大赛路手性柱Q&A及手性分离经验

大赛路手性柱Q&A及手性分离经验
大赛路手性柱Q&A及手性分离经验

优化手性化合物的分离方法时,如何增加分离选择性?

正相手性色谱柱上增加分离度的方法有:降低流动相中醇的含量、降低柱温、更换流动相中醇的种类、更换手性柱。

建立手性化合物的分离方法时,选定了正相手性柱之后,如何选择流动相?

流动相首选正己烷和异丙醇的混合溶液,根据样品的酸碱性决定是否添加酸碱性添加剂。如果是中性样品则不需要添加添加剂,如果是酸性样品需要添加三氟乙酸或乙酸,如果是碱性样品需要添加二乙胺,添加剂的量一般为0.1 %。流动相中醇的含量一开始可以使用30%,根据样品出峰的快慢和分离度再调整醇的含量。流动相中醇的种类一般使用异丙醇,也可以使用乙醇。

建立手性化合物的分离方法时,如何选择手性柱?

根据文献或者参考大赛璐公司的《应用指南》中结构类似物的分离方法,选择手性柱;另外可以寄少量消旋品,大赛璐公司能免费为您选择分离最佳的手性柱。

手性柱使用完了之后如何清洗保存?

正相手性色谱柱如果使用正己烷和醇类的混合流动相之后,只需要用正己烷/异丙醇=90/10(v/v)的保存溶液冲洗30 min即可。反相手性色谱柱如果使用了水溶液和乙腈的混合流动相之后,只需要用水/乙腈=70/30(v/v)的保存溶液冲洗30 min即可。

CROWNPAK? CR(+)柱流动相中甲醇含量有要求吗?

CROWNPAK? CR(+)柱流动相中甲醇含量为0%-15%,甲醇的含量一旦超过15%,CROWNPAK? CR(+)柱会被损害。

正相手性柱进了水后,柱子会不会损坏?

正相手性色谱柱(例如AD-H、AS-H、OD-H、OJ-H)一旦进了水,柱压会升高,但是只要柱压不超过柱压上限,柱子就不会损坏。只需用无水乙醇低流速(0.1-0.2 ml/min)将水全部充分置换出来,再用正相流动相低流速(0.1-0.2 ml/min)将乙醇全部置换出来就能继续使用该正相手性色谱柱。

样品的保留时间漂移,可能是哪些原因,如何解决?

1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定。

2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等。

3、柱子未平衡好,需对柱子进行更长时间的平衡。该情况在MA(+)柱上出现较多。

4、酸碱性的样品,有时在中性条件下能分开,峰形尚可,但保留时间会漂移;加入相应的酸碱添加剂即可。

5、流动相污染。溶于流动相中的少量污染物可能慢慢富集到色谱柱上,从而造成保留时间的漂移。需清洗色谱柱,流动相和样品溶液尽量现用现配。

(小极性样品的溶解)正相方法分析布洛芬时,有时峰形难看甚至达不到基线分离,什么原因?如何解决?

该方法为Hexane/IPA=99/1,极性很小;若样品不是溶解在流动相中,则结果很可能达不到基线

分离。采用流动相溶解即可。通常手性分析时,若流动相为H/I,H/E体系,且Hexane不超过85%,则溶解样品时可用流动相,也可用100%醇直接溶解。谱图通常差别不大。但是对小极性样品和流动相,尤其hexane超过90%时,一定注意用流动相溶解。

新柱CHRALPAK IA/IB/IC/ID/IE与原来的大赛璐手性柱有什么区别?

CHRALPAK IA/IB/IC/ID/IE是将多糖衍生物共价键合在硅胶上,而大赛璐原来的手性柱固定相都是将多糖衍生物涂敷在硅胶表面的。正因为是共价键合,所以CHRALPAK IA/IB/IC/ID/IE柱能使用任何液相流动相,比如四氢呋喃、氯仿、丙酮、甲基叔丁基醚、乙酸乙酯等。CHRALPAK

IA/IB/IC/ID/IE与大赛璐原有的正相柱相比,扩大了溶剂选择的范围,增加了新的分离选择性,在原来大赛璐手性色谱柱上分不开的化合物有可能在CHRALPAK IA/IB/IC/ID/IE上得以分开。

键合型手性柱CHRALPAK IA/IB/IC/ID/IE的再生方式?

在再生前请先冲洗手性柱,以防止残留物对于再生效果的影响。IA柱修复方法:先用EtOH小流速冲洗30min,再用DMF,小流速冲洗3小时,然后EtOH过渡,验柱。若效果不好,再用EtOH 冲洗30min,然后THF冲洗2小时。IB柱,IC柱修复方法:用乙酸乙酯冲洗30min-120min,在室温下保存2天或更久。验柱。

CHIRALPAK? AD-H、CHIRALPAK? AS-H、CHIRALCEL? OD-H、CHIRALCEL? OJ-H四款最常用正相色谱柱的区别是什么?

区别是固定相的种类不同。CHIRALPAK AD-H、AS-H的硅胶表面涂敷的是直链淀粉衍生物;CHIRALCEL OD-H、OJ-H的硅胶表面涂敷的是纤维素衍生物。CHIRALPAK AD-H的硅胶表面涂敷的是直链淀粉-三(3,5-二甲苯基氨基甲酸酯);CHIRALPAK AS-H硅胶表面涂敷有直链淀粉-三[(S)-α-甲基苄基氨基甲酸酯;CHIRALCEL OD-H硅胶表面涂敷有纤维素-三[3,5-二甲苯基氨基甲酸酯]; CHIRALCEL OJ-H硅胶表面涂敷有纤维素-三[4-甲基苯甲酸酯]。不同种类的多糖衍生物决定了这些手性柱的分离对象各不相同,既相互包含,又相互补充。

CHIRALPAK? AD-3柱和CHIRALPAK? AD-H柱和CHIRALPAK? AD是什么区别?

CHIRALPAK? AD-3、CHIRALPAK? AD-H柱和CHIRALPAK? AD的填料种类是一样的,表面涂敷的都是直链淀粉-三(3,5-二甲苯基氨基甲酸酯),手性选择性基本相同。只不过填料的粒径不一样,CHIRALPAK? AD-3是3μm,CHIRALPAK? AD-H是5 μm,CHIRALPAK? AD是10 μm。CHIRALPAK? AD-3的柱效最高。

CHIRALPAK AD-H柱和CHIRALPAK AD是什么区别?

CHIRALPAK AD-H柱和CHIRALPAK AD的填料种类是一样的,表面涂敷的都是直链淀粉-三(3,5-二甲苯基氨基甲酸酯),手性选择性基本相同。只不过填料的粒径不一样,CHIRALPAK AD-H 是5 μm,CHIRALPAK AD是10 μm。CHIRALPAK AD-H能代替CHIRALPAK AD并且CHIRALPAK AD-H柱效更高。

正相手性色谱柱中保存液是什么?

