放大镜及其他工具。 (6)测量导线若干。 (7)加载砝码。 (8)静态电阻应变仪及预调平衡箱。 三、实验方法及步骤 (1)电阻应变片的粘贴。 ①检查、分选电阻应变片——用放大镜剔除丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片。用万用表测量各应变片电阻值,进行电阻值选配。同一测区用片的电阻值相差不得超过仪器可调平的允许范围。 ②试件测点表面准备——用砂纸等工具除去试件待测表面漆层、电镀层、锈斑、污垢覆盖层,划出测点定位线,然后用0#砂纸磨平,再打成与测量方向成45°交叉的条纹,最后用棉球蘸丙酮沿一方向擦拭干净。 ③贴片——使用502快干胶,要掌握时机,左手捏住应变片引线,右手上胶,胶水应均而薄(多用反而不好)。待一分钟左右,当胶水发黏时,校正方向贴好,再垫上玻璃纸(最好用聚乙烯类非极性塑料薄膜),用手指稍加滚压即可。

用环氧树脂胶贴片时,先需在待测面上涂一薄层胶液,将应变片放上,轻轻校正方向,然后盖上一张玻璃纸,用手指朝一个方向滚压应变片,挤出气泡和过量的胶液,保证胶层尽可能地薄而均匀,而在应变片周围应有胶液溢出效果才好。贴片后垫上橡皮等,用重物或夹具加压,压力为0.05~0.1MPa,24小时固化后方可进行

DH-3818静态电阻应变仪使用方法

DH-3818静态应变测试仪使用方法 一、概述 DH-3818静态应变测试仪集数据采集箱、微型计算机及支持软、硬件构成。 可自动/手动、准确、可靠、快速进行静态应变测量。广泛用于机械、土木、航 空航天、国防、交通等领域。若配接合适的应变式传感器,还可对压力、扭矩、 位移、温度等物理量进行测量。 测试仪具有自动平衡功能,内置标准电阻,可方便实现全桥、半桥及1/4 桥(公用补偿片)连接。 二、主要技术指标 1.测量点数:每台静态应变测试仪有1——10个通道,最多可同时测10 点。每台计算机可控制10台静态应变测试仪; 2.程控状态下采集速度:10测点/秒; 3.测试应变范围:±19999με 4.分辨率:1με 5.系统不确定度:小于0.5%±3με(程控状态) 6.零漂:≤4με/2h(程控状态) 7.自动平衡范围:±15000με,灵敏度系数K=2、120Ω应变计阻值误 差的1.5%; 8.电源电压:220V±10%,50Hz±1% 三、工作原理 1.WESTONE电桥测量原理 现以1/4桥,120Ω桥臂电阻为例,加以阐述。如图1所示:图1左侧为WESTONE 电桥 (Eg),C端系直流电源负极(O)。B端、D 端分别为输出信号的V i+、V i-端。第一桥 臂(AB)为测量片电阻R g(120Ω),第 四桥臂(AD)为补偿片电阻R(120Ω), 第二、三桥臂(BC、CD)为仪器内标准 图1 测量原理

电阻R (120Ω)。 由电桥原理,电桥的输出电压V i 为:εK E V g i 25.0= E g 为桥压(DC 2V )、 K 为应变片灵敏系数、ε为输入应变量με, 低漂移仪表放大器的输出电压V o 为:εK E K .V K V g F i F o 250== K F 为放大器的增益, 故 F g o KK E V 4=ε (1) 当E g =2 V K =2时,(1)式为:ε= F K V 0 对于1/2桥(半桥)电路 F g o KK E V 2= ε (2) 对于全桥电路 F g o KK E V =ε (3) 这样,测量结果由软件加以修正即可。 2.软件功能 本系统的控制软件工作于Win9x 操作系统,软件实现了文件管理、参数设置、平衡操作、采样控制、数据查询、打印控制功能。 软件使用说明另述。 四、数据采集箱的面板的功能介绍

公路与桥梁连接处及伸缩缝设计

浅谈公路与桥梁连接处及伸缩缝设计问题 摘要:随着我国改革开放的不断深入,我国的经济建设取得了重大成就,公路和桥梁是国家交通运输建设中的重点,然而在运输过程中往往出现桥头跳车现象,这主要是公路和桥梁连接处及伸缩缝的设计有问题。为了确保交通运输的安全和顺利,就必须对发生跳车现象的原因进行深入分析,找出解决问题的方法,对公路和桥梁连接处及伸缩缝进行科学合理地设计,并严格控制施工过程,从而提高公路桥梁的质量,减少跳车的发生。 关键词:公路与桥梁;连接处;伸缩缝;跳车现象 1.公路与桥梁连接处发生跳车现象的原因 对公路与桥梁连接处发生跳车的原因进行深入分析并找到解决办法,是提高道路桥梁通行状况,保证运输安全顺畅的重要途径。研究分析表明导致桥梁公路连接处跳车现象产生的原因主要包括路桥内部刚度突变、施工中的不均匀下沉以及车辆本身与车速的抗震性能等。经过对我国路桥状况的分析可知,刚性结构物与柔性道路连接处的不均匀下沉所致的错台是引起公路桥梁连接处发生跳车的主要因素。由于路桥建设施工中所用的材料不尽相同,所以为了避免由于错台引起跳车现象,就必须对设计进行相应的优化,包括施工方案和设计方案的调整。 2.减少连接处跳车现象发生的施工设计 公路路基、路面与刚性结构桥梁的强度、刚度、胀缩性以及组成材料等都有所不同,由于桥头连接处容易发生集中应力,受自然因素、结构自重以及车辆重量的影响,会导致公路与桥梁同时下沉,然而二者的下沉量差异很大,由于公路的下沉量远大于桥梁,所以容易形成错台,从而引发桥头跳车现象。为了避免桥头跳车现象,必须在建设的设计阶段对路基进行详细勘察,根据路基状况的不同选择合理的工程设计和施工方案。 2.1公路与桥梁的不均匀沉降问题 道路与桥梁的连接处为路堤和桥台,在施工中为了保证各自的质量,减小下沉量,对其都做了一定的加固处理。一般桥梁建成后桥台的下沉量很小,几乎不存在下沉,但是由于路堤自身的压缩续变性,就算路基已充分压实,也很难防止由于土基固结导致的下沉,必须等通车一段后才会趋于稳定。填土沉降和天然地基沉降是导致台后路堤沉降的主要原因。填土沉降是在车辆冲击振动载荷、垂直载荷及路堤自重的影响下,路基填料经不断压缩降低了孔隙率,使得密实度增大,从而导致填土沉降。因此为了避免路堤下沉就必须在桥涵构造物的设计中充分考察填方路基的填方高度、填料来源、路堤长度、地质情况及路堤沉降等因素,科学合理地确定桥涵的跨径、位置和桥台后部的防护措施,防止小跨径大河面桥涵的出现,从而从设计上减少桥头跳车现象的发生。 2.2填土流失及排水不畅导致的路基沉陷 当路堤和桥涵连接处出现缝隙时,一旦下雨就会导致雨水沿缝隙的下渗,导致桥台及土类填料被软化或浸蚀,由于填方体受侵蚀造成压实不够,进而导致强度下降,填方体变形。当桥头路基在受到车辆载荷冲击或振动影响时,就会发生沉陷现象。因此在项目建设的设计阶段,必须认真进行路堤勘察,科学设计公路的排水系统,防止填土流失,尽量避免路堤下沉,减少桥头跳车的发生。 2.3改进施工设计,减少桥头跳车发生 通过在桥台和路基之间设置搭板,能够将柔性路堤上的下沉量转移到刚性桥台上,搭板可大大减少桥头跳车现象的发生。为防止出现二次跳车现象,在桥台搭板设置施工中可在其尾端加设部分变厚式埋板,埋板长3~5 m,在搭板与水泥混凝土路面的连接处应用变厚式板替普通路面板。而在实际施工过程中,必须结合当地的具体地质情况以及其他影响路桥连接质量的因素,对设计进行调整和改进,从而减少桥头跳车的发生。

