载流圆线圈周围磁场分布

载流圆线圈周围磁场分布
载流圆线圈周围磁场分布

载流圆线圈周围磁场分布

孟雨

孟雨物理工程学院11级物理学类三班

Email:1240123245@https://www.360docs.net/doc/2d2524866.html,

摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。

关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟

0.引言

圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。

本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决

该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。

1.载流圆线圈磁感应强度

这里直接引用文章【5】、【6】中的结果:

2302030230(cos )

4(cos sin )4(sin )4o x y o z IR y B d r IR R x z B d r IR y B d r πππ

μθθπμθθθπμθθπ?-=????--?=????-?=??????? ①

其中

r =2.积分公式求解

分析式①中的积分不难发现,积分的困难就在于分母的复杂性。而分母可以表示为下面的形式:

32

(1sin cos )a b θθ++

因此本文就先从最基本的积分形式入手。令2030

2

(1sin cos )

d I a b π

θ

θθ=

++?

,引入新的

参量?,并满足tan b

a

?=

,则

22033

2

2

()

(1sin cos )

(1))

d d I a b π?

π

?

θ

θ?θθθ?++=

=

++++?

?

作第二次变量替换,引入角度变量2

π

φθ?=+-、数值变量k ,

并作替换2k 则可得

32

03

22

2

(1cos )

d I k π

?φφ+

-

=

+?

写成一般形式,即

03222

(1sin )

pd I m β

α

ψψ=-?

其中:22

32

22

113;;();()222222

(2)

k p m k k φ

ππ

ψα?β?=

===-=+++ 对0I 的进一步求解过程如下:

sin 3

1322222sin

2

2

2

t sin (1sin )(1)(1)

d dt

m t m t β

β

α

α

ψ

ψψ=--?-?? ②

1sin 1

22

2

22

2

222sin

111(1sin )sin ()111k t m d t dt m m t β

β

ααψψψ-?-=??---?? ③

以上两式相减,考虑到

3【】

12224222

1322

22222

1(21)(())1(1)(1)d t m m t t m t dt m t t m t --+=--- 则

sin 1

2242222

132222

222sin 22

1

22

2222

1(21)(1sin ){sin []111sin (1)(1)(1sin )sin []}(,)1sin 1m m t t m dt m m m t m t m M m m

β

αβββ

αααβα-+-??=??-------?=?--? 由此得到

3

2

2

2

1

2222

22

2

2

(1sin )

1(1sin )(,)111((,,)(,))1d m m m d M m m E m m M m β

α

βαψ

ψψψαβαβαβ-=?-+?--=+-?? 故

2

02

((,,)(,))1p I E m m M m

αβαβ=

+- 对比①式中出现的积分,引入参量12,I I 并令

22123

300

2

2

sin cos ;(1sin cos )(1sin cos )d d I I a b a b π

π

θθ

θθθθθθ=

=++++?

?

则由

2''0121122

02

2

21230

2(,,)

(1sin cos )

(1sin )

(1sin cos )0

(1sin cos )

d n d I aI bI n K m a b m d a b bI aI a b β

π

α

π

θ

ψ

αβθθψθθθθ++===++-++-+=

=++?

?

?

其中:1'

22

)n k -=+

得到结果

''00122222((,,))((,,));a p K m I b p K m I I I a b a b αβαβ--==++ ④

令22222222

22;Rz Rx

a b R x y z R x y z =-

=-

++++++,则对①式整理,得到以下结果

02

3

2222200213

22222

01

3

222224()()4()4()x y z IRy B I R x y z IR B RI xI zI R x y z IRy B I R x y z μπ

μπμπ?

-?=???+++?

-?=??--??+++?-?=???+++?

⑤ 以上②结果便是求解得到的载流圆线圈周围任意处空间磁感应强度分布,当然上式还不算是最终结果,因为式中所涉及的不完全椭圆积分的具体形式(,,),(,,)E m K m αβαβ还没有确定,以下便是对其具体形式的求解。

首先确定参数的取值范围

tan b x a z

?=

= 得

0,222

πππ

?αβαπ-

<

2

2

2

012k m m k

=?<<+ 3.(,,)(,,)E m K m αβαβ、的计算

1

22

2

22

1221!!(,,)(1sin )(1sin )2!!!sin 2!n

n n n n n

n n n m E m m d d n n m d d n β

β

ααββα

ααβψψψψψψψ∞

=∞

==-=-?=-∑??∑??