正相手性色谱柱AD-H/AD-3、AS-H/AS-3、OD-H/OD-3、OJ-H/OJ-3中的保存液是正己烷/异

丙醇=90/10(v/v)。其它手性色谱柱的保存液请查阅使用说明书上的说明。

正相手性色谱柱使用前需要注意什么?

将正相手性色谱柱AD-H、AS-H、OD-H、OJ-H接上液相色谱仪之前先要保证液相色谱系统中的所有管路均为正相流动相。如果液相系统里面是反相溶液,比如水/乙腈=50/50(v/v)。那么需要先用无水乙醇或者无水异丙醇冲洗液相的所有管路(包括所有溶剂入口、六通阀、检测器等),然后用正相流动相冲洗液相的所有管路,最后再接上正相手性色谱柱;如果液相系统的反相流动相中含有缓冲盐,要先用纯水冲洗HPLC系统,然后用无水乙醇或者无水异丙醇冲洗液相的所有管路,最后用正相流动相冲洗。

正相手性色谱柱的柱压范围是多少?

正相手性色谱柱(例如:AD-H、AS-H、OD-H、OJ-H)中的柱压绝对不能超过9.8 MPa,最好不超过5 MPa。所以建议在实际使用过程中,在液相仪器上设置泵的保护压力为6 MPa,这样一旦系统的压力超过6 MPa,泵就会自动停止运行,保护手性柱不受高压破坏。

蛋白质柱AGP的使用条件和限制?

?IPA含量最好低于25%,其他有机相含量最好低于15% λ

?建议使用温度:20℃-25℃λ

? pH范围:4-7 λ

?缓冲盐溶液浓度不超过100mM λ

?AGP的负载量不大,通常情况下配置样品浓度0.05-0.5mg/ml,进样量1μl-20μl比较合适。不同样品,可以适度调整。负载过大时将导致分析结果不准确,表现为分离度显著下降和柱效降低。

使用手性柱时若柱压过高,会对柱子有影响吗?另外,柱压过高是什么原因造成的呢?有什么解决办法吗??

长期超压会引起柱头塌陷,反压上升,柱效下降。

原因:λ

?流动相或样品溶液过滤不彻底,固体颗粒堵塞管路或柱头,会引起柱压过高。λ

?样品中成分在柱头析出或强烈吸附,会引起柱压升高。λ

?流速过快,会引起柱压过高,特别是当使用粘度高的溶剂,如IPA, EtOH,流速应控制在

0.1-0.3 ml/min

解决办法:λ

?每种柱子有特定的承压范围,请仔细参照相应的《色谱柱说明书》。λ

?彻底过滤流动相及样品溶液。λ

?样品预处理λ

?更换流动相时,或者刚把柱子刚接上仪器的时候,逐步增加流速λ

?仪器设定保护柱压

化合物在手性柱中的“残留效应”经常会对影响手性柱的分离度和出峰时间等,该如何处理?如何冲洗?

残留物在普通流动相中可长时间地稳定保留1.用醇洗涤可除去大部分的碱性残留物2.用酸洗涤也可除去碱性残留物3.用碱洗涤可除去酸性残留物推荐分开使用酸性条件手性柱和碱性条件手性柱

手性柱谱图中异构体的分离度下降了,可能是什么原因,该怎么办?

分离度下降的原因有可能是色谱柱以外的色谱条件发生了变化,或者色谱柱受损柱效发生了变化。首先查看是否是因为温度、流动相成分等外在因素发生了变化导致分离度下降,如果排除了各种外在因素就有可能是分析柱本身的柱效下降导致的。如果分离度在短时间内急剧下降伴随柱压上升,可能是有强极性溶剂损害了柱子;如果分离度在长时间内慢慢下降,可能是柱头受污染或柱头塌陷,需要更换保护柱或者更换分析柱。

手性柱谱图中的峰出现裂分,可能是什么原因,该怎么办?

峰裂分的原因有可能是色谱柱以外的色谱条件发生了变化,或者色谱柱受损柱效发生了变化。有时样品溶液浓度太高,进样量太大也会裂缝,这种情况只需减少浓度进样量即可。如果排除了各种外在因素,那么色谱柱本身的原因可能是柱头被污染,或者柱压太高导致柱头塌陷。柱头污染的话,可以按照说明书采用不同的溶剂溶剂冲洗色谱柱,最好是反方向冲洗;或者更换保护柱。如果是压力太高导致柱头塌陷,那么除了增补填料,基本没有其他方法补救了,只能更换色谱柱。

基线不稳定可能是哪些原因,如何解决?

1.仪器刚从反相置换到正相系统时,基线会不稳定,只需要多平衡一会儿即可。

2.检测器污染。卸下检测器,更换透镜;或者取出透镜,用甲醇、异丙醇、水或其他溶剂(根据该仪器平时的使用情况而定)超声清洗。安装时注意透镜的方向,一面是平面,一面凸透。

3.确认使用的两元(或三元四元)流动相彼此互溶性良好。

4.确认正使用的流动相和仪器之前刚用过的流动相彼此互融;若不互融,需要选择合适的溶剂过渡。

5.若噪音很大,有可能是需要更换氘灯。

6.柱压不稳定导致的基线不稳。

柱压不稳定的原因可能有哪些,如何解决?

1、泵内有空气,解决的办法是清除泵内空气,可用注射器抽出空气。

2、比例阀失效,更换比例阀即可。

3、泵密封垫损坏,更换密封垫即可。

4、溶剂中的气泡,解决的办法是对溶剂脱气,通常是超声法脱气。

5、系统检漏,找出漏点,密封即可。

6、梯度洗脱,这时压力波动是正常的。

转载:手性分析经验谈

关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。

手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。

手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。

一、手性柱

手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报导。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、IB和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。

关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。

二、样品前处理

说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。

样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反相样品稀释的时候需要尽量使用流动相做稀释剂,且稀释剂里水含量要尽量高一些,这个要求对于手性分析同样适用,正相的手性分析要求样品稀释溶剂尽量要求和流动相所采用的溶剂种类一致,且起洗脱作用的醇类溶剂含量尽量要低,最好不要超过流动相里醇类的含量,否则会导致有些样品的分离度降低,使原本能达到基线分离的样品不能基线分离,严重的甚至使样品峰分叉甚至不成峰,因为在手性分离里起洗脱作用的醇类能够促进样品在管路里的扩散,我做过一个化合物,手性分析的时候只能用正己烷做稀释剂,只要稀释样品添加了醇类的溶剂样品就不能达到基线分离。有时候我们从实验室拿到的样品是溶液,使用的可能是DMF、甲苯、二氯甲烷或者乙酸乙酯等常见的溶剂,这些溶剂对于涂覆型的填料都不能使用,即使含量很低也会对固定相造成伤害,这样的样品必须除掉溶剂。有时候样品不溶于流动相,我们又不得不使用这些溶剂,可以先用少量这类溶剂超声将样品溶掉,再加流动相稀释,对于键合相手性柱这样做完全没有问题,但有时我们不得以将此方法用到涂覆型手性柱上,就要牺牲手性柱寿命来换分离。