电阻应变片和电阻应变仪

电阻应变片和电阻应变仪 纯弯曲梁正应力测量、弯扭组合主应力 弯矩 扭矩测量 一、应变片及电桥 1. 电阻应变片 把一段细的金属丝,夹贴在两张绝缘纸之间,就构成一个最简单的应变片,如图5-11所示。应变片用特制的胶水,贴在构件的测点上。金属电阻丝承受拉伸或压缩变形的同时,电阻也将发生相应变化。实验结果表明,在一定应变范围内,电阻丝的电阻改变率R R ?与应变l l ε?=成正比,即 εS k R R =? (5-1) 式中s k 为比例常数,称为电阻丝的灵敏系数。 如将单根电阻丝粘贴在构件的表面上,使它随同构件有相同的变形。从式(5-1)看出,如能测出电阻丝的电阻改变率,便可求得电阻丝的应变,也就是求得了构件在粘贴电阻丝处沿电阻丝方向的应变。由于在弹性范围内变形很小,电阻丝的电阻改变量?R 也就很小。为提高测量精度,希望增大电阻改变量,这就要求增加电阻丝的长度;但同时又要求能反映一“点”处的应变,因此把电阻丝往复绕成栅状,这就成为电阻应变片。和单根电阻丝相似,电阻应变片也有类似于式(5-1)的关系, εk R R =? (5-2) 式中比例常数k 称为电阻应变片的灵敏系数,它是电阻应变片的重要技术参数。 2. 温度补偿片 实验时不仅受力使应变片的电阻发生变化,当温度变化时,也会使应变片的电阻变化,从而引起测量上的误差。为此,要采取下述措施: 设R 1为贴在构件上的应变片,R 2应选用与R 1规格型号完全相同的应变片,贴在与R 1 图5.11 应变片的构造

相同材料的构件上,R 1只是受力的作用,R 2不受力。 当温度变化时,由于温度变化而引起的电阻变化在R 1和R 2上相同。由惠斯登电桥原理可知,这时读数ε就不再受温度变化的影响,故R 2就叫做补偿片。 3. 横向效应 应变片是沿着长度方向工作的,当垂直于长度的方向有变形时,也会使应变片输出读数,从而引起误差,这种现象叫做横向效应。产生横向效应的原因,是因为应变片系由许多金属丝并联而成的。在并联处,也就是沿横向也出现了“工作段”。 横向效应越小越好,但不可能全无。在精密的测量中,要根据应变片的横向效应系数,用指定的公式对读数进行修正。 4. 应变电桥 应变电桥有半桥接法和全桥接法两种。当用两个贴在测点上的应变片代替电桥上的两个桥臂,另两个桥臂由仪器内部的固定电阻来担任时,称为半桥接法。当贴在四个测点上的应变片,组成测量电桥时,称为全桥接法。 )(4 43211εεεε-+-=?k E U BD (5-9) 上式表明,由应变片感受到的)(4321εεεε-+-,通过电桥可以线性地转变为电压的变化BD U ?。只要对BD U ?进行标定,再将电压量转换成应变,就可以用仪表指示出所测定的)(4321εεεε-+-,即: 1234r εεεεε=-+- (5-10) 式中r ε为应变仪读数。 5. 应变片和应变花 (1)在单向应力场中,可贴一片应变片。应变片的长度方向与应力方向一致。可用单向拉压胡克定律求出应力,即σ=Eε。 (2)在平面应力场中,若主应力方向已知,可贴两片应变片,分别与两个主应力方向重图5.12 惠斯登电桥 B A U BD

试验报告格式参考(静态电阻应变仪的使用)

试验一电阻应变片的粘贴技术与静态电阻应变仪的使用 一、试验目的 (1)掌握电阻应变片的选用原则和方法。 (2)学习常温用电阻应变片粘贴技术。 (3)熟悉静态电阻应变仪的操作规程。 (4)掌握静态电阻应变仪单点测量与多点测量的基本原理。 (5)学会电阻应变片作半桥及全桥测量的接线方法。 (6)验证电桥的桥路特性,测取不同接桥方式的桥路桥臂的灵敏系数。 二、试验设备及器材 (1)等强度梁一根。 (2)万用表。 (3)粘结剂(502快干胶及305型AB胶、丙酮等)。 (4)常温用电阻应变片。 (5)电烙铁、镊子、放大镜及其他工具。 (6)测量导线若干。 (7)加载砝码。 (8)静态电阻应变仪及预调平衡箱。 三、实验方法及步骤 (1)电阻应变片的粘贴。 ①检查、分选电阻应变片——用放大镜剔除丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片。用万用表测量各应变片电阻值,进行电阻值选配。同一测区用片的电阻值相差不得超过仪器可调平的允许范围。 ②试件测点表面准备——用砂纸等工具除去试件待测表面漆层、电镀层、锈斑、污垢覆盖层,划出测点定位线,然后用0#砂纸磨平,再打成与测量方向成45°交叉的条纹,最后用棉球蘸丙酮沿一方向擦拭干净。 ③贴片——使用502快干胶,要掌握时机,左手捏住应变片引线,右手上胶,胶水应均而薄(多用反而不好)。待一分钟左右,当胶水发黏时,校正方向贴好,