⑥ 又由于

22122122221222sin sin (cos )

cos sin (21)sin cos cos sin (21)(12)n n n n n n n n

I d d n d x n I n I ψψψψψψψψψψ-----==-=-+-=-+-+-??? 从而得到

21222

212324

21230

cos sin 2122sin (21)sin (21)(23)

cos ()22(22)2(22)

sin (21)sin (21)!!(21)!!

cos (+sin )22(22)(2)!!(2)!!(21)!!(2(2cos n n

n n n n n n n I I n n

n n n I n n n n n n n n I n n n n n n n k ψψψψψψψψψψ--------=-+---=-++-----=-+++---=-……

…1

2(21)0

2))!!(21)!!

sin (2)!!(2(21))!!(2)!!n n k k n I n n k n ψ--+=+-+-+∑ 故

1

22(21)02(21)(21)!!(2(22))!!

sin (cos sin (2)!!(2(21))!!(21)!!

cos sin )()

(2)!!n n

n k k n k n n k d n n k n n β

α

ψψαα

βββα--+=-+--+=-+--+-∑

?

将上式带入到式③中,得到

221

110

2(21)2(21)(,,!!(21)!!!!()()()2!(2)!!2!(21)!!(2(22))!!(2)!!(2(21))!!

(cos sin cos sin )n n

n n n n n k n k n k E m n m n n m n n n n n k n n k αβ

βαβαααββ∞

∞-===-+-+-=--?----+?-+?-∑∑∑⑦

由于

1

2222

222

1

222(,,)1(1sin )11((1sin )(1sin )(,,)(,,)

(1sin ))dE m m d m d dm m m m E m K m m d m ββ

αα

βα

αβψψψψψαβαβψψ---==-----=

??? 从而可以确定出

(,,)

(,,)(,,)dE m K m E m m

dm

αβαβαβ=- ⑧

综上所述,④已是严格意义上的精确解。至此,载流圆线圈周围任意处空间磁感应强度分布已由④严格给出。 4.结果分析

虽然结果已由上文给出,但④式结果依然比较复杂,先对其进一步简化。考虑到

21

10

!!(21)!!(2(22))!!

1,1,12!(2)!!(2(21))!!n n n n k n m n n k k m n n n k ∞-==--+<=

-+∑∑

则由⑥、⑦式并取幂级数首项,得

22

(,,)(1)cos 42

m m E m αβπ?=-+

又由式⑧得

22

(,,)(1)cos 42

m m K m αβπ?=+-

11222

22222

11

22222

2

(,)

(1sin )(1sin )sin []sin []}1sin 1sin sin 2cos (1sin )(1sin )22

M m m m m m αββαβαβαα?α?--=?-?----==--+ 故

22

2012

22

2

cos ((1)cos 142

(1sin )22

p m m m I m m m ?

π??=-+---+) ⑨ 5.数值模拟

综合上式④、⑤、⑨,用软件Matlab 进行数值模拟,相关取值如下:

71012.566370614410;1;0.1H m I A R m μ--=?==

首先对⑤式中的x B 进行数值模拟,由于目标函数x B 是关于空间变量x y z 、、的三元函数,实际模拟时本文采用降维方法:固定其中一个空间变量z ,对目标函数进行三维模拟。并通过令变量z 取不同的数值进行多次模拟,比较结果的差异,从而得到x B 的空间分布。当z 分别取0,4,10,20时,磁场分量x B 的分布如下列图所示。

对⑤式中的y B 进行数值模拟,当z 分别取0,4,10,20时,磁场y B 分布如下列图所示:

同理,磁场z B 分布如下列图所示:

参考文献:

【1】赵凯华陈熙谋电磁学(第三版)[M].高等教育出版社2012:245

【2】刘耀康导出圆电流的磁感应强度的简便方法[J] 大学物理 2007.26(7)

【3】王竹溪郭敬仁.特殊函数概论[M].北京:北京大学出版社.2000:549

【4】张之翔电磁学中几个简单问题里的椭圆积分[J].大学物理2002.21(4)

【5】孟雨闭合载流导线周围磁感应强度的空间分布[J].物理学刊2012.27

【6】孟雨一个重要公式在电磁学中的应用[J].物理学刊2012.29

Distribution of magnetic field strength of electric

round string

Abstract: The article firstly precisely solves the question of distribution of magnetic field strength of electric round string in everywhere of three-dimensionality directly by Biot-Savart’s law in rectangular coordinate system. By numerical simulation, the article visually gives the distribution of magnetic field.