很多时候我们拿到手的样品比较难溶,毕竟乙醇和异丙醇不是非常好的溶剂,即便是二氯甲烷、四氢呋喃、DMF或者DMAC也会遇到溶解性比较差的样品,通常此类样品分子式都相对比较复杂,分子量偏大,结构中含有带N的显碱性基团和显酸性基团,此类样品可以通过稀释样品时加酸或者碱来促进其溶解,但是加入的酸或碱含量不宜太高,浓度不宜过大。

很多化合物为了增加其稳定性,都要做成盐来保存和转移,常见的包括盐酸盐、三氟乙酸盐、甲基磺酸盐、酒石酸盐以及其它更复杂的盐,这些盐类也是可以直接拿来做手性分析的,无论是正相还是反相都可以,只要样品能用合适的稀释剂溶解,当然样品游离出来做手性分析会更好。

再有就是很多样品因为液相没有紫外吸收、气相不能气化而不能直接做手性分析,这时就要衍生,衍生最多的样品可能就是氨基酸了。氨基酸衍生方法可以是给氨基上衍生CBZ做液相,或者是用HCl(H Br)的乙醇(甲醇、异丙醇)溶液加三氟乙酸酐将羧基衍生成酯,氨基衍生成酰胺来做气相。最近比较流行的氨基酸衍生方法是用苯异硫氰酸酯(也叫异硫氰酸苯酯)衍生氨基来做手性分析,此方法当然也可以用来做普通的氨基酸液相纯度分析,这个衍生方法要求化合物分子结构中的N原子上至少连接有一个H,所以只要是分子结构中含有带有至少一个H原子的N结构,化合物都可以用此方法衍生。需要指出的是,做手性分析的原则是能不衍生就不衍生,因为衍生有可能会引起样品手性纯度下降,即消旋。

总结一下,手性分析中使用的消旋体纯度一定要好,最好能配合DAD检测器或者是旋光检测器来做分析方法开发。样品在稀释时尽量用流动相相同种类的溶剂做稀释剂,稀释剂中醇类的含量不宜超过流动相中醇类的含量,难溶的样品尽量不要用其它的溶剂,一方面可能会伤害柱子,另一方面容易导致峰形变差,但实际操作过程中很多时候为了达到分析目的,还不得不牺牲柱子的寿命,而且即便是使用纯的乙醇或者是异丙醇做稀释剂也不是不可以,只要是稀释剂和流动相能够互溶就行。

三、流动相

手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正

己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。

流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。

一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。有些样品只添加碱或者酸效果不好,可以尝试在样品里同时添加酸或者碱,这样的样品我曾经遇到过,只添加酸或碱样品都拖尾,不能达到基线分离,这种情况下通过酸碱同时加入,最后获得了非常漂亮的峰形和良好的分离度。实际操作中有些样品碱性太强,进样以后根本不成峰,低波长下细看似乎能感觉到基线一直在漂,开始时怀疑样品浓度不够,加大样品浓度以后仍看不到样品峰,流动相加入二乙胺或三乙胺以后再进样,得到比较漂亮的样品峰。

流动相里添加酸或者碱以后,基本上不会提供额外的选择性,但是却能提高分离度,因为峰形好了,相同的保留时间两个峰之间的分离度自然就好了。但是流动相里添加酸或者碱以后,会在柱子上残留,即使长时间用中性流动相冲洗也不会有什么效果,这一点在键合相手性柱上表现的尤为明显。有时我们发现原来用中性流动相分离很好的一个偏酸性的样品,柱子用过碱性流动相以后再用中性流动相去做,发现样品峰不能达到基线分离,拖尾严重,甚至不成峰,这时可以往流动相里添加一滴酸,或者柱子用酸性流动相冲洗一下再用中性的流动相,一切又正常了,同理,用过酸性流动相的柱子去做弱碱性的样品会有一样的问题。残留在柱子上的酸或碱最好是用碱或酸性的流动相来清洗,有条件的话尽量固定一只柱子只用酸性流动相或只用碱性流动相。

还见过一些国外客户提供的正相手性分析方法,需要在流动相里加入0.5%的水,估计是用来改变流动相的选择性,但是据说加水以后方法重复性不好,且水对固定相有伤害,我本人没有开发过这样的分析方法,也不做推荐,这份客户分析方法拿到我手里的时候最终还是被我改了。

四、方法优化

做手性分析时我一般选用两只柱子:AD-H和IC,基本上这两只柱子可以解决我遇到的所有的手性化合物,AD-H是早期我们一直在使用的,后来的IC可以使用更多的溶剂从而提供了更多的选择性,但是我还是习惯先用AD-H做手性分析方法开发,因为这个型号的柱子我们买了好多只。手性分析基本上都用恒流来做,溶剂一般也都是提前混合好再放到仪器上用,主要是因为正相溶剂在仪器上混合效果不好。

如前边所述,一般情况下拿到一个样品,我首先选择的是用正己烷和乙醇做流动相,根据化合物分

子结构式来判断其极性的大小,进而来选择流动相的比例,极性大的选择使用的乙醇比例大一点,极性小的选择使用的乙醇比例小一点,乙醇比例一般是从大到小,根据分离情况以5%或10%的比例递减,一般要求第一针至少能把样品在相对较短的时间内从柱子上洗脱下来,然后再去做调整,如果开始的时候醇的比例选的过小,样品可能在柱子上一两个小时都洗不下来。消旋体出峰以后如果是一个峰,可以将峰放大,观察有没有分叉的迹象,有的话,可以通过适当的降低醇类的比例来进一步提高分离度,如果分得太开,可以适当的提高醇类的比例来缩短分析时间,通过对流动相比例的调整,使分析时间和分离度都能满足手性分析的要求。如果样品在使用一种醇类时没有选择性,即无论怎样减小醇的比例样品都没有分离的迹象,可以换一种醇来试,通常乙醇和异丙醇会有不同的选择性,很多样品乙醇分不开,异丙醇能分离的很好。异丙醇也不行的时候可以尝试在乙醇或者异丙醇里加入合适浓度的叔丁醇或者是甲醇,对于IC色谱柱可以尝试其它如二氯甲烷、乙酸乙酯和甲苯等其它溶剂,每一种溶剂都能为手性分析提供独特的选择性,一般除了乙醇、异丙醇之外我使用最多的还是叔丁醇,其次是甲醇,叔丁醇可以单独和正己烷做流动相,甲醇必须结合乙醇或异丙醇混合使用。需要着重强调的是,更换醇的种类,有可能会导致对映异构体出峰顺序的改变,使用乙醇的流动相,如果R构型先出峰,更换为异丙醇以后,有可能(不是一定)R构型会后出峰,S构型跑到前边去了。

