电力系统频率异常的控制

电力系统频率异常的控制
电力系统频率异常的控制

电力系统频率异常的控制

【摘要】频率是电力系统重要的运行参数,也是衡量电能质量的重要指标,同时为某些安全稳定装置动作提供判据。现代电力系统中装设了大量的频率量测装置,从而可以记录系统中发生的频率动态过程,然而对实际电网进行频率动态过程研究发现,仿真所得的频率轨迹与实测轨迹存在着较大的差别,这就迫切需要对电力系统中影响动态频率特性的相关因素进行分析。

【关键词】电力系统;频率异常;控制分析

一、频率异常的特点和控制措施

由电力系统事故所引起的频率大幅度变化的动态过程称为频率

异常。它不同于正常运行的频率波动.主要表现在频率变化幅度大、速度快。在电力系统尚未解列时,伴随有振荡的出现。当电力系统解列后,在功率严重缺少的被解列的区域网内,又往往会出现频率的单调衰减,即所谓的频率崩溃。

引起电力系统频率异常的根本原因是系统中出现了功率的不平衡,而导致功率突变的直接原因是:①联络线出现故障开关跳闸,两侧功率出现了不平衡;②电力系统内有大容量发电机组突然投入或切除;③电力系统内有大的负荷突然投入或解除。

针对这些原因,可以采用如下所述的措施和控制手段来减少频率事故的出现:

①合理设计电力网结构。如采用双回路联络线,以减少线路故障

导致电力系统解列的可能性;环形网供电,以减少辐射阀所引起停电的可能性;用电负荷和供电电源应尽可能就地平衡;②适当地控制系统传输功率。在图1中,为了使联络线故障切除后不引起两侧系统频率急剧下降,应该预先将联络线交换功率限制在适当的限额内。在考虑电力系统的电流分析时,应该尽量保证在一些线路故障切除后,在电流转移的情况下,不会造成其他线路或区域过负荷。

③系统应具备足够的备用容量。在电力系统中为了防止系统因大量功率缺额而造成系统频率下降,一般需要安排一定数量的发电机作为旋转备用(热备用),当频率下降时可以立即使旋转备用机组提供输出功率;④在电力系统内装设控制频率异常的自动控制装置。能够自动投切发电机组和负荷。

二、消除电力系统频率异常的自动控制装置

按照频率异常时频率上升和下降的不同,自动控制装置可分为:①反映电力系统频率下降时动作的自动控制装置;有低频减负荷自动控制装置颁发电机自启动控制装置、低频蓄能改发电自动控制装置等;②反映电力系统频率上升时动作的自动控制装置。有高频切除发电机组自动控制装置、高频率发电机组输出功率自动控制装置、电气制动自动控制装置等。

这些自动控制装置用频率变化作为测量信号,经过一定的逻辑判断后由控制操作指令,它们都属于反事故自动控制装置。按频率自动减负荷装置是一种有着高度选择性的反事故自动控制装置。当电

力系统发生严重的有功功率缺额时,它能够在系统被破坏之前,迅速地计算出当时缺少的有功功率,并相应地切除一定的负荷用户,使电力系统能够很快地恢复有功功率的平衡,使频率趋于稳定,以避免电力系统遭受严重的破坏。如图2所示,现分析如下:

根据电力系统频率变化过程确定了几个计算点f1、f2、……fn,这些计算点所对应不同的负荷。故障发生前,电力系统频率稳定在额定值fe;假定(在点1)系统发生了有功功率缺额,系统频率随之急剧下降;当频率下降到f1时(2点),第—级频率控制继电器启动,经过一定的时间δt(包括自动装置的动作时间和断路器的跳闸时间)后,断开一部分负荷(3点),完成了第一次对功率缺额的计算。如果功率缺额比较大,第一次计算并不能得到系统有功功率缺额的数值,那么频率会继续下降。由于切除了一部分负荷,功率缺额的数值已经减小,所以频率将按3—4的曲线而不是按3—3’的曲线继续下降。当频率下降到f2(4点)时,第二级控制继电器开始启动,经过一定的时间δt2,又断开了连接于第二级频率控制继电器上的用户(5点)。此时,可以再确定电力系统有功功率缺额能否得到补偿。如果两次切除总负荷足以补偿功率缺额时,电力系统频率开始回升,最后稳定在新的频率工作点下。反之,如果功率还有缺额,则系统频率会继续下降,—直到被切除足够多的次数(负荷)为止。当然,如果电力系统不装设减负荷装置,系统频率将沿1—3’曲线下降到最低值。由此可以看出,低频减负荷控制装置,实际上是用