Key words: electric round string ; ellipse integral ; magnetic field strength;numerical simulation

指导老师:陈长青

王明星

第九节 磁场对载流线圈的作用

10-7 磁场对载流线圈的作用 一、磁场作用于载流线圈的磁力矩 下面用安培定律来研究磁场对载流线圈的作用。 如下图所示,在磁感强度为B 的均匀磁场中,有一刚性矩形载流线圈MNOP ,它的边长分别为1l 和2l ,电流为I ,流向自M P O N M →→→→,设线圈平面的单位正法向矢量n e 的方 向与磁感强度B 方向之间的夹角为θ,即线圈平面与B 之间夹角为φ() 2/π=+θφ,并且MN 边及OP 边均 与B 垂直。 由安培定律知磁场对导线NO 段和PM 般作用力大小相等,方向相反,并且在同一直线上,所以对整个线圈来讲,它们的合力及合力矩都为零。导线MN 和OP 段受磁场力大小则分别为 21BIl F = 2 2BIl F = 这两个力大小相等,方向亦相反,但不在同一直线上,对线圈要产生磁力矩φ cos 11l F M =。 由于 θ φ-=2/π,所以 θ φsin cos =,则有 θ θsin sin 1211l BIl l F M ==

或 θsin BIS M =(10-17a ) 式中 2 1l l S =为矩形线圈的面积,磁矩 n e m IS =,此处 n e 为线圈平面的正法向矢量. 所以上 式用矢量表示则为 B m B e M ?=?=n IS (10-17b ) 如果线圈不只一匝,而是N 匝,那么线圈所受的磁力矩应为 B e M ?=n NIS (10-17c ) 讨论: 载流线圈在均匀磁场中的运动问题 (1)当载流线圈的 n e 方向与磁感强度B 的方向相同(即?=0θ),亦即磁通量为正向极大 时,M=0,磁力矩为零,此时线圈处于平衡状态[图(a)]。 (2) 当载流线圈的 n e 方向与磁感强度B 的方向相垂直(即?=90θ),亦即磁通量为零时, M=NBIS ,磁力矩最大[图(b)] (3)当载流线圈的 n e 方向与磁感强度B 的方向相反(即?=180θ)时,M=0,这时也没有磁 力矩作用在线圈上[图(c)],不过,在这种情况下,只要线圈稍稍偏过一个微小角度,它就会在磁力作用下离开这个位置,而稳定在?=0θ时的平衡状态,总之,磁场对载流线圈作用的磁力矩, 总是要使线圈转到它的 n e 方 向与磁场方向相一致的稳定 平衡位置(M10-8)。 (4)式(10-17)虽然是从矩形线圈推导出来的,但可以证明它对任意形状的平面线圈都是成立的。

磁场对载流导体作用

§3。3 磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行时, 0=θ,或 180=θ,F=0,电流方向与磁场方向垂直时, 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? = 2 2 1021222L a I I B L I ?= ?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上 P B 图3-3-1 图3-3-2

所受的力 a I I L F πμ22 1022=?? 同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I , 线框平面的法线n 与B 之间的夹角为θ,则 各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互相抵消。 图3-3-3

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.360docs.net/doc/2d2524866.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

亥姆霍兹线圈实验报告

亥姆霍兹线圈实验报告 【实验原理】 1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场 一半径为R,通以电流I的圆线圈,轴线上磁场的公式为 (1-1) 式中N0为圆线圈的匝数,X为轴上某一点到圆心O的距离。 它的磁场分布图如图1-1所示。 (2)亥姆霍兹线圈 所谓亥姆霍兹线圈为两个相同线圈彼此平行且共轴,使线圈上通以同方向电流I,理论计算证明:线圈间距a等于线圈半径R时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,如图1-2所示。 2.霍尔效应法测磁场 (1)霍尔效应法测量原理 将通有电流I的导体置于磁场中,则在垂直于电流I和磁场B方向上将产生一个附加电位差,这一现象是霍尔于1879年首先发现,故称霍尔效应。电位差U H称为霍尔电压。 如图3-1所示N型半导体,若在MN两端加上电压U,则有电流I沿X轴方向流动(有速度为V运动的电子),此时在Z轴方向加以强度为B的磁场后,运动着的电子受洛伦兹力F B的作用而偏移、聚集在S平面;同时随着电子的向S平面(下平面)偏移和聚集,在P平面(上平面)出现等量的正电荷,结果在上下平面之间形成一个电场E H(此电场称之为霍尔电场)。这个电场反过来阻止电子继续向下偏移。当电子受到的洛伦兹力和霍尔电场的反作用力这二种达到平衡时,就不能向下偏移。此时在上下平面(S、P平面)间形成一个稳定的电压U H(霍尔电压)。 (2)霍尔系数、霍尔灵敏度、霍尔电压 设材料的长度为l,宽为b,厚为d,载流子浓度为n,载流子速度v,则与通过材料的电流I有如下关系: I=nevbd 霍尔电压 U H=IB/ned=R H IB/d=K H IB 式中霍尔系数R H=1/ne,单位为m3/c;霍尔灵敏度K H=R H/d,单位为mV/mA