再垫上玻璃纸(最好用聚乙烯类非极性塑料薄膜),用手指稍加滚压即可。 用环氧树脂胶贴片时,先需在待测面上涂一薄层胶液,将应变片放上,轻轻校正方向,然后盖上一张玻璃纸,用手指朝一个方向滚压应变片,挤出气泡和过量的胶液,保证胶层尽可能地薄而均匀,而在应变片周围应有胶液溢出效果才好。贴片后垫上橡皮等,用重物或夹具加压,压力为~,24小时固化后方可进行

浅谈道路与桥梁连接处施工技术

浅谈道路与桥梁连接处施工技术 摘要:如今,随着国民经济的不断发展,人们对生活品质的需求越来越高,因此,城市道路交通建设事业也得到了更好的发展,随着城市化立体交叉的不断发展,道路桥梁的建设数量逐渐增多。在我国道路桥梁建设中最为困难的一点就是 道路与桥梁连接处的施工,道路与桥梁连接处的设计也直接影响到了工程的建设 质量和人们出行的安全。因此在道路与桥梁连接处设计施工的基础上,对其问题 和解决办法进行深入的研究与分析,推动我国建设事业的快速发展。 关键词:道路;桥梁;连接处;施工技术 1导言 道路桥梁路面的平整性直接关系到行车安全性、舒适性,当前交通建设规模 不断扩大,建设速度也有了显著的提高,很多质量方面的问题和弊端逐渐暴露出来,为了解决这些问题,就需要结合工程实际情况,科学开展施工设计,然后严 格控制施工质量,避免全隐患的发生。 2道桥连接部位施工分析 道路与桥梁的连接部位一直是道路桥梁工程建设的难点内容,并且该处也容 易产生质量问题。因此,一套科学性的施工方案对于工程项目的顺利开展来说显 得非常重要。通常情况下,在对道路桥梁工程项目进行设计时,往往很容易存在 一系列的问题,因此,使得道路桥梁的建设在面对相同的荷载的时候,会因为自 身的差异问题而存在不均匀的沉降,主要包括桥头跳车以及地基不均匀沉降等。 在对桥梁的连接处进行建设时,具有较为集中的应力,再加上受到雨雪的侵蚀以 及外界的风力影响,会使得结构的稳定性降低,再加上荷载的不断作用,使得两 个相互连接的部位都会存在沉降问题,但是由于主体结构的性质比较差,会使得 下沉深度存在差别,在连接部位处会有错台现象产生,降低行车的舒适度以及安 全性。 3道路桥梁连接处施工的关键点 3.1可观性 进入新时期,路桥工程不仅要满足交通需求,保证牢固性外,还要兼顾美观性,因其直接影响到城市的整体形象。首先,加固伸缩缝:要将施工所在地的气 候特点充分纳入考虑范围,做好施工监测工作,将高质量的建筑材料运用过来, 选择合理的施工方法,科学设计桥梁断头局部破损和各个伸缩缝,且对其有效加固。其次,加固地基:施工前,要仔细勘察施工地点的地质情况,然后将容易出 现不均匀沉降的地方找出来,然后将本处地基作为加固的重点,避免有地基沉降 问题出现于日后运行过程中。最后,加固裂缝:需要对路桥的承载重量科学计算,避免在重量荷载作用下,有裂痕出现于桥路上。同时,要定期检查,及时发现和 补救已经出现的裂痕问题。 4道路与桥梁连接处施工中常见的问题 4.1钢筋锈蚀 在道路与桥梁施工建设时,钢筋属于最基础的结构构件,钢筋的质量和使用 寿命直接影响到整个道路桥梁的使用寿命。会经常出现有钢筋锈蚀等问题,降低 钢筋使用性能。这种问题的出现受到多个方面因素的影响,比如钢筋的运输方式,钢筋的保存环境,钢筋的保养措施等,这些因素都会直接导致钢筋的使用质量严

YJ-33型静态电阻应变仪说明书

YJ-33型静态电阻应变仪说明书 一、概述 YJ-33型静态电阻应变仪是一种带有W78E5l6单片微处理器的智能化的应变仪,配合 YZ-22型转换箱可进行自动测量。它采用成型机箱,外观美丽;还采用LCD大屏幕液晶显示, 全中文莱单操作,使用方梗。它具有测量热电势自动补偿的功能,具有单片桥路非线性修正 及自动凋零功能,因此预热时间短、测量精度高、稳定性好。YJ-33型静态电阻应变仪可通 过通用并行打印接口外接打印机,还可通过RS232接口与PC机相连,完成复杂的测量与数 据处理任务,它是科研单位及工矿企业理想的应变测量仪器。 二、主要技术指标 (1)量程:0~±30000με (2)分辨率:lμε (3)基本误差限:不大于±0.1%±2με (4)测量速度:每秒12次 (5)电桥电压:±1.2VDC (6)初始零点范围:±30000με (7)适用电阻应变计阻值:60~1000Ω (8)测量点数:主机单独工作,最多100点(配5台YZ-22型转换箱),连计算机工作,最多 1000点(配50台YZ-22型转换箱)。 (9)显示方式:LCD液晶大屏幕显示,全中文莱单操作。 (10)灵敏系数:应变仪的灵敏系数按K=2.000设计(可通过参数设定修改,范围1.000~ 9.999)。 (11)稳定性:A.零点漂移不大于±5με/4h。 B.读数漂移不大于:±0.1%±2με/4h。 (12)温度变化影响:温度对零点和对读数值的变化不大于±0.01%F·S/℃。 (13)输出方式:可以由通用并行打印接口外接打印机。 (14)RS232串行接口:A.数据输出 B.双向信息通讯(联机测量)。 (15)供电电源:220V,50Hz (16)工作环境条件;温度:0℃~40℃ 相对湿度:30%-80% (17)外形尺寸:350*150*360mm (18)重量:约7kg 三、使用方法 1.工作条件 本仪器应在下列条件下使用: 环境温度:0℃~40℃ 相对湿度:35%-80% 仪器周围无腐蚀性气体及强磁场干扰。