虽然提高柱温能够使峰形变窄变细,但是会降低分离度,而且大赛璐的手性柱温度上限就是40度(这一点在超临界流体色谱应用上受限尤为明显),所以优化分析方法时很少有人在柱温上下功夫。另外手性柱分析样品的保留时间受室温变化的影响特别大,通常大家都习惯用消旋体图谱计算对映异构体相对保留时间的方法根据主峰的保留时间来计算异构体的出峰位置。

五、写在最后

大赛璐的手性色谱柱还包括反相的系列,同时键合相的手性柱正相和反相都能用,只是要求在正相和反相流动相之间进行切换的时候要用异丙醇小流速的过渡,因为大赛璐手性柱压力都不能超过100bar,另外需要注意的是键合相手性柱的记忆效应,即流动相使用不同种类的溶剂切换时,柱效可能会下降,解决方法就是用DMF做溶剂对色谱柱进行清洗。我感觉做反相的手性分离时,我们可以更多的当作使用一只比较特殊的柱子做普通的样品一样来看待,仔细的阅读一下柱子的说明书就好,其它的和最常用的反相液相都一样。反相常用的溶剂包括水、甲醇、乙腈和乙醇,每种溶剂都为样品分离提供了独特的选择性。

大赛璐还有其它一些手性色谱柱,他们的手册上说是要用这些色谱柱才能分离的样品我遇到过很多,用手头的AD-H也都解决了。其它公司也有做手性柱,我们手头也有几只,但是使用不多,没觉得有什么优点。

总的来讲,我感觉做手性样品分析没有什么葵花宝典,让人看上几眼就能所向披靡,更多的还要自己去试,动手多了,及时总结,多积累点经验,才能做到事半功倍。

手性色谱分析..

1 手手性性高高效效液液相相色色谱谱法法 **手手性性药药物物分分析析的的概概念念 **常常用用手手性性高高效效液液相相色色谱谱法法 手手性性衍衍生生化化试试剂剂法法 手手性性固固定定相相法法 手手性性流流动动相相添添加加法法 2 手手性性的的概概念念::一一种种镜镜像像反反射射的的对对称称性性

3 手性分子:组成相同但空间结构上互成镜像的分子,称之为对映异构体。 分子结构中含有不对称碳原子是最常见的手性结构。 根据对偏振光的作用不同可分为R、S体,两者的等量混合物称之为消旋体。 OH COOH H CH 3 OH COOH H CH 3 4 Mirror Mirror

手手性性异异构构体体在在药药理理学学效效应应上上的的差差异异 ● Pfeiffer 规则: ● 对映异构体之间的生物活性存在着差异; ● 不同的对映体之间活性的差异是不同的; 当手性药物的有效剂量越低,即药效强度越高时,则对映体之间的药理作用的差别越大。 外消旋体和其两种单一对映体是不同的3种实体! 5 对对映映体体与与生生物物大大分分子子的的三三点点作作用用 c a b d a b d c α γβ α β γ 手性分子的a 、b 、c 结合,是高活性对映体(优映体)。 手性分子的a 、b 、c 三个基团中只有a 和b 与受体分子的活性作用点 6 在未研究清楚两种单一对映体之间的生物学差异时,以消旋体给

药往往会影响药物质量,甚至会严重损害人体健康。 “反应停”(Thalidomide)作为人工合成药,当时投入使用时是两种 对映体的混合物。 7 反应停:五十年恩怨 发展趋势: 劣映体本身或其代谢物产生毒副作用,不再使用外消旋体。外消旋体转换成单一对映体,不仅提高质量,还延长药物寿命。 如:氧氟沙星的左旋异构体活性更强,左旋氧氟沙星临床使用剂量是消旋体的一半。

手性药物分析概述-20180806

目前,国际上手性和手性药物的研究正处于方兴未艾的阶段,手性制药是医药行业的前沿领域。临床上使用的手性药物大都以消旋体给药, 而由于体内蛋白质、酶和受体对两个对映体分子处理的差异, 结果会导致对映体疗效和毒性不同。因此, 单一对映体给药已成为一种趋势。建立对映体药物的手性拆分方法, 在药品质量控制及药物药理、药动学研究领域中日益突出了其重要作用。 高效液相色谱(HPLC)、气相色谱(GC)、超临界流体色谱(SFC)和高效毛细管电泳(HPCE)是手性拆分的主要手段。截止目前,HPLC被认为是测定对应异构体纯度和分离制备光学单一对应异构体的最好方法。它适用范围广,操作条件温和,不会发生分离物构型变化或生物活性被破坏等现象。 为适应临床对单需求我公司研发中心决定开展黄酮类和洛尔类手性药物研发,现阶段研究结果如下: 一、黄酮类药物手性分析 黄酮类化合物在抗氧化、抗肿瘤、抗癌、抗菌、抗炎、抗衰老等方面有很强的药理活性,前期共合成了9对结构全新的黄酮类对映体,这些对映体的手性分析是这类药物研发的攻克难点。我们首先采用反相高效液相色谱法,以β-环糊精等多种手性流动相添加剂进行手性拆分,通过改变手性添加剂的用量调整分离效果,但是试验结果表明手性流动相添加剂法不适用这9对黄酮类对映体的分离分析。同时,我们购买了不同填料的手性固定相色谱柱,采用正相高效液相色谱进行拆分试验,通过大量的试验摸索,试验数据表明,纤维素Chiralcel OZ-H 手性柱对这9对黄酮类对映体显示了不同的拆分效果,且流动相中有机添加剂醇的比例和种类对于这两种柱的手性识别均有一定程度的影响。直链淀粉Chiralpak AD -H 柱对于流动相中醇的种类变化更敏感,不同醇流动相的拆分结果(分离度Rs)差别较大; 而纤维素Chiralcel OZ -H 手性柱对此的差别小。两种手性柱均对二氢黄酮类化合物表现出良好的手性选择性,但手性柱Chiralcel OZ -H 显示了更好的适用性。最终摸索出这9个黄酮类对映体的最佳分析条件,为此类手性药物研发提供强大的技术支持。 二、洛尔类手性药物分析 洛尔类手性药物主要应用于高血压、心律失常、心绞痛等临床病文献资料表明,S-对映体的活性更高,因此对此类药物的手性分析有较大的应用前景。我公

手性色谱柱知识介绍

手性色谱柱知识介绍 手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong 教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。 第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。 但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种: 刷(Brush)型或称为Prikle型 纤维素(Cellulose)型 环糊精(Cyclodextrin)型 大环抗生素(Macrocyclic antibiotics)型 蛋白质(Protein)型 配位交换(|Ligand exchange)型 冠醚(Crown ethers)型 刷型: 刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应

气相色谱柱知识详解

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在0.20.5mm,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

手性色谱柱

手性色谱柱是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。 要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 对于新的实验室要开展手性方面的研究,但不知怎么配置手性柱才能最好的,最大范围的对目标化合物取得较好的分析结果,下面我们来给您一些建议吧。 (加个表情或者箭头) 我把常用手性柱分成了五类,具体情况如下,建议每一类选择其中一种。