“逐次逼近”的方法来实现负荷的平衡控制,级数分得越多,防止负荷过度切除和频率恢复越有利。但级数过多,控制装置会越复杂。从电力系统功率供销平衡来看,当系统联络线或发电机组故障切除后,只要能及时切除相应的负荷,就可以使系统频率重新恢复正常。但是,系统不同的地点、不同故障下所产生的功率缺额是不同的。为了按频率自动减负荷控制装置在最严重的故障下能满足要求,必须事先计算出各种运行方式下的功率缺额,保障在电力系统发生最大可能的功率缺额时,能断开相应量的负荷用户,以避免电力系统的频率崩溃。因此,确定最大功率额时是减负荷控制装置正确动作的必要条件。考虑到在自动减负荷后,允许电力系统的频率恢复到低定额定频率值运行,再考虑到负荷本身的频率调节效应,最终接于低频减负荷控制装置的总功率pj要比实际最大缺额功率小。所以有:

由于电力系统的规模越来越庞大,接线越来越复杂,事先难以预见各种事故的发展变化。在此情况下,采用级数不多的低频减负荷控制措施,往往可以达到恢复系统相同的要求。同时可能减负荷过多,使频率上升过高,有时又可能减负荷不足,造成频率降过低。为此,可采用增加级数和缩小各级之间级差的方法来解决。

参考文献

[1]余浩深.颜运昌.基于多dsp的网络稳定控制系统频率异常控

制研究与实现[j].湖南大学学报(自然科学版)》.2002年s1期.

[2]吴浩.电力系统电压稳定研究[d].浙江大学.2002年.

电力系统频率的二次调节.doc

电力系统频率的二次调节 一、频率的二次调节基本概念 上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。 Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。 系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。 频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。 如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。 反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

(高频切机)电压频率紧急控制的装置

SSE520系列频率电压紧急控制装置既可用于电网频率电压异常需要紧急控制的场合,如低频低压减载或高频切机等;还可作为一个终端执行装置,执行远方跳闸命令或区域稳定控制系统送来的切负荷、切机命令。该装置结构紧凑,采用模块化设计、通用性强,可以适用于电网电压频率紧急控制、系统解列、切机切负荷等场合。主要功能配置 1、减载功能:当地5轮低频低压减载的判别及出口;具有滑差加速、滑差闭锁功能; 2、切机功能:当地3轮高频切机; 3、远方功能:具有通信接口或远方跳闸接点输入,可执行远方跳闸命令或减载命令; 4、测量功能:可同时测量两段母线或两条联络线的电压、电流、功率、频率、功率方向等, 电力系统紧急控制是指在电网事故状态下,由于系统内部电源与负荷功率失去平衡,系统频率与电压将发生较大幅度的变化,尤其是在有功缺额、无功缺额或两者均不足而导致系统的崩溃事故状态下,为了保证主系统的安全运行和对重要用户的不间断供电(包括发电厂本身的厂用电)而进行的切负荷、切机和解列控制。 频率和电压是电力系统运行的两个最重要的指标。电力系统的频率反映了发电机组所发出的有功功率与负荷所需有功功率之间的平衡情况。 电压频率紧急控制的装置,这种装置能快速测量频率、电压及变化率, 区分出短路故障, 判断出系统内功率缺额的大小。一旦电力系统出现不稳定它能快速切除接近于功率缺额的负荷,抑制系统电压频率的快速降低,保证电网安全并保障一些重要用户的供电质量.