电阻应变仪

电阻应变仪 一.用途电阻应变仪是用来测量构件或机械零件变形(线变形)的仪器。这种仪器具有灵敏度高、体积小、便于远距离测量等优点。它是电测法的主要仪器,对于验证设计理论、检验工程质量,以及决定正确的设计方案,都简便可靠。因此它被广泛地应用于各类工程的应力分析实验中。 二.基本原理电阻应变仪主要由电阻应变片和应变仪两部分组成。其工作原理是,把非电量的变形变化转变为电量的变化,即利用贴在构件上的电阻应变片随同构件一起变形引起电阻的改变,通过电子仪器测量此电阻的改变量,就可以求得构件所贴部位的应变。 1.电阻应变片 电阻应变片由直径为0.02~0.05mm的康铜丝或 镍铬丝制成的。为使合金丝在标距内获得较大的工作长度,通常将合金丝绕成栅型。合金丝的两边贴以绝缘薄纸,以免与试件直接接触。两端用直径为0.1~0.2mm 的铜丝引出,L为标距,通常为1~100mm。一般电阻应变片的电阻值为120Ω。 使用时,用特制的胶水将电阻片贴在试件的欲测部位,当试件受力在该处沿电阻丝方向发生线变形时,电阻丝也随着一起变形(伸长或缩短),因而使电阻 丝的电阻发生改变(增大或缩小)。从物理学可知,长度为,直径为的金属电阻丝,其电阻值为 若使金属电阻丝产生拉伸(或压缩)变形,则金属丝的长度、横截面积和电阻率都将变化,金属丝电阻值的相应变化量由下式求得

其中又有 , 所以 将等式两边除以得 实验证明,在金属丝弹性范围内,是一常数,故令 (称为灵敏系数) 于是,我们得到

式中K称为电阻应变片的灵敏系数,它的数值与电阻丝的材料及绕线方式有关,一般K值在2.0左右。 2.温度变化对应变片的影响和温度补偿片粘贴在测点上的应变片,若周围环境温度变化时,其电阻值也将产生改变,原因有二: (1)敏感栅电阻值随温度而改变 温度时,敏感栅的电阻值为 ——温度在零度是敏感栅的电阻值 ——敏感栅的电阻温度系数 当温度改变为时,应变片的阻值将改变 (2)应变片线膨胀系数和测点材料线膨胀系数不同使应变片电阻变化 当温度改变为时,应变片敏感栅的长度变化:测点材料的 长度变化:长度变化的差值:因为,,所以因此,实验过程中如果温度变化,则应变片电阻的变化量为 在常温应变测量中,常利用电桥原理,采用温度补偿片来消除温度变化的影响。 所谓温度补偿片是将一个与测量应变片相同(型号、电阻值和灵敏系数均相同)的应变片粘贴在与测点材料相同的小块上,实验时将该小块放在测点附近,使其温度与测点温度相同。把温度补偿片接在电桥的BC臂上。设电桥处于平衡

实验5 静态电阻应变仪的使用与桥路连接讲课讲稿

实验5静态电阻应变仪的使用与桥路连 接

实验静态电阻应变仪的使用与桥路连接 一、实验目的 1.掌握在静载荷下,使用静态电阻应变仪单点应变和多点应变测量的方法。 2.熟悉电阻应变片半桥、全桥的接线方法并测定等强度梁逐级加载的应变值。 二、试验设备及仪器 1.等强度梁 2.静态电阻应变仪 3.数字万用表、游表卡尺 三、实验原理 L等强度梁的应力 等强度梁如图3—1所示,其截面为矩形;高为A;宽度6,随J的变化而变化,有效长度段的斜率为tga

h——等强度梁截面高度; 在等强度梁的上表面粘贴纵向电阻应变片,用电阻应仪可以测得在外力户作用下的应变值‘,根据虎克定律可得到应力实验值,即可将实验测得的应力值实与理论应力值dg加以比较分析。 四、电阻应变法 电阻应变法测量主要由电阻应变片和电阻应变仪组成。 1,电阻应变片 电阻应变片(简称应变片)是由很细的电阻丝绕成栅状或用很薄的金属箔腐蚀成栅状, 并用胶水粘在两层绝缘薄片中制成的,如图2—1所示。栅的两端各焊一小段引线,以供试验时与导线联接。 实验时,将应变片用专门的胶水牢固地粘贴在构件表面需测应变片。当该部位沿应变片L方向产生线变形时,应变片亦随之一起变形,应变片的电阻值也产生了相应的变化。 其中 R——应变片的初始电阻值; ΔR——应变片电阻变化值;

K——应变片的灵敏系数,表示每单位应变所造成的相对电阻变化。由制造厂家抽 样标定给出的,一般K值在2.0左右。 2.电阻应变仪 由电阻应变片将构件应变‘转换成电阻片的电阻变化AR,而应变片所产生的电阻变化是很微小的。通常用惠斯顿电桥方法来测量,如图3—2所示。电阻构成电桥的四个桥壁。在对角节点AC上接上电桥工作电压正,另一对角点BD为电桥输出端,输出端电压Ueo。当四个桥臂上电阻值满足一定关系时,电桥输出电压为零,此时,称电桥平衡。由电工原理可知,电桥的平衡条件为 (3-4) 若电桥的四个桥臂为粘贴在构件上的四个应变 片,其初始电阻都相等,即R1 ,R2 ,R3和R4构件受力前,电桥保持平衡,即U BD。构件受力后,应变片各自受到应变后分别有微小电阻 变化ΔR1 ,ΔR2 ,ΔR3和ΔR4这时,电桥的输出电压将有增量ΔU BD,即

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (2) 2.1电阻应变片的工作原理 (2) 2.2电阻应变片的构造 (4) 2.3电阻应变片的分类 (4) 3. 电阻应变片的工作特性及标定 (6) 3.1电阻应变片的工作特性 (6) 3.2电阻应变片工作特性的标定 (10) 4. 电阻应变片的选择、安装和防护 (12) 4.1电阻应变片的选择 (12) 4.2电阻应变片的安装 (13) 4.3电阻应变片的防护 (14) 5. 电阻应变片的测量电路 (14) 5.1直流电桥 (15) 5.2电桥的平衡 (17) 5.3测量电桥的基本特性 (18) 5.4测量电桥的连接与测量灵敏度 (19) 6. 电阻应变仪 (24) 6.1静态电阻应变仪 (24) 6.2测量通道的切换 (26) 6.3公共补偿接线方法 (27) 7. 应变-应力换算关系 (28) 7.1单向应力状态 (28) 7.2已知主应力方向的二向应力状态 (29) 7.3未知主应力方向的二向应力状态 (29) 8. 测量电桥的应用 (31) 8.1拉压应变的测定 (31) 8.2弯曲应变的测定 (34) 8.3弯曲切应力的测定 (35) 8.4扭转切应力的测定 (36) 8.5内力分量的测定 (36)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为0.2毫米;重量轻、安装方便,对构件无 附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 该方法的缺点是: 1.只能测量构件表面的应变,而不能测构件内部的应变。 2.一个应变片只能测定构件表面一个点沿某一个方向的应变,不能进行全域性的测量。 3.只能测得电阻应变片栅长范围内的平均应变值,因此对应变梯度大的应力场无法进 行测量。 2. 电阻应变片的工作原理、构造和分类 2.1 电阻应变片的工作原理 由物理学可知,金属导线的电阻值R 与其长度L 成正比,与其截面积A 成反比,若 图1 用电阻应变片测量应变的过程