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

圆线圈和亥姆霍兹线圈的磁场

圆线圈和亥姆霍兹线圈的磁场 磁场测量是磁测量中最基本的内容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。 〔实验目的〕 1.掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。 2.验证磁场迭加原理。 3.学习亥姆霍兹线圈产生均匀磁场的特性。 〔实验原理〕 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图3.14.1所示。 根据毕奥-萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R R B ?+?= 2 /322 2 0) (2μ (3.14.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.14.2) 轴线外的磁场分布情况较复杂,这里简略。 二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故

在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B '为 3/23/22222201222R R B N I R R x R x μ--????????????'=???++++-?????? ? ????????????????? (3.14.3) 在亥姆霍兹线圈轴线上中心O 处磁感应 强度大小'0B 为 003/285N I B R μ??'= (3.14.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴线上任一点的磁感应强度大小B ''为 3/23/22222201222d d B N I R R x R x μ--????????????''=???++++-?????? ? ????????????????? (3.14.5) 四、霍尔传感器 1.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应。 本实验采用的SS95A 型集成霍尔传感器由霍尔元件、放大器和薄膜电阻剩 余电压补偿器组成,测量时输出信号大,剩余电压的影响已被消除。一般的霍尔元件有四根引线,两根为输入霍尔元件电流的―电流输入端‖;另两根为霍尔元件的―霍尔电压输出端‖。本实验在设计安装时,传感器、圆线圈的工作回路相互独立,并且传感器的工作电流已设定为标准工作电流(定值)。即K H I =K (常数) 则有:KB U H =,其中K 为常数。这样U H 与B 建立简单的正比对应关系,由U H 值可得出B 的示值。

球形载流线圈的场分布与自感

实验报告 课程名称: 工程电磁场与波 指导老师:___________________成绩:___________________ 实验名称: 球形载流线圈的场分布与自感 实验类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的: 1、研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2、掌握工程上测量磁场的两种基本方法——感应电势法和霍尔效应法。 3、在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍尔效应的高斯计的证明。 实验原理: 球形载流线圈(磁通球)的磁场分析: 在的轴方向具有均匀匝数密度分布的球形线圈中,通以正弦交流电流,可以证得球表面上等效的面 电流密度的分布为 由上式可知,面电流密度周向分布,且值正比与。 有边值问题 通过以上方程可以解得磁通球内外的磁场强度为 , , 由上述解可以看到球内为均匀场

球外等同于球心处一个辞偶极子的磁场。 球形载流线圈自感系数的计算: 易知磁通量为 则总磁链为磁通在全部线匝内的积分,可以求的 最终由自感定义式可以极端的自感系数的理论计算值为 在实验中,我们选取交流电的频率足够大,那么自感线圈的感抗就会远大于自感线圈的电阻,可以近似认为其没有电阻。这样,由实测输入端电压峰峰值与电流的比值,就可以获得感抗的的实测值,由 此便得的实测值。 感应电势法测磁感应强度: 若把一个很小的探测线圈放置在由交变电流激磁的时变磁场中,则根据法拉第电磁感应定律,该探测线圈中的感应电动势 如果探测线圈的轴线与磁场方向相一致,且磁场由正弦交变电流激励,对应于上式)的有效值关系为 由于探测线圈所占据的空间范围很小,故该线圈内的磁场可近似认为是均匀的,因此有从 而,被测处的磁感应强度 其中为测试线圈的等效截面积,具体为,且实验中, 。 霍耳效应测磁感应强度 霍耳元件被制备成一块矩形()半导体薄片。当在它的对应侧通以电流,并置于外磁场中时,在其另一对应侧上将呈现霍耳电压,这一物理现象称为霍耳效应。霍耳电压为 在正弦交流激励的时变磁场中,霍耳效应高斯计的磁感应强度平均值读数与由感应电势法测量并计算得出的磁感应强度的有效值之间的关系为