DPY-3x 频率电压稳定控制装置 功能特点 ·测量安装点母线的频率、电压以及它们的变化率 ·用于频率、电压紧急控制,具有低频、低压、过频、过压等频率电压控制功能 ·在电力系统由于有功缺额引起频率下降时,装置自动根据频率降低值切除部分电力用户负荷; 在有功功率过剩出现频率上升时装置自动根据频率升高值自动切除部分电源,使系统的电源与负荷重新平衡。 ·当电力系统有功缺额较大时,具有根据df/dt 加速切负荷的功能,在切第一轮时可加速切第二轮,尽早制止频率的下降; 当电力系统有功剩余较大时,具有根据df/dt 加速切的功能,在切 第一轮时可加速切第二轮,尽早制止频率的上升。 ·在电力系统由于无功不足引起电压下降时,自动根据电压降低值切除部分电力用户负荷,确保系统内无功的平衡,使电网的电压恢复正常; 在电力系统由于无功过剩引起电压上升时,自动根据电压上升值切除部分电源,确保系统内无功的平衡,使电网的电压恢复正常。·当电力系统电压下降太快时,可根据du/dt 加速切负荷,尽早制止 系统电压的下降,避免发生电压崩溃事故,并使电压恢复到允许的

电力频率调整及控制

频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。 12.1.2.3电力系统频率特性 电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出: 式中――电力系统有功功率变化量的百分值: ――系统频率变化量百分值; ――为备用容量占系统总有功负荷的百分值。 12.1.2.4一次调频 一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。

电力系统安全稳定控制

摘要:近年来,伴随着经济社会的快速发展,电力系统规模的不断扩大使得电网体系的结构日趋复杂,电力设备单机容量逐步提高,与之相关的电力系统安全稳定问题也不断涌现。积极研究和运用先进的安全稳定控制技术不但可以使电力系统运行的可靠性大大提高,而且可以直接带来可观的经济效益。从电力系统安全稳定的相关概念入手分析了电力系统安全稳定控制的相关技术,然后就这些技术在电力系统中的实际应用进行了说明,旨在为电力部门提高安全稳定控制水平提供参考。 关键词:电力系统;安全稳定;控制技术;应用 电力作为当今社会最主要的能源,与人民生活和经济建设息息相关。供电系统如果不稳定,往往导致大面积、长时间的停电事故,造成严重的经济损失及社会影响。因此,学习电力系统安全稳定控制理论并研究适应时代发展要求的新的电力系统安全稳定控制技术对于实现当前电力资源的合理配置、提高我国现有电力系统的输电能力和电网的安全稳定运行具有十分重要的意义。 一、电力系统安全稳定控制概述 1.电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 2.电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 二、电力系统安全稳定控制的关键技术