道路与桥梁连接处的设计

154 总382、383、384期 2016年第04、05、06期(2月合刊) 桥梁与隧道工程 0 引言 道路桥梁工程设计中,连接处设计是十分重要的内容,对保障工程质量,提高行车舒适度和安全性具有重要作用。但一些设计人员对该项工作的重视程度不够,没有严格执行相关技术规范标准,不仅影响设计方案的科学性与合理性,还降低了工程质量,影响行车安全。为转变这种情况,设计过程中需要严格执行相关规范标准,考虑工程建设具体需要,重视每个细节处理,提高道路与桥梁连接处的设计水平,为工程施工和车辆安全、顺利通行创造良好条件。 1 道路与桥梁连接处的特点 作为道路与桥梁设计的关键内容,连接处设计一直是设计单位十分关注的部位。在路桥工程设计和施工中,连接处最为显著的特点在于,二者的刚度存在差异,填充物不一样,强度和胀缩性也存在较大差异。并且连接处容易出现应力集中情况,在结构自重、车辆荷载、自然因素的影响下,道路和桥梁会出现下沉现象,但二者下沉会存在较大差异。通常道路下沉幅度更大,从而在连接处容易出现错台,车辆通过时会发生桥头跳车现象。另外,由于道路与桥梁的刚度不一致,但车辆通过时施加在道路和桥梁的荷载是一致的。久而久之会出现不均匀沉降情况,影响行车的安全性和舒适性,引发桥头跳车现象,严重的甚至导致交通事故发生[1] 。正是由于连接处具有这些特征,如果没有及时采取措施处理,还可能诱发安全事故。 2 道路与桥梁连接处的设计对策 某桥梁工程全长227.4m ,桥面宽32m ,设计时速40km/h 。工程规划设计时,为预防桥头跳车现象发生,确保连接处的设计效果和工程质量,施工单位综合采取以下对策,确保设计水平。 2.1 严格落实设计规范标准 为提高连接处的设计水平,首先就要严格遵循并落实相关规范标准,充分发挥其指导作用,加强每个细节设计控制,为施工提供有效指导。就目前的设计规范标准来看,有关连接处的设计标准存在不统一的情况,影响设计水平提高,容易导致桥头跳车等现象发生。《公路软土地基路堤设计与施工技术规范》对连接处的设计规范规定:高速公路和一级公路的路桥连接处最大容许工后沉降为小于或等于10cm ,一般路桥连接处为小于或等于30cm 。同时还要求路桥连接处施工完成后,应连续观测2~3个月,每个月沉降量不超过6mm 。这些规范要求对路桥连接处的设计和施工具有重要指导作用,也是设计中必须遵循的技术规范准则。因此,设计时必须严格遵循这些规范标准。并且在设计前全面、细致地对桥下地基进行勘察,科学布置观测点,连续观测2~3个月,获取相关数据,确保符合规范要求,对存在的不足及时采取改进和完善措施[2]。必要时还应该加固和处理地基,预防沉降现象发生。2.2 合理设计连接处的搭板 搭板不仅造价低廉,而且施工工艺简单,有着广泛的使用空间和范围,在路桥工程设计和施工中得到较为广泛的应用。因此,为预防路桥不均匀沉降现象发生,确保过渡段连接的牢固与可靠,避免行车安全事故发生,合理设计搭板是十分必要的。但在工程建设中,有些路桥连接处即使安装了搭板,同样也会出现不均匀沉降现象。导致这些问题出现的原因是搭板设计不合理,没有充分认识搭板的重要性。为改变这种情况,促进搭板作用的有效发挥,该工程设计时采取以下对策:结合搭板的受力状态,用简支梁计算搭板长度,保证其长度合理,满足连接处施工需要,一般搭板长度应该跨越桥台台背难以压实的土体。另外,为保证搭板作用的充分发挥,提高连接处的稳固性,还可以在搭板尾端加设一条长3~5m 的变厚式埋板,如图1所示。从而保证搭板作 收稿日期:2015-12-21 作者简介:钟明(1986—),男,助理工程师,研究方向为道路桥梁。 道路与桥梁连接处的设计 钟明 (唐山众联公路工程咨询有限公司,河北 唐山 063000) 摘要:首先分析了道路与桥梁连接处的特点,并结合工程实例,提出道路与桥梁连接处的设计对策,主要包括落实设计规范标准,合理设计搭板、填料类型,重视压实度设计和控制,加强台背回填设计等。实际应用表明,采取上述设计对策不仅预防桥头跳车,还能保证车辆安全顺利行驶,取得良好的社会效益,可为类似工作提供启示与参考。关键词:道路桥梁;连接处;设计对策;搭板中图分类号:U418 文献标识码:B

电阻应变仪

3 电阻应变仪 1.电阻应变仪的组成 电阻应变仪是把电阻应变量测系统中放大与指示(记录、显示)部分组合在一起的量测仪器,主要由振荡器、量测电路、放大器、相敏检波器和电源等部分组成,把应变计输出的信号进行转换、放大、检波以及指示或记录。 2.电阻应变仪的原理 电阻应变仪的测量原理是通过惠斯登电桥 ,将微小电阻变化转变为电压或电流变化,惠斯登电桥是由4个电阻1R 、2R 、3R 和4R 组成,如图所示,4个电阻构成电桥的4个桥臂。根据电工学原理,在电桥的B 、D 端输出电压为BD U 与电桥的A 、C 端的输入电压AC U 的关系为: ()() 42314 231R R R R R R R R U U AC BD ++-= ( 8) 当4个电桥的电阻满足式3.2.9时,电桥的输出电压为零。这种状态称为平衡状态。 3 4 21R R R R = ( 9) 假设初始状态为平衡状态,受力后桥臂电阻分别有微小的电阻增量1R ?、 2R ?、3R ?和4R ?,这时电桥输出电压的增量BD U ?为 BD U ?=AC U R R R R R R R R R R R R R R R R ???????-?++?-?+))(()(44332 434322 1 122121() ( 10) 图 6 惠斯登电桥 R 1 R 2 R 4 R 3 B A C B U AC U