COMSOL-4.4-模拟螺线管线圈产生的磁场分布

COMSOL 4.4 螺线管线圈产生的磁场分布 1.模型向导>三维>选择物理场,添加“磁场(mf)”和“电路(cir)”,“求解”中选择“瞬态”,然后“完 成”。 2.“几何”里面长度单位设置为所需单位,此处设置为“mm”。在“几何”菜单中点击“工作平面”,右 击“模型开发器”中的“几何1”>“工作平面1”>“面几何”,选择“圆”,设置“圆”的参数:对象类型选为“曲线”,位置选择“中心”,“层”中的“层1”厚度设置为线圈的厚度,如1mm。 3.关闭“工作平面”,点击“几何菜单”中的“拉伸”: 4.设置外界空气: “几何”菜单中选择“长方体”,设置好参数,在“图像”工作区点击“线框渲染”工具,得到如下图:

5.右击“模型开发器”中的“定义”>“视图1”,选择“隐藏几何实体”,在“隐藏几何实体”编辑区, 选择“几何实体层次”中的“边界”,手动选择需要隐藏的边界:长方体的六个面,则可以得到下图: 6.定义各个域和边界: 定义线圈:点击“定义”菜单栏中的“显示”,“模型开发器”中的“定义”下面会出现“显示1”,右击并重命名为“线圈”,然后在“显示”工作区将“几何实体层次”选择为“域”,再选择图中看到的圆筒,此时圆筒有四个域,由于圆筒与后来的长方体重合,所以长方体现在变成了“域1”,而圆筒变成了“域2,3,4,5”:

定义线圈边界:同样的方法在“定义”中得到“显示2”,并重命名为“线圈边界”,在“显示”编辑区的“几何实体层次”中选择“边界”,并在图形中选择圆筒的各个边界,此时圆筒中的四个域中接触面也算一个边界。本例中可以在“显示”编辑区点击“粘贴选择”按钮,输入“7-14,16-19,21-14”,点击“确认”。 定义空气:同样的方法,选择“域1”位空气,就是刚刚建立的长方体,此时空气的边界已被隐藏,所以此处看不见长方体。

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场讲义

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场(FB511型霍尔法亥姆霍兹线圈磁场实验仪) 实 验 讲 义 浙江大学物理实验教学中心

用霍尔法测直流圆线圈与亥姆霍兹线圈磁场 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍尔效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍霍尔效应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。 【实验目的】 1.了解用霍尔效应法测量磁场的原理,掌握511FB 型霍尔法亥姆霍兹线圈磁场实验仪的使用方法。 2.了解载流圆线圈的径向磁场分布情况。 3.测量载流圆线圈和亥姆霍兹线圈的轴线上的磁场分布。 4.两平行线圈的间距改变为R 2d 2/R d ==和时,测定其轴线上的磁场分布。 【实验原理】 1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场 一半径为R ,通以直流电流I 的圆线圈,其轴线上离圆线圈中心距离为X 米处的磁感应强度的表达式为: 2 /3222 00)X R (2R I N B +????μ= (1) 式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,,m /H 10470-?π=μ 磁场的分布图如图1所示,是一条单峰的关于Y 轴对称的曲线。 本实验取,m 100.0R ,A 400.0I ,400N 0===匝在圆心0X O ='处,可算得磁感应强度为 : T 100053.1B 3 -?= (2)亥姆霍兹线圈

两个完全相同的圆线圈彼此平行且共轴,通以同方向电流I ,线圈间距等于线圈半径R 时,从磁感应强度分布曲线可以看出,(理论计算也可以证明):两线圈合磁场在中心轴线上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈,如图2所示。从分布曲线可以看出,在两线圈中心连线一段,出现一个平台,这说明该处是匀强磁场,这种匀强磁场在科学实验中应用十分广泛。比如,大家熟悉的显像管中的行偏转线圈和场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。 2.利用霍尔效应测磁场的原理 霍尔元件的作用如 图3所示.若电流I 流过厚度为d 的矩形半导体薄片,且磁场B 垂 直作用于该半导体 , 由于洛伦兹力作用电流方向会发生改变,这一现象称为霍尔效应,在薄片两个横向面a 、b 之间产生的电势差称为霍尔电势。该电势同时垂直于电流I 及磁场B 方向。 霍尔电势差是这样产生的:当电流H I 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动 图3 电荷产生一个洛仑兹力 : )B v (q F B ??= (2) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力E q F E ?=与磁场作用的洛仑兹力相抵消为止,即 E q )B v (q ?=?? (3) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为p ,宽度为ω,厚度为d ,通过样品的电流: d v q p I H ?ω???= ,则空穴的速度:)d q p /(I v H ?ω??=代入(3)式有 d q p B I B v E H ?ω???=?= (4) 上式两边各乘以ω ,便得到 d B I R d q p B I E U H H H H ??=???= ω?= (5)