第一类:AD-H和IG,两个型号分离范围都比较广,区别是AD-H是涂敷型的,只能用于正相体系,IG是键合型的,正反相体系都适用。相对而言,AD-H这个型号是所有手性柱中的明星柱,所以建议选择AD-H型号。 AD-H IG 第二类:OD-H和IC,同理,OD-H是涂敷型的,只能用于正相体系,IC是键合型的,正反相体系都适用。其中IC对于含有羧基的酸性手性化合物分离性能更优异一些,并且第一类选择了涂敷型,所以这个建议选择键合型IC型号。 OD-H IC 第三类:IBN-5和AS-H,AS-H是四大金刚柱之一,比较经典,IBN-5是最近两年上市的,他跟其他型号互补性较强,当然这样也造成其应用范围比较窄的缺点,比如:有100种消旋体,AS-H或者AD-H能分离其中的85种,但对于剩下的15种分离效果不是很好,IBN-5可能对剩下的15种分离效果不错。所以这一类如果整体考虑,可以选择IBN-5,如果单独考

大赛路手性柱Q&A及手性分离经验

优化手性化合物的分离方法时,如何增加分离选择性? 正相手性色谱柱上增加分离度的方法有:降低流动相中醇的含量、降低柱温、更换流动相中醇的种类、更换手性柱。 建立手性化合物的分离方法时,选定了正相手性柱之后,如何选择流动相? 流动相首选正己烷和异丙醇的混合溶液,根据样品的酸碱性决定是否添加酸碱性添加剂。如果是中性样品则不需要添加添加剂,如果是酸性样品需要添加三氟乙酸或乙酸,如果是碱性样品需要添加二乙胺,添加剂的量一般为0.1 %。流动相中醇的含量一开始可以使用30%,根据样品出峰的快慢和分离度再调整醇的含量。流动相中醇的种类一般使用异丙醇,也可以使用乙醇。 建立手性化合物的分离方法时,如何选择手性柱? 根据文献或者参考大赛璐公司的《应用指南》中结构类似物的分离方法,选择手性柱;另外可以寄少量消旋品,大赛璐公司能免费为您选择分离最佳的手性柱。 手性柱使用完了之后如何清洗保存? 正相手性色谱柱如果使用正己烷和醇类的混合流动相之后,只需要用正己烷/异丙醇=90/10(v/v)的保存溶液冲洗30 min即可。反相手性色谱柱如果使用了水溶液和乙腈的混合流动相之后,只需要用水/乙腈=70/30(v/v)的保存溶液冲洗30 min即可。 CROWNPAK? CR(+)柱流动相中甲醇含量有要求吗? CROWNPAK? CR(+)柱流动相中甲醇含量为0%-15%,甲醇的含量一旦超过15%,CROWNPAK? CR(+)柱会被损害。 正相手性柱进了水后,柱子会不会损坏? 正相手性色谱柱(例如AD-H、AS-H、OD-H、OJ-H)一旦进了水,柱压会升高,但是只要柱压不超过柱压上限,柱子就不会损坏。只需用无水乙醇低流速(0.1-0.2 ml/min)将水全部充分置换出来,再用正相流动相低流速(0.1-0.2 ml/min)将乙醇全部置换出来就能继续使用该正相手性色谱柱。 样品的保留时间漂移,可能是哪些原因,如何解决? 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定。 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等。 3、柱子未平衡好,需对柱子进行更长时间的平衡。该情况在MA(+)柱上出现较多。 4、酸碱性的样品,有时在中性条件下能分开,峰形尚可,但保留时间会漂移;加入相应的酸碱添加剂即可。 5、流动相污染。溶于流动相中的少量污染物可能慢慢富集到色谱柱上,从而造成保留时间的漂移。需清洗色谱柱,流动相和样品溶液尽量现用现配。 (小极性样品的溶解)正相方法分析布洛芬时,有时峰形难看甚至达不到基线分离,什么原因?如何解决? 该方法为Hexane/IPA=99/1,极性很小;若样品不是溶解在流动相中,则结果很可能达不到基线

手性化合物色谱分析方法开发(一)

手性化合物色谱分析方法开发(一) 1、概述 首先,这里所说的手性化合物是指含有一个或多个不对称碳手性中心的对映或者非对映异构体,而不包含氮磷等含有孤电子对的手性中心化合物。不对称性碳原子,需要具有四个不同的取代基,空间上形成不对称四面体,对映异构体之间形成镜面对称,就像人的左右手一样,不能够完全重合,如下图1所示。 Fig.1Diagram for enantiomers 对映异构体具有不同的使偏振光旋转的能力,据此对映异构体可以分为左旋与右旋。在非手性环境下,对映异构体具有相同的化学性质(化学反应特性),相同的物理性质(如溶解度、熔点、沸点、熵焓等)以及同样的色谱保留行为等。但在手性环境中对映异构体之间的某些性质则表现出不同,这也是手性化合物进行拆分的基础。 对映异构体需要对内消旋体与外消旋体进行区分,如下图2所示。左右两个示意化合物结构的相同点在于均具有两个手性中心,不同点则在于左图的两个手性碳原子之间不存在对称平面或轴,而右图则存在对称平面。因此在左图中,1S,2R与1R,2S为外消旋体;右图中1S,2R与1R,2S为内消旋体。

Fig.2Name and distinguish between mesomer and racemate 对于手性化合物的拆分,规模比较大的时候,可使用其他手性试剂(如酒石酸钠)与待拆分的化合物形成非对映异构体,然后根据非对映异构体之间具有不同的物理化学性质,进行相应的分离单元操作。而在分析实验室中,一般是采用色谱法进行拆分,其中包括使用手性固定相法以及在流动相中添加手性流动相形成手性拆分环境的方式。其中手性固定相拆分法包括气相色谱以及液相色谱。 对于气相色谱拆分手性化合物,其拆分选择性主要取决于所使用的手性固定相的种类以及色谱分离的温度。一般气相用于低沸点的手性化合物的拆分,对于有机酸碱等极性手性化合物的拆分,一般需要先进行柱前衍生化处理,使之形成相应的酯或者酰胺。用于气相手性拆分的手性固定相均为环糊精衍生物类,包括β以及γ环糊精,α环糊精比较少;其最高耐受温度不会超过220℃,而且分离温度超过120℃的时候,固定相的手性选择性开始降低;超过200℃的时候,固定相的手性选择性几近与无。 对于液相色谱而言,起主要拆分选择性作用的既包括手性固定相也包括流动相的选择,而且液相色谱可以使用正相洗脱模式,反相洗脱模式,也可以使用极性洗脱以及极性离子洗脱模式;可以等度也可以梯度。最重要的是,色谱柱的类型要比气相色谱手性固定相多的多,其中就包括多糖类衍生物类手性固定相、环糊精及其衍生物类手性固定相、糖蛋白类手性固定相以及大环内酯抗生素类以及冠醚类手性固定相等。此外,液相色谱拆分法可以对样品进行回收而且也可以用于对映异构体的制备,气相色谱法则不能方便的对对映异构体进行制备。