4.测量电路 根据桥臂上受试验对象的应变变化而改变的电阻应变片(工作应变片)的数量,测量方式主要有:全桥电路、半桥电路和1/4桥电路。 (1)全桥电路 全桥电路就是在量测桥的四个桥臂上全部接入工作应变片,其中相邻臂上的工作片兼作温度补偿片,现假定选取的四个桥臂应变片的阻值都相等(全等臂电桥),即1R =2R =3R =4R =R ,且每个应变片的灵敏系数K 也相同,则上式变为: BD U ?= ) (4 4 332211ΔΔΔΔ4R R R R R R R R U AC -+-=)(4K 4321εεεε-+-AC U ( 11) (2)半桥电路 半桥电路是由两个工作片和两个固定电阻组成,则 BD U ?= ) (22 114R R R R U AC ?-?=)(4 K 21εε-AC U ( 12) (3)1/4桥电路 1/4桥电路常用于量测应力场里的单个应变,即只有1R 变化,而2R 、3R 和4 R 不变化,则 BD U ?= 4AC U 1 1 R R ?=14K εAC U ( 13) 5.多点测量线路 进行实际测量时,一个测点显然是不可取的,因而要求应变仪具有多个测量桥,这样就可以进行多测点的测量工作。多点测量线路主要有工作肢转换法和中线转换法。工作肢转换法每次只切换工作片,温度补偿片为公用片;中线转换法每次同时切换工作片和补偿片,通过转换开关自动切换测点而形成测量桥。 6.温度补偿 由于环境温度变化的影响,通过应变片的感受,可引起电阻应变仪指示部分的示值变动,这种变动称为温度效应。而电阻丝通常为镍铬合金丝,温度变动1℃,将产生相当于钢材应力为14.7N/mm 2的示值变动,这一量不能忽视,必须设法加以消除。消除温度效应的方法称为温度补偿。温度补偿可采用温度补偿片

道路与桥梁连接

一、道路桥梁连接处的设计 传统观念认为,道路与桥梁是两种不同性质的建筑物,二者之间虽然存在密切联系,但也存在施工设计上的根本区别。因此,道路和桥梁的施工活动应当分开进行,而不应合在一起进行。将道路与桥梁的设计施工活动分开进行,虽然可以确保两种建筑工程的质量,却由于忽略了二者之间的连接,而容易使道路与桥梁的衔接部位成为事故发生率最高的部位。为了保证通行车辆和人员的安全,相关的交通管理部门和地方政府一道对道路安全状况展开了调查,拟定了道路与桥梁衔接部位的具体设计方案和具体施工方案。目前,适用范围较广的设计方式主要包括在衔接部位安装搭板、改变回填的具体方法,以及用平稳过渡的方式来巩固路基(一)适当安装搭板 在道路与桥梁衔接部位适当安装一个搭板,可以有效减少事故的发生率。安装搭板能够使硬度较小的路基发生较大幅度的下降,然后逐渐过渡到硬度较大的桥台上面,从而降低“跳车”事故的出现频率。安装搭板的施工步骤较少、施工流程简单,且工程成本较低。因此,这种连接方式被广泛应用在各种类型的道路与桥梁连接工程上 (二)改变回填原料 设计人员可以选择多种建筑材料来填充台背;选择哪一种材料,主要取决于道路与桥梁衔接部位的具体情况以及桥梁支柱的特性。通常情况下,设计人员会选择那些硬度较大、透水功能强、凝固速度快、摩擦角度适当,以及不能被轻易压缩的材料作为填充原料,例如:砂石、岩块和砾岩等。同时,设计人员在选择回填材料时,应当充分顾及到施工地点的气候环境和土质条件,这样才能减小路基下陷的可能性,提高路面的稳定程度。另外,设计人员可以去除路基上的水泥涂层,以提高道路和桥梁的刚性程度;也可以在道路和桥梁的连接位置安排一段倾斜的路坡,减少刚性路面与弹性路面对接时发生事故的可能性。这样做还能缩小道路路面和桥面之间的错位距离,避免发生“跳车”事故。 合理连接道路和桥梁的方式有很多。设计人员要认真对比各种不同的设计方案,从中选取与施工方式相契合的那种方案;还应当考虑到施工成本、工程效益等各种因素,提高设计方式的经济性和可操作性。三、道路桥梁连接处的施工 道路与桥梁的衔接位置容易存在安全隐患。这种隐患产生的原因很复杂,包括连接方案不科学,也包括施工措施不到位或施工技术不先进。因此,要想提高道路桥梁连接处的施工质量,就要严格规范施工行为,增加施工活动的技术含量。 一)重视再次压实工作 有些道路施工单位在回填原料之后,不注意对回填的原料进行再次加固,结果导致连接工程质量不符合标准。施工人员要意识到:道路与桥梁衔接位置的结构非常特殊,如果不对这个部位的填充原料进行再次加固,就很有可能导致桥面或者路面下陷,引发工程质量事故。具体而言,重视再次压实工作,应当做到如下三点: 第一,施工人员要准确掌握回填原料的厚度。按照相关的国家和地方标准,回填原料的厚度应当为20厘米。施工人员要严格遵守这种既定标准,控制回填原料的厚度差,避免实际的厚度与标准的厚度相差过大。 第二,在有多种原料可以选择时,施工人员应尽量选择那些容易被压实、透水效果好的材料,避免在施工后期出现桥面或路面水分淤积的现象,从而避免路面与桥面连接部位出现裂痕。通常情况下,原材料的压实程度应当很高第三,施工人员要注意压路器械的规格和型号。市场上出售各种型号的压路器械,这些类型的机器并不一定都能适应施工情况。施工人员在进行道路与桥梁连接部位的施工活动时,可以选择小型的压路器械,因为这种小型机器调转灵活、工作过程严谨,可以有效减小路面与桥面的错位距离。在具体压实时,施工人员要分段对土层进行压实,不要忽略每一层的压实工作。(二)检测回填土层质量在施工进行过程中,施工人员要经常检查回填土层的质量状况;如果发现异常情况,要