磁场对载流矩形线圈的作用

河北经济管理学校教案 序号:1 编号:JL/JW/7.5.1.03 11.17授课主题磁场对载流矩形线圈的作用 教学目的1. 电磁转矩的产生 2. 电磁转矩的表达式 3. 霍尔效应 教学重点、难 点重点: 1. 电磁转矩的公式 2. 霍尔效应 教学准备教材、教案、板书、PPT 教学过程设计与时间分配 一、课堂导入与提问(10min) 二、讲授新课(25min) 1.电磁转矩的产生 2.电磁转矩的表达式 3.电动机旋转的基本原理 4.霍尔效应 三、计算举例(30min) 四、课堂小结(15min) 五、布置作业(10min) 河北经济管理学校教案

教案内容 1、 课堂导入与提问(10min) 复习上节课内容,回顾磁场对载流导体的作用,思考:磁场对载流矩形线圈又有什么作用 二、讲授新课(25min) 1.电磁转矩的产生 如课本P92图2-22所示,将一矩形线圈abcd放在匀强磁场中,线圈的上下两边ad和bc所受的磁场力大小相等,方向相反,在一条直线上彼此平衡;而作用在线圈两个侧边ab和cd上的磁场力虽然大小相等,方向相反,但不在一条直线上,产生了力矩,称为电磁转矩 2.电磁转矩的表达式 经推导得出电磁转矩的表达式为:M=NBIScosα 上式中B——均匀磁场的磁感应强度,单位为特(T) I——线圈中的电流,单位为安(A) S——线圈的面积,单位为平方米(㎡) N——线圈的匝数 α——线圈平面与磁力线的夹角,单位为度(°) M——电磁转矩,单位为牛’米(N’M) 当线圈平面与磁力线平行时,力臂最大,线圈受电磁转矩最大;当线圈平面与磁力线垂直时,力臂为零,线圈受电磁转矩也为零 3.电动机旋转的基本原理 磁场对通电矩形线圈的作用力是电动机旋转的基本原理 4.霍尔效应 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应 3、 计算举例(30min) 课本P93自我测评第二题 4、 课堂小结(15min)

测量磁场分布

测量磁场分布 摘 要:本文通过测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布,了解电磁感应 法测量磁场的原理和一般方法,并对场强叠加原理加以验证。 关键字:圆线圈 亥姆霍兹线圈 双线圈 磁场分布 电磁感应法 引言: 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等。本实验介绍电磁感应法测磁场的方法,它具有测量原理简单、测量方法简便及测试灵敏度较高等优点。 实验目的: 1.了解用电磁感应法测交变磁场的原理和一般方法。 2.载流圆线圈在轴线上的磁场分布。 3.亥姆霍兹线圈在轴线上的磁场分布,验证磁场叠加原理。 4.较两载流圆线圈距离不同时轴线上磁场分布情况。 原理简述: 1.载流圆线圈轴线上磁场的分布 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直 线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为: 2/3222 0)X R (2NIR B += μ 式中 μ为真空磁导率: , H/m 10470 -?=πμ N 为圆线 圈的匝数,式中I 为通过线圈的电流强度,N 为线圈匝数, R 为线圈平均半径,x 为圆心到该点的距离。 2.载流双线圈轴线上磁场的分布 磁场与电场一样满足叠加原理。总磁场的磁感应强度等于各个运动电荷或载流线段产生的磁场的磁感应强度的矢量和,这个结论称为磁场的叠加原理。 两个尺寸结构完全相同圆线圈彼此平行且共轴,通以方向一致,大小相同的电流I ,

其中一个固定,另一个可沿其共轴平行移动。若O 点为两线圈轴线中点,则两线圈在P 点产生的磁感应强度方向沿轴线向右。根据毕奥—萨伐尔定律和场强叠加原理,可求得轴线上P 点的磁感应强度大小为: 2 /3222 02/32220])X 2a (R [2NIR ])X 2a (R [2NIR B -++ ++=μμ 式中 , H/m 10470 -?=πμ N 为圆线圈的匝数,R 为内外 平均半径,a 为两线圈间距。 由上式可以看出,磁场分布与两线圈距离a 有关。由于对称性,场强在O 点的切线一定是水平的,即在x=0处 0dx dB =。而使O 点附近场强最均匀的条件是0)dx B d (0x 22==,即a=R 。这种间距等于半径的一对尺寸结 构完全相同的圆线圈叫做亥姆霍兹线圈。 当两线圈距离a 与半径R 相差越远时,磁场分布越不均匀:当aR 时,B 在O 点处有极大值。(如图 2所示) 3.用电磁感应法测磁场的原理 设均匀交变磁场为(由通交变电流的线圈产生):t sin B B m ω=,磁场中一探测线圈的磁通量为:Φ=NSBmcos θsin ωt ,式中:N为探测线圈的匝数,S 为该线圈的截面积,θ 为B 与线圈法线夹角。 则线圈产生的感应电动势为: t cos cos B NS t d d m ωθω-=- =εΦ t cos m ωε-= 式中θω=εcos B NS m m 是线圈法线和磁场成θ角时,感应电动势的幅值。当?=θ0时, m max B NS ω=ε,这时的感应电动势的幅值最大。 如果用数字万用表测量此时线圈的电动势示值(有效值)为U = 2m ax ε,则: ω= ωε= NS U 2NS B max max =fNS 2U π