电力系统安全控制汇总

中文名称:电力系统安全控制 英文名称:power system security control 定义:以保持电力系统安全运行为主要目的,同时考虑电能质量和运行经济性的控制。 应用学科:电力(一级学科);电力系统(二级学科) 本内容由全国科学技术名词审定委员会审定公布 编辑本段电力系统安全控制 保证电力供应的不间断性而设置的控制系统和装置及采取的控制策略和措施。它与电力系统的运行状态密切相关,包括预防控制、校正控制、稳定控制、紧急控制、恢复控制以及继电保护。 电力系统安全控制措施及其进展 预防控制为防止电力系统越出正常运行状态而设置的装置和采取的策略、措施。包括随时将测得的量与安全运行的目标值进行比较,并向运行人员提供必要信息,这称为安全监视;根据当时的运行状态进行事故预想和模拟,检查系统的安全性,这称为安全分析;若安全分析的结果表明系统不够安全,则向运行人员发出警报并提示或直接执行必要的措施,诸如切换负荷、改变系统结构、调整发电机出力和潮流、分配后备出力、布置解列点和改变安全稳定装置及保护的整定值等。 校正控制为使电力系统的频率异常、电压异常和线路、变压器过负荷返回正常值而设置的装置和采取的控制策略、措施。造成频率异常是因为系统有功功率不平衡。使频率恢复正常的主要手段是调整发电机出力和调整负荷,包括合理配置汽轮发电机的热备用、水轮发电机组的调相运行和发电运行的切换、水轮发电机和燃气轮机发电机组的自动起动、抽水蓄能机组的抽水和发电运行的切换,以及在系统中合理配置按频率减裁、切除负荷等装置。造成电压异常的主要原因是系统无功功率不平衡或无功功率分布不合理。使电压恢复正常的主要手段是调整系统的无功功率及其分布,包括发电机和调相机的励磁控制、静止无功补偿器的控制、并联电容的投切、带负荷可调变压器分头的调整以及按电压切除负荷的措施等。为了消除变压器和线路的过负荷,应该根据造成过负荷的原因采取相应的措施,如投入备用设备,改变运行方式和潮流分布,直到切除负荷。 稳定控制为防止系统中发电机失步,防止系统失去稳定或提高系统运行稳定性,也就是使系统从紧急状态恢复进入正常状态而设置的装置

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节 摘要 在现实中系统功率并不是一个恒定的值,而是随时变化的,在系统中,每时每刻发电功 率和用电功率基本平衡。而功率又是影响频率的主要因素,当发电功率与用电功率平衡时,频率基本稳定,当发电功率大于用电功率时系统频率则上升,反之则下降,所以系统对有功 功率和频率进行调整。本文研究了电力系统频率及有功功率的自动调节进行了详细的研究与论证。 关键词:频率有功功率自动调节 第一章频率和有功功率自动控制的必要性 1电力系统频率控制的必要性A频率对电力用户的影响 (1)电力系统频率变化会引起异步电动机转速变化,这会使得电动机所驱动的加工工业产品的机械的转速发生变化,转速不稳定会影响产品质量”甚至会出现次品和废品。 (2)电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有 些设备甚至无法工作。这对一些重要工业和国防是不能允许的。 (3)电力系统频率降低将使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。 B频率对电力系统的影响 (1)频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。对于额定频率为50Hz的电力系统,当频率低到45Hz附近时,某些汽轮机的叶片可能因发生共振而断 裂,造成重大事故。(次同步谐振,1970、1971年莫哈维电厂790MV机组的大轴损坏事故) (2)频率下降到47-48HZ时,火电厂由异步电动机驱动的辅机(如送风机、送煤机)的出力随之下降,从而使火电厂发电机发出的有功功率下降。这种趋势如果不能及时制止,就会在短时间内使电力系统频率下降到不能允许的程度。这种现象称为频率雪崩。出现频率雪崩会造 成大面积停电,甚至使整个系统瓦解。 (3)在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。 (4)电力系统频率下降时,异步电动机和变压器的励磁电流增加,使无功消耗增加,引起系统 电压下降,频率下降还会引起励磁机出力下降,并使发电机电势下降,导致全系统电压水平降