应变电测法和电阻应变仪的使用方法

应变电测法和电阻应变仪的使用方法 电阻应变仪是电测实验应力分析中,通过粘贴于结构构件上的应变计测量构件应变的专用仪器。实验室当前使用的两种型号的电阻应变仪均是自动平衡的数字应变仪,单台应变仪一批次最多可以接入12枚粘贴于构件上的应变计,俗称有12个测量通道。 在材料力学实验中有9项实验分别用到电阻应变仪,它们是弯曲正应力实验;电测法测扭转切变模量G实验;扭弯组合变形主应力测定和内力素分离实验;压杆临界压力测定实验;动应力和冲击应力实验;4项创新实验:两种不同材料组成的胶接叠梁实验,预应力提高结构承载能力实验;构件在内压、弯曲、轴力联合作用下E,μ测定和内力分离实验;双肢压杆实验。因此要求同学能正确掌握电阻应变仪的接线(组桥)和使用方法,它对高质量完成实验是非常重要的。 使用电阻应变仪进行电测应力分析实验的几点共性的规定 1、实验室所有电测构件上应变计的引线均用不同颜色的导线以区分应变计的贴 片位置和方向,在把它们接到电阻应变仪不同通道(有1,2,3…12共12 个通道)接线排上时,一定要记录该通道所测应变是代表哪一点哪一方向的应变。 2、在进行静态多点应变测量(加一级载荷同时测量2个测点以上的应变)时, 所有测点测量片的两根引线均接到应变仪不同通道接线排上的A,B接线柱上,温度补偿片单独接到应变仪最左边无测点通道号的公共补偿接线柱上。 3、多点应变测量接线时应遵循由上而下,同一高度的两枚应变计则先前而后, 有环轴向应变计的先环向后轴向的原则,分别按顺序接到应变仪的1,2 (12) 通道上。这样便于在测量过程中及时进行比较及时纠正错误。 4、单点应变测量时,随便接到哪一个通道均可,测量片接A,B桥臂,补偿片接 B,C桥臂。 5、粘贴于不同教学构件上的应变计灵敏系数可能不同,测量前均要对使用的应 变仪进行灵敏系数设定(设定方法见应变仪具体介绍)。 6、所有接上应变计导线的接线柱必须拧紧,测量过程中不允许拉动导线,因是 电阻变化转变成应变的测量,任何松懈的接线和测量中拉动导线都会引起接触电阻的变化,造成应变读数的变动。 应变电测实验过程中的注意事项 (1)所有应变电测的教学试件上均有编号,并用标签标出试样尺寸,材料常数E,μ,应变计的灵敏系数k,以及载荷等有关参数,必需作记 录。 (2)实验数据必需经指导老师审查、签字并连同实验报告一起交回实验室。 (3)实验时不得用手及工具剥开应变计的密封胶。 (4)实验完毕应卸下导线,卸去载荷关闭加载台和应变仪的电源,并使实验现场恢复原状。

应变仪

电阻应变仪的使用方法 一、试验目的 1、掌握电阻应变仪的使用方法; 2、学习和掌握常用电阻应变仪的组成。 二、试验仪器及设备 1、手持电阻应变仪; 2、钢材试件; 3、数字万用电表、兆欧表; 4、放大镜; 5、粘结剂(KH502胶)、丙酮或酒精; 6、砂纸、棉花球、镊子、塑料薄膜; 7、电烙铁、焊锡丝、松香、接线端子、导线。 实验内容及步骤: 电阻应变仪是电测实验应力分析中,通过粘贴于结构构件上的应变计测量构件应变的专用仪器。实验室当前使用的两种型号的电阻应变仪均是自动平衡的数字应变仪,单台应变仪一批次最多可以接入12枚粘贴于构件上的应变计,俗称有12个测量通道。 在材料力学实验中有9项实验分别用到电阻应变仪,它们是弯曲正应力实验;电测法测扭转切变模量G实验;扭弯组合变形主应力测定和内力素分离实验;压杆临界压力测定实验;动应力和冲击应力实验;4项创新实验:两种不同材料组成的胶接叠梁实验,预应力提高结构承载能力实验;构件在内压、弯曲、轴力联合作用下E,μ测定和内力分离实验;双肢压杆实验。因此要求同学能正确掌握电阻应变仪的接线(组桥)和使用方法,它对高质量完成实验是非常重要的。 使用电阻应变仪的过程及使用方法: 1、实验室所有电测构件上应变计的引线均用不同颜色的导线以区分应变计的贴片位置和方向,在把它们接到电阻应变仪不同通道(有1,2,3…12共12个通道)接线排上时,一定要记录该通道所测应变是代表哪一点哪一方向的应变。 2、在进行静态多点应变测量(加一级载荷同时测量2个测点以上的应变)时,所有测点测量片的两根引线均接到应变仪不同通道接线排上的A,B接线柱上,温度补偿片单独接到应变仪最左边无测点通道号的公共补偿接线柱上。 3、多点应变测量接线时应遵循由上而下,同一高度的两枚应变计则先前而后,有环轴向应变计的先环向后轴向的原则,分别按顺序接到应变仪的1,2…12通道上。这样便于在测量过程中及时进行比较及时纠正错误。 4、单点应变测量时,随便接到哪一个通道均可,测量片接A,B桥臂,补偿片接B,C桥臂。 5、粘贴于不同教学构件上的应变计灵敏系数可能不同,测量前均要对使用的应变仪进行灵敏系数设定 6、所有接上应变计导线的接线柱必须拧紧,测量过程中不允许拉动导线,因是电阻变化转变成应变的测量,任何松懈的接线和测量中拉动导线都会引起接触电阻的变化,造成应变读数的变动。 应变电测实验过程中的注意事项 (1)所有应变电测的教学试件上均有编号,并用标签标出试样尺寸,材料常数E,μ,应