手性分析之经验谈

手性分析经验谈 关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。 手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。 手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。 一、手性柱 手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。 关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。 二、样品前处理 说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。 样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反

手性色谱柱的知识

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。 这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。

色谱柱相关知识

色谱柱相关知识 1、色谱柱的使用说明: (1)色谱柱使用前注意事项: 色谱柱的储存液无特殊说明,均为评价报告所示的流动相。在使用前,一定要注意色谱柱的储存液与要分析样品的流动相是否互溶。在反相色谱中,如用高浓度的盐或缓冲液作洗脱剂,应先用10%左右的低浓度的有机相洗脱剂过渡一下,否则缓冲液中的盐在高浓度的有机相中很容易析出,堵塞色谱柱。 (2)流动相: 流动相中所使用的各种有机溶剂要尽可能使用色谱纯,配流动相的水最好是超纯水或全玻璃器皿的双蒸水。如果将所配得流动相再经过0.45μm的滤膜过滤一次则更好,尤其是含盐的流动相。另外,装流动相的容器和色谱系统中的在线过滤器等装置应该定期清洗或更换。 以常规硅胶为基质的键合相填料通常的PH值适用范围是2.0-8.0,BDS C18适合于碱性化合物,PH值适用范围为2.0-10.0。当必须要在PH值适用范围的边界条件下使用色谱柱时,每次使用结束后立即用适合于色谱柱储存并与所使用的流动相互溶的溶剂清洗,并完全置换掉原来所使用的流动相。 (3)样品: 样品也要尽可能清洁,可选用样品过滤器或样品预处理柱(SPE)对样品进行预处理;若样品不便处理,要使用保护柱。在用正相色谱法分析样品时,所有的溶剂和样品应严格脱水。 2、色谱柱的保存?? (1)反相色谱柱每天实验后的保养: 使用缓冲液或含盐的流动相,实验完成后应用10%的甲醇/水冲洗30分钟,洗掉色谱柱中的盐,再用甲醇冲洗30分钟。注意:不能用纯水冲洗柱子,应该在水中加入10%的甲醇,防止将填料冲塌陷。 (2)长期保存色谱柱: 如色谱柱要长时间保存,必须存于合适的溶剂下。对于反相柱可以储存于纯甲醇或乙腈中,正相柱可以储存于严格脱水后的纯正己烷中,离子交换柱可以储存于水(含防腐剂叠氮化钠或柳硫汞)中,并将购买新色谱柱时附送的堵头堵上。储存的温度最好是室温。 3、色谱柱的再生?? 因为色谱柱是消耗品,随着使用时间或进样次数的增加,会出现色谱峰高降低,峰宽加大或出现肩峰的现象,一般来说可能是柱效下降。 (1)反相柱的再生:依次采用20-30倍的色谱柱体积的甲醇:水=10:90 (V/V),乙腈,

北大考博辅导:北京大学地理学(环境地理学)考博难度解析及经验分享

北大考博辅导:北京大学地理学(环境地理学)考博难度解析及经验 分享 2018-2019年考研时,地理学专业考研学校排名是广大考研学子十分关心的问题,2017年12月28日,教育部学位与研究生教育发展中心发布了最新第四轮地理学学科评估结果,是目前比较权威的排名数据。 从榜单中我们可以看出,全国共有43所开设地理学类专业的大学参与了排名,其中排名第一的是北京大学,排名第二的是北京师范大学,排名第三的是华东师范大学。 下面是启道考博整理的关于北大地理学(环境地理学)考博相关内容。 一、专业介绍 资源与环境地理系环境地理学教研室是国内最早研究环境问题的单位之一,陈静生、关伯仁等老一辈教授是中国环境科学的主要开拓者,自五十年代初以来一直从事环境地理学和环境生物地球化学方面的研究。随着技术手段和研究水平的不断提高,先后取得了大量理论科研成果,并在解决实际环境问题方面发挥了重要作用。通过211以及985计划等的支持,本学科点在科研人才、设备、科研成果等方面在国内已经具有了一定优势,在若干领域也取得了一系列高水平研究成果。 目前,国外研究的热点是探索微量污染物在多介质环境中的归趋、如污染水平、空间分布、动态变化、来源解析、界面迁移、多介质模拟、生物吸收、生态效应和健康危害等。本教研室目前研究重点包括两个方面。一是重点研究持久性有机污染物的区域环境过程和对生物吸收的有效性。二是重点研究有毒有害化学物质(包括内分泌干扰物质,持久性有机污染物质和新出现的环境污染物质), 在食物链中的传递规律与机制、生态健康危害机理和风险评价。 近5年来,本教研室承担了包括1项国家自然科学基金创新群体科研项目、2项国家自然科学基金重点项目、1项973课题、多项国际合作项目、2项国家杰出青年基金项目、1项教育部跨世纪人才基金项目、1项教育部中国高等学校优秀青年教师教学科研奖励计划资助项目、多项国家自然科学基金面上项目、多个攻关项目及其他有关项目。在近年的研究工作中,随着实验室技术手段和研究水平的不断提高,先后取得了大量理论科研成果,并在解决实际环境问题方面发挥了重要作用,目前已经成为我国环境地学领域学术水平最高的科研基地之一,拥有一流的研究设备,形成了以中青年骨干为主的学术团队和浓厚的学术氛围,

全球手性高效液相色谱柱市场研究报告2017目录—英文版

全球手性高效液相色谱柱市场研究报告2017目录—英文版 Published by QYResearch Mar. 2018

Global Chiral HPLC Column Market Research Report 2017 Hard Copy: 2900 USD PDF Copy (single user): 2900 USD Enterprise wide License: 5800 USD Pages: 167 Tables and Figures: 185 Published Date: Dec 2017 Publisher: QYR Equipment Research Center Summary This report studies the Chiral HPLC Column market status and outlook of global and major regions, from angles of manufacturers, regions, product types and end industries; this report analyzes the top manufacturers in global and major regions, and splits the Chiral HPLC Column market by product type and applications/end industries. Chiral HPLC columnis a concentrated market with Daicel Corporation holds a majority share of the market. The sole company takes sales volume share of global market with 68.02%. Advanced separation efficiency, Extensive product line, reasonable price, andafter-sales service are the key factors to its success. However, a growing number of analytical materials companies are participating in the market, with leading players as Merck (Sigma-Aldrich), YMC and Phenomenex. The major players in global Chiral HPLC Column market include Daicel Corporation Merck (Sigma-Aldrich) YMC Phenomenex Restek Corporation Avantor Performance Materials Shinwa Chemical Industries Guangzhou Research and Creativity Biotechnology Sumika Chemical Mitsubishi Chemical Osaka Soda (Shiseido) Geographically, this report is segmented into several key Regions, with production, consumption, revenue, market share and growth rate of Chiral HPLC Column in these regions, from 2012 to 2023 (forecast), covering Japan USA Europe China