磁场参数计算公式2016.6.25

磁场参数计算公式 一、磁场强度与磁感应强度计算公式 1、磁场强度与磁感应强度定义 磁场强度是线圈安匝数的一个表征量,反映磁场的源强弱。磁感应强度则表示磁场源在特定环境下的效果。打个不恰当的比方,你用一个固定的力去移动一个物体,但实际对物体产生的效果并不一样,比如你是借助于工具的,也可能你使力的位置不同或方向不同.对你来说你用了一个确定的力.而对物体却有一个实际的感受,你作用的力好比磁场强度,而物体的实际感受好比磁感应强度。 2、磁场强度与磁感应强度区别 磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。因此,磁场的强弱可以有两种表示方法:在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。具体的,B决定了运动电荷所受到的洛仑兹力,因而,B 的概念叫H更形象一些。在工程中,B也被称作磁通密度(单位Wb/m2)。在各向同性的磁介质中,B与H的比值即介质的绝对磁导率μ。 3、磁场强度计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数; I为励磁电流(测量值),单位位A; Le为测试样品的有效磁路长度,单位为m。 4、磁感应强度计算公式:B = Φ / (N × Ae) 式中:B为磁感应强度,单位为Wb/m^2; Φ为感应磁通(测量值),单位为Wb; N为感应线圈的匝数; Ae为测试样品的有效截面积,单位为m^2。 二、磁通量与磁通密度相关公式: 1、Ф = B * S (1) Ф:磁通(韦伯); B :磁通密度(韦伯每平方米或高斯),1韦伯每平方米=104高斯 S:磁路的截面积(平方米) 2、B = H * μ(2) μ:磁导率(无单位也叫无量纲);H:磁场强度(伏特每米) 3、H = I*N / l (3) I:电流强度(安培);N:线圈匝数(圈T);l:磁路长路(米) 4、当电源电压做正弦变化时,主磁通也做正弦交变,设其瞬时值为: msinwt 带入公式e Nd dt d e N wN mcoswt dt

磁场强度测量方法归类

磁场强度测量方法归类 阳其保 一、利用安培力计算公式F =BIL 测磁感应强度B 例1. 如图1所示,天平可用来测定磁感应强度,天平的右臂上挂有一矩形线圈,宽度为l ,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面。当线圈中通有电流I (方向如图)时,在天平左右两边加上质量分别为m m 12、的砝码,天平平衡,当线圈中电流反向时,右边需再加砝码m ,天平重新平衡。由此可知( ) 图1 A. 磁感应强度的方向垂直纸面向里,大小为 ()m m g NIl 12-; B. 磁感应强度的方向垂直纸面向里,大小为 mg NIl 2; C. 磁感应强度的方向垂直纸面向外,大小为 ()m m g NIl 12-; D. 磁感应强度的方向垂直纸面向外,大小为mg NIl 2。 分析与解:因为电流反向后,右边需加砝码,故可知电流反向之后,通电线圈受向上的安培力作用,由左手定则得磁场的方向垂直线面向里。又因为磁场对线圈的作用力:F NBIl =,电流反向前,由平衡条件有:m g m g NBIl 12=+,电流反向后有:m g m m g NBIl 12=+-(),综合以上各式有:B mg NIl = 2,正确答案为B 。 二、利用感应电动势E=BLv 测磁感应强度B 例2. 为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场产生的感应动势以及水的流速测地磁场的磁感应强度向下的分量B ,某课外活动兴趣小组由四个成员甲、乙、丙、丁组成,前去海边某处测量地磁场的磁感应强度向下的分量B 。假设该处的水流是南北流向,且流速为v ,问下列哪种测定方法可行?( ) A. 甲将两个电极在水平面沿水流方向插入水流中,测出两极间距离L 及与两极相连的测量电势差的灵敏仪器的读数U ,则B U vL =; B. 乙将两个电极在水平面沿垂直水流方向插入水流中,测出两极间距离L 及与两极相连