论道路与桥梁连接处的设计与施工 丘泽昆

论道路与桥梁连接处的设计与施工丘泽昆 发表时间:2017-07-06T15:18:25.510Z 来源:《基层建设》2017年第7期作者:丘泽昆 [导读] 本文将从当前道路与桥梁建设的实际出发,分析道路与桥梁连接处设计与施工的问题,进而提出相关解决对策,希望能给相关工作者带来一定的启发。 身份证号:45250219830805xxxx 南宁 530000 摘要:近年来,我国道路与桥梁建设的运营现状并不乐观,主要表现在道路与桥梁连接处的设计与施工方面,各种安全事故时有发生,直接威胁着人们的生命财产安全。所以加强道路与桥梁连接处的设计与施工管理成为相关工作者普遍关注并亟待解决的重要课题,本文将从当前道路与桥梁建设的实际出发,分析道路与桥梁连接处设计与施工的问题,进而提出相关解决对策,希望能给相关工作者带来一定的启发。 关键词:道路与桥梁;跳车;设计与施工 我国公路交通建设规模正在不断扩大,建设速度也在不断提高,相应的质量问题也逐渐呈现出来,道路与桥梁连接处的质量问题尤为突出,在很大程度上直接为人们的生命财产安全埋下了隐患,影响着人们的正常生活。在这样一种形势下,要求相关工作者必须高度重视道路与桥梁连接处的设计与施工,找出其中存在的问题并及时有效的解决,为人们提供一个安全舒适的出行环境。 一、道路和桥梁连接处设计和施工的重要性 道路和桥梁连接处是否产生“跳车”现象,在设计和施工阶段对其有着直接的影响。跳车现象不仅影响车辆驾驶的舒适性,而且容易导致交通事故的发生。在实际的设计和施工中,采用桥台台背回填方法、桥梁和道路连接处实施搭板结构的方法、对桥梁和道路连接处的基础进行适当处理的方法都可以有效避免跳车现象的发生。在道路和桥梁连接处,利用当前先进的设计和施工方法,能够有效的降低和避免跳车现象,从而更好的提高人们驾驶的舒适性和安全性,对于我国道路桥梁建设的总体发展也有着一定的促进意义。 二、道路和桥梁连接处在设计阶段避免跳车的有效方法 在桥梁和道路连接处,由于桥梁的刚度、路基的刚度、路面施工材料、二者膨胀性等方面都存在这一定的差异,而且连接处是一个应力较为集中的区域,加之车辆、自重等方面的影响,桥梁和道路会产生差异较大的沉降现象,通常情况是路面的沉降量大于桥梁的沉降量,从而使得车辆在行使到这一区域时产生跳车。为了有效的避免这一现象,可以在设计阶段进行合理的勘查,制定针对性的桥基、路基设计,避免沉降现象的发生,减少跳车的发生。 1、桥台和路堤产生沉降差导致跳车的设计 在进行桥梁和道路连接处施工时,桥台的基础部分通常会进行一些必要的加固处理,所以其产生的沉降量较小。对于道路而言,道路施工中的路堤填土都存在不同的压缩型变量,施工中进行充分的压实后,也不可避免的会发生压缩沉降,在经过一定时间的车辆行驶使用后,这一现象才可能停止。路堤的沉降主要是由于地基的沉降和填土的沉降导致。随着时间的推移,来往车辆的自重和荷载以及路面自身的重量都会使得路基中的填料发生压缩,填料逐渐变得密实坚硬,从而使得道路发生沉降。对于这种现象,在设计时,应该充分的考虑桥涵台背填方路基多出地域的地质情况、填方时的高度、路堤的距离以及填料的质量等等因素,尽量选择合适的桥涵位置、桥涵的跨径和桥台的防护工程,在施工设计时,尽量避免宽河面上建造小跨径的桥涵。 2、解决因排水不畅和填土流失造成跳车的设计 通常在桥梁和道路的连接处往往会存在一定的缝隙,而路面上的雨水或积水会从这样缝隙流下来,这些水分会对基础中的土类填料产生冲刷和软化,尤其是当地基中图雷填料压实不够充分的时候,这种冲刷和软化现象影响更为严重,造成基础部分的变形。在长时间车辆以及自重的作用下,沉降现象必然产生。因此在进行施工设计时,应该充分详细的了解当地的自然情况以及路堤的情况,路面的排水设计应该科学合理,各种排水孔设计排列避免与基础部分重合,从而减少路堤沉降,避免跳车现象。 3、充分利用各种全新的设计方式方法 在道路和桥梁连接处设计一块搭板,能够将柔性陆地产生的沉降逐渐转移到刚性桥台上,从而使得跳车现象的发生机率大大降低。此外,在搭板的后部还应该设计一段浅埋的埋板,通常控制其长度在3-5cm之间,这样做能够有效的降低二次跳车现象的发生。对于水泥混凝土路面而言,搭板连接处的路面板也应该改为变厚式板。 现实中影响道路和桥梁连接处质量的因素还有很多,可能造成跳车的因素也有很多,还需要广大的设计人员不断改进设计方法,更新设计理念,从设计的角度上避免跳车现象的发生。 三、应对道路与桥梁连接处设计与施工问题的有效对策 1 提高桥头引道设计质量 提高桥头引道设计质量的有效途径是严格设计桥头搭板,桥头搭板设计质量的优劣影响着整个桥头引道的设计质量,高质量的桥头搭板设计有利于提高路基的整体强度。这就需要设计人员深入施工地段做严格考察,根据其实际情况准确设计桥头搭板的长度,一般情况下小型桥梁搭板的长度为五米,大中型桥梁搭板的长度为八米,但是具体设计还需依据各桥梁实际而定。在设计过程中还需要考虑当地的地形地势情况,桥头引道往往处于高填方路段,其沉降量相对较大,所以需要合理加长搭板的长度。 2 合理设计路桥缓和过渡段 道路桥梁的缓和过渡段是其中最容易出现质量问题的地段,这就需要设计人员在道路桥梁工程的设计过程中合理设计路桥缓和过渡地段。一方面,必须设计出恰当的软土地基处理方式,做好相关勘察工作、充分了解施工地段软土地基的分布范围、物理或化学性质,结合其他工程建设地段的设计经验,合理有效的选择软土地基的处理方式,例如在软土地基分布较广、强度要求较高的情况下,可以采用振动碎石桩法来加强地基的强度,从而不断提高道路与桥梁连接处的质量。另一方面,必须设计好科学合理的边坡防护措施,首先需要做好台背材料的采购工作,从多方面了解各种材料的性能,从而选择强度高、透水性好、压实快、摩擦角大以及可压缩性小的填料,例如砾石、岩渣或砂砾等,以尽可能避免因材料原因而造成的沉降问题的出现;其次需要全面考虑多种防护措施,将沉降损失控制在最小的范围之内。只有不断提高路桥缓和过渡段设计的合理性,才能不断提高道路桥梁连接处的强度,从而有效缓解地基沉降问题。 3 强化工程的施工管理 在任何工程的建设过程中,施工管理都占据着至关重要的地位,对于提高工程建设的质量和安全具有重要意义,在道路桥梁工程的建

相关文档
最新文档