HILIC色谱柱介绍

亲水作用(HILIC)是近年来色谱领域研究的热点之一。本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的进行了总结。 1. HILIC的概念 亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。2. HILIC的分离机制 HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。 影响保留的主要因素 普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。 影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显着增加样品的保留因子。在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显着的亲水作用。如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。 Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid. 4. HILIC与RP-HPLC的比较 传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。 HILIC正好可以解决这些问题,它提供了一种与传统RPLC互补的保留方式,能够使在RPLC 上保留较弱或没有保留的物质在HILIC柱上提供合适的保留,如图2所示: Figure 2: Chromatograms comparing the retention of allantoin on Atlantis HILIC Silica and Atlantis dC18 columns. (a) Column: 50 mm×4.6 mm, 3-μm dp Atlantis dC18; mobile phase: 10 mM ammonium formate, pH 3; Shows no retention (k =0) of allantoin. (b) Column: 50 mm×4.6 mm, 3-μm dp Atlantis HILIC Silica; mobile phase: 95:5 (v/v) acetonitrile–water containing 10 mM ammonium formate, pH 3; Shows retention (k =1) of allantoin. 另外,HILIC柱上的洗脱顺序与RPLC柱上的正好相反,极性较小的物质先出峰,极性较大的物质后出峰。如图3所示:

C18色谱柱维护 常识

【讨论】高效液相色谱柱的保护 各位同仁,为保证我们的分析效果,延长色谱柱的使用寿命,大家一起来贡献一下自己在色谱柱使用过程中的护柱秘诀吧。 我先来聊聊,算是抛砖引玉了 1、最好用预柱。(但要注意,若有时出峰异常,要先看看是不是它有问题了) 2、每次做完分析,都要进行冲洗, 分析用流动相中若无酸、碱、盐类物质,建议用90%甲醇冲洗30~60min; 若分析用流动相中含以上物质,要先用10%甲醇(或用与分析用流动相同比例,把含酸、碱、盐溶液换成水)冲洗1小时左右,再梯度走到90%甲醇冲洗30~60min(若用多元泵)。有必要时再循环几次,可以适当缩短时间。 若长时间不用该色谱柱,要冲洗好后,用纯甲醇或乙腈封存。 3、若流动相中用到离子对试剂,更应该好好冲洗,且该色谱柱最好作为专用,不能再做其它物质分析用。因色谱柱填料性质已与原来所不同,在该柱上所摸索的色谱条件,可能在其它同类柱子上得不到重现。 4、尽量避免反冲,除非该色谱柱厂家明确说明允许。 5、普通C18柱尽量避免在40℃以上的温度下分析。 6、定期测柱效,有下降,可以用10%异丙醇甲醇冲洗色谱柱。若柱效还没有改善,可以再生,甲醇-二氯甲烷-甲醇。 呵呵,还有的一时想不起来了,各位有经验的战友请发表高见! 1.样品要采用0.22或0.45μm滤膜过滤,流动相采用0.45μm滤膜过滤并脱气。 2.大多数反相色谱柱的pH稳定范围是2-7.5,尽量不超过该色谱柱的pH范围 3.避免流动相组成及极性的剧烈变化。 4. 避免纯水冲洗反相色谱柱。 5.每次测试完毕,要用20倍柱体积的流动相冲洗色谱柱(分析色谱柱250×4.6mm柱体积3.2ml)。如果使用极性或离子性的缓冲溶液作流动相,应在实验完毕后将柱子用纯水冲洗干净,并保存于乙腈中。 6.压力升高是需要更换预柱的信号。 1:溶剂中的不溶物—应使用色谱纯溶剂,膜过滤(孔径不超过0.45μm) 2:样品中的不溶物—应对样品进行膜过滤(孔径不超过0.45μm) 3:泵,进样器等中的不溶物—在泵和进样器之间安装内置过滤器,在进样器和柱之间安装预过滤器 4:柱内不溶物的形成:由于溶剂的不互溶而产生的沉淀—用能溶解沉淀物的溶剂冲洗色谱柱;在不互溶溶剂中由于进样而产生的沉淀—检查样品液和流动相是否互溶;由于温度的改变或固定相的干涸而产生的沉淀—将色谱柱密封紧,并保持室温恒定! 还有就是平衡色谱柱、色谱柱的再生: 1 平衡色谱柱:反相色谱柱在经过出厂测试后是保存在乙腈/水中的。请一定确保您所使用的流动相和乙腈/水互溶。由于色谱柱在储存或运输过程中可能会干掉,因此在用流动相分析样品之前,应使用10-20倍柱体积的甲醇或乙腈平衡色谱柱;如果您所使用的流动相中含有缓冲盐,应注意用纯水"过渡"。 硅胶柱或极性色谱柱在经过出厂测试后是保存在正庚烷中的。如果该色谱柱需要使用含水的流动相,请在使用流动相之前用乙醇或

浅谈学情分析的几点经验

浅谈学情分析的几点经验 课前的学情分析很重要,是你备课、上课成败的重要因素。学情分析应结合你任教的科目,了解学生的兴趣爱好、相关知识的掌握或了解情况、学习习惯与态度等。 在教学中,教师要做到了解学生的认知结构,了解学生薄弱点,了解学生的个性特点和兴趣爱好等,这样才能实行有针对性教学,有的放矢的教学;才能因材施教,科学设计教学过程,灵活使用教学方法,从而实行有效教学。那么怎样做到了解学情呢?我常采取过两种分析方法:(1)交谈法(2)问卷法最好是两种方法结合使用,问卷法比较适合大面调查,设置问题应简洁明了,答案尽量可量化、最好是选择或判断,以方便统计。对于部分不愿答卷或随意答卷者应与之交谈,掌握真实信息,为备课及教学提供一手资料。 本人就自己在教学中一些其他方法做法谈一谈自己的经验 1.通过“教学观察”了解学情 作为一名有经验的教师,首先要学会“教学观察”技能,掌握学生一举一动,一言一行,所谓教学观察技能是指在课堂讲授或指导学生学习的同时,对学生的学习行为实行有目的有计划有组织的感知,以获取教学反馈信息的水平,通过教学观察,能够即时知道自己的教法是否适合学生的需要,学生是否听懂了讲授的内容,学生对教学的态度怎样等;通过教学观察,能够了解学生在学习中哪些知识技能掌握得比较好,哪些还没有完全掌握,存有什么偏差和问题。教师能够根据这些信息,即时对教学作出调整,以减少无效劳动,确保教学活动不偏离预定的教学目标。 教学观察的具体操作方式有; A:听其言 教师在教学中可结合教学内容特点和学生认知结构,设计一些有梯度,有层次,能引起学生共鸣深思的问题,调动学生积极参与课堂,教师可根据学生回答问题情况,即时调整教学设计,调整标高,以期提升课堂效率。 教师也可根据学生在课堂上语言反馈即时了解学情,例如学生兴趣高昂时会激昂陈词,积极参与课堂讨论,按着教师课堂设计,积极思考回答问题,甚至遇到异议时会提出质疑。学生若听不懂或对本节教学活动不感兴趣,他们会沉默不语或者窃窃私语。 教师还可根据学生对课堂作业提出疑问即时了解学生学习效果,问题所在。 B:观其行 学生在课堂上根据自己听课理解情况及兴趣爱好会有不同表现:发现学生抓耳挠腮,眉头紧皱时就是向教师发出他已听不懂的信号;若学生俯头窥看,时不时瞟一眼老师时就是向老师发出他正在开小车,心不在课堂上;若学生躺在桌上,无精打采就是向老师发出他对这节课不感兴趣;若学生手舞足蹈,跃跃欲试就是向老师发出他对这节课兴趣昂然思维活跃。总来说之,老师在教学中要善于捕捉学生行动语言,及每种行动语言反馈信息。 C;察其色 学生在课堂上听课情况,不但会以语言行动形式表现出来,还会以各种表情体现出来。这就要求老师要善于察言观色,若学生对老师教学感兴趣,学得轻松,他会笑逐颜开,思想轻松;若学生对老师教学不感兴趣,学得吃力,疑雾迷漫,他会眉头紧皱,表情呆滞,目无神韵,情绪低落。 所以老师理应即时根据上述三个方面的表现作出准确判断,即时采取调控措施,这种调控措施不是指责和批评学生,而是调整自己教学方式,教学进度以及教学态度,善于聆听学生心声。 2.通过“作业批改”了解学情