载流线圈的磁场分布

实验报告 课程名称:工程电磁场原理 指导老师: 成绩:__________________ 实验名称:载流线圈的场分布 实验类型:实践、仿真 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验一:球形载流线圈的场分布与自感 一、实验目的和要求 1.研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2.掌握感应电势法测量磁场的方法; 3.在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解。 二、实验内容和原理 (1) 球形载流线圈(磁通球)的磁场分析 如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有 ()d d N W R θi=z i 2R ??' ??? 因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ== 代入上式,可知对应于球面上线匝密度分布W ′,应有

2sin d sin d 2N R R N W R R θθθθ?'= = 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。因此,本实验模拟的在球表面上 等效的面电流密度K 的分布为 sin N i 2R K e φθ= ?? 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。 因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位?m 为待求场量,列出待求的边值问题如下: 上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。 通过求解球坐标系下这一边值问题,可得标量磁位?m1和?m2的解答,然后,最终得磁通球内外磁场强度为 (1-1) 和 ()()3 2m 22c o s s i n 6r N i R - r >R R r θ?θθ?? =?=+ ??? H e e (1-2) 基于标量磁位或磁场强度的解答,即可描绘出磁通球内外的磁场线分布,如图1-3所示。 ()() ()() ()() 2m12m2t1t212n n1n20102m102 m2 ,0,0sin 200 r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ?θ?θθμμ??=→∞ →∞ ???=?????? ?-=-===??? ??=→==? ??=??=-?=?? H 泛定方程:BC:()()1m1cos sin 3r Ni - - r

关于单个线圈的磁场分布的ansys命令流

一个关于单个线圈的磁场分布的ansys命令流 自己随便编的一个apdl程序,可以求解任意一个尺寸不是很大的线圈的磁场分布,当然中心磁场是可以得到的哦。使用时把apdl拷到txt文件中,文件名改为fuc_k,txt格式改成mac,放到ansys的工作目录里,打开ansys,在命令栏里输入fuc_k就可以啦。(部分ansys需要清除数据库,就是新建个ansysdb,然后输入)或者直接复制粘贴好了^^;有问题联系我为什么文档上传不让通过啊,因为简洁么?简单么?啊啊啊啊啊,实在懒得说明,要不是为了做那个新手任务,才懒得传呢,f_u_c_ku_sun of the beach /clear /title,lovrcj keyw,magnod,1 *ask,l,l,0.81 ! 高度 *ask,n,n,26124 ! 匝数 *ask,a2,a2,0.272 ! 外径 *ask,a1,a1,0.2 ! 内径 *ask,i,i,143 ! 电流 s=l*(a2-a1) j=n*i/s /prep7 ! 前处理 et,1,53 !单元属性 keyopt,1,3,1 et,2,110 keyopt,2,3,1 mp,murx,1,1 ! 材料属性 mp,murx,2,1 rectng,a1,a2,-l/2,l/2 ! 建模 rectng,0,1,-1,1 rectng,,1.5,-1.5,1.5 rectng,,2,-2,2 rectng,,2.5,-2.5,2.5 aovlap,all ! 叠分 numcmp,all aplot asel,,,,1 ! 赋予材料属性 aatt,2,,1 asel,,,,4 aatt,1,,2 mshape,0,2d asel,,,,1 ! 划分网格 aesi,all,0.005 amesh,all asel,,,,5 aesi,all,0.02 amesh,all asel,,,,2

亥姆霍兹线圈磁场测定

实验数据处理 嘉应学院物理学院普通物理实验 实验报告 实验项目: 实验地点: 班级: 姓名: 座号: 实验时间:年月日

二、实验仪器和用具: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离cm 0.1间隔的网格线; (2)高灵敏度三位半数字毫特斯拉计、三位半数字电流表及直流稳流电源组合 仪一台; (3)传感器探头是由2只配对的95A 型集成霍耳传感器(传感器面积4mm ×3mm ×2mm )与探头盒。(与台面接触面积为20mm ×20mm ) 三、实验原理: (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直 线)上某点的磁感应强度为:I N x R R B ?+?= 2 /3222 0)(2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为:I N R B ?=20 0μ (2)轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ?? ??????????????????? ??-++??????????? ??++???='-22 2/322202221z R R z R R R I N B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度'0B 为: R I N B ??=' 02/305 8μ

相关文档
最新文档