怎样选择合适的手性柱

1. 怎样选择合适的手性柱 对于在文献中未提及的分析物分离,请参照表1选择合适的手性柱。 表1---手性柱选择指南 2. 选择一点开始你的分析 下面是正相和反相的流动相选择指南:

3. 流动相操作 A正相色谱 在正相模式下,流动相通常由正己烷和异丙醇(IPA)组成。 图1 给出了异丙醇比例的改变对保留因子(k’)和选择因子(α)的影响。 图1 IPA比例对k’ 和α的影响流动相:己烷/异丙醇,检测波长,230NM,流速:1.0 ml/ min

结果表明增加IPA的比例会导致心得安药物的两种对映异构体的k’明显减少。这可以用氢键的作用力减弱来解释。 B 反相色谱 << 极性有机修饰剂 以环糊精为基质的手性柱主要以反相模式为主。因为包结化合物很容易在水相和极性有机相中形成,因此包结化合物通常在水相中有很高的稳定性,加入足够多的有机修饰剂时稳定性会减弱。与只是在水相相比,有机—水相中的样品和环糊精的包结强度会减弱。因此,在反相中,增加流动相中水的比例可能会使保留值减少。 我们公司的手性柱用甲醇和乙腈作为最普通的有机修饰剂。因为相对于甲醇,乙腈和环糊精的空穴有更大的亲和力,所以乙腈的洗脱能力比甲醇大4倍左右。有时,加入两种有机修饰剂,选择性可能不同。目前,很难预测在某一情况下选择哪种修饰剂对分离会有较好的效果。 图2 表明了在RC-SCDP5,不同含量的乙腈对分离必得安对映体的影响。 图2 乙腈比例对k’和α的影响

流动相:水/乙腈,检测波长,230nm,流速:1.0 ml/ min << 缓冲溶液 缓冲溶液在对映体分离过程中起重要作用。在流动相中添加少量盐对保留值和分离度会产生明显的影响。 几乎所有盐类都有利于分离,其中的一些效果显著。环糊精手性固定相的缓冲溶液可以是三氟酸、三乙胺—醋酸盐(TEAA)和磷酸盐(TEAP)缓冲溶液。由于TEEA相对腐蚀小和容易调节PH值,它通常作为添加剂。在某些情况下,对映体分离只能在一个PH值下有效地进行。 三乙胺—醋酸盐和三乙胺磷酸盐通常用来提高对映体分离度。它们与延伸在空间中和溶质结构中的胺基基团相互作用而提高分离度。醋酸可以使氨基甲酸盐的一部分羰基基团通过氢键发生作用,那些氨基甲酸盐的孔洞都会有位阻现象。正常的TEAA的浓度范围应在质量分数0-1.5%,TEAP为0-0.3%。 图3 缓冲溶液对α和Rs的影响 流动相:乙腈/缓冲液(0.2%,pH=5.0)=45/55(v/v)

手性分析之经验谈

选择性,即无论怎样减小醇的比例样品都没有分离的迹象,可以换一种醇来试,通常乙醇和异丙醇会有不同的选择性,很多样品乙醇分不开,异丙醇能分离的很好。异丙醇也不行的时候可以尝试在乙醇或者异丙醇里加入合适浓度的叔丁醇或者是甲醇,对于 IC色谱柱可以尝试其它如二氯甲烷、乙酸乙酯和甲苯等其它溶剂,每一种溶剂都能为手性分析提供独特的选择性,一般除了乙醇、异丙醇之外我使用最多的还是叔丁醇,其次是甲醇,叔丁醇可以单独和正己烷做流动相,甲醇必须结合乙醇或异丙醇混合使用。需要着重强调的是,更换醇的种类,有可能会导致对映异构体出峰顺序的改变,使用乙醇的流动相,如果R构型先出峰,更换为异丙醇以后,有可能(不是一定)R构型会后出峰,S构型跑到前边去了。 虽然提高柱温能够使峰形变窄变细,但是会降低分离度,而且大赛璐的手性柱温度上限就是40度(这一点在超临界流体色谱应用上受限尤为明显),所以优化分析方法时很少有人在柱温上下功夫。另外手性柱分析样品的保留时间受室温变化的影响特别大,通常大家都习惯用消旋体图谱计算对映异构体相对保留时间的方法根据主峰的保留时间来计算异构体的出峰位置。 五、写在最后 大赛璐的手性色谱柱还包括反相的系列,同时键合相的手性柱正相和反相都能用,只是要求在正相和反相流动相之间进行切换的时候要用异丙醇小流速的过渡,因为大赛璐手性柱压力都不能超过100bar,另外需要注意的是键合相手性柱的记忆效应,即流动相使用不同种类的溶剂切换时,柱效可能会下降,解决方法就是用DMF 做溶剂对色谱柱进行清洗。我感觉做反相的手性分离时,我们可以更多的当作使用一只比较特殊的柱子做普通的样品一样来看待,仔细的阅读一下柱子的说明书就好,其它的和最常用的反相液相都一样。反相常用的溶剂包括水、甲醇、乙腈和乙醇,每种溶剂都为样品分离提供了独特的选择性。 大赛璐还有其它一些手性色谱柱,他们的手册上说是要用这些色谱柱才能分离的样品我遇到过很多,用手头的AD-H也都解决了。其它公司也有做手性柱,我们手头也有几只,但是使用不多,没觉得有什么优点。

相关文档
最新文档