电力系统有功功率平衡与频率调整复习进程

第五章 电力系统有功功率平衡与频率调整 主要内容提示 本章主要讨论电力系统中有功功率负荷的最优分配和频率调整。 §5-1电力系统中有功功率的平衡 一、电力系统负荷变化曲线 在电力系统运行中,负荷作功需要一定的有功功率,同时,传输这些功率也要在网络中造成有功功率损耗。因此,电源发出的有功功率必须满足下列平衡式: ∑?+∑=∑P P P Li Gi 式中Gi P ∑—所有电源发出的有功功率; Li P ∑—所有负荷需要的有功功率; ∑?P —网络中的有功功率损耗。 可见,发电机发出的功率比负荷功率大的多才 行。当系统中负荷增大时,网络损耗也将增大,发电机发出的功率也要增加。在实际电力系统中,负荷随时在变化,所以必须靠调节电源侧,使发电机发出的功率随负荷功率的变化而变化。 负荷曲线的形状往往是无一定规律可循,但可将这种无规则的曲线看成是几种有规律的曲线的迭加。如图5-1所示,将一种负荷曲线分解成三种曲线负荷。 第一种负荷曲线的变化,频率很快,周期很短,变化幅度很小。这是由于想象不到的小负荷经常性变化引起的。 第二种负荷曲线的变化,频率较慢,周期较长,幅度较大。这是由于一些冲击性、间歇性负荷的变动引起的,如大工厂中大电机、电炉、电气机车等一开一停。 第三种负荷曲线的变化,非常缓慢,幅度很大。这是由于生产、生活、气象等引起的。这种负荷是可以预计的。 对于第一种负荷变化引起的频率偏移进行调整,称为频率的“ 一次调整”。调节方法一般是调节发电机组的调速器系统。对于第二种负荷变化引起的频率偏移进行调整,称为频率的“二次调整”,调节方法是调节发电机组的调频器系统。对于第三种负荷的变化,通常是根据预计的负荷曲线,按照一定的优化分配原则,在各发电厂间、发电机间实现功率的经济分配,称为有功功率负荷的优化分配。 二、发电厂的备用容量 电力系统中的有功功率电源是发电厂中的发电机,而系统中装机容量总是大于发电容 t

简述电力系统运行控制目标及其控制自动化

简述电力系统运行控制目标及其控制自动化 发表时间:2018-06-22T14:16:41.007Z 来源:《电力设备》2018年第5期作者:吕平杰 [导读] 摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。 (身份证号码:33072219870826XXXX 浙江杭州 310000) 摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。虽然,电力自动化技术的应用是一项极为复杂且繁琐的工作,但只要科学运用,势必会提高供电的安全性以及稳定性,同时,还能为电力建设行业的发展创造有利条件,最终为老百姓谋福利。 关键词:电力系统;运行控制;自动化技术;应用 1 电力系统的自动化控制以及它的控制目标 1.1 保证电力系统运行的安全 安全是一切生产的前提。每一个电力企业在电力生产中最常提的口号是“安全第一”。安全,就是要杜绝事故的发生,这是电力企业的头等大事。大家都知道,电力系统一旦发生事故,那将会造成极其严重的后果,轻者造成电气设备不同程度的损坏,严重影响居民的正常用电,同时也会给生产厂家造成成一定的损失;重者更是波及到电力系统覆盖的广大区域,使生产设备受到大规模严重破坏,更会造成人员的伤亡,严重影响到国民经济的健康发展。因此,努力保证电力系统的安全运行是电力企业最重要的任务。 1.2 保证电能符合质量标准 与所有的商品一样,电能也是有一定的质量标准的,通常是指波形、电压和频率三项指标。通常,发电机产生电压的为正弦波,因为整个系统中许许多多的设备在一开始设计的时候都将波形问题进行了充分的考虑,通常情况下,底层用户所获得的电压波形一般也是正弦波。一旦波形不是正弦的,那么电压波形就会有许许多种高次波,这样的电波对于电子设备会产生不利影响,通讯的线路也会有一定的干扰,电动机的效率也会降低,影响正常的操作运行。更为严重的是,这还可能使电力系统发生危险的高次谐波谐振,使电气设备遭到严重破坏。 频率是电能质量标准中要求最严格的一项,频率允许的波动范围在我国是50+0.2Hz(有的国家是±0.1Hz)。使频率稳定的关键是保证电力系统有功功率的供求数量时时刻刻都要平衡。前已说过,负荷是随时变动的,因此,只有让发电厂的有功出力时时刻刻跟踪负荷舶有功功率,随其变动而变动。以往那种调度员看到频率表指示的频率下降之后再打电话命令发电厂增加发电机出力的时代早已进去了。现在调频过程是由自动装置自动进行的。但是负荷如果突然发生了大幅度的变化,超出了自动调频的可调范围,频率还会有较大变化。 1.3 保证电力系统运行的经济性 运行控制在电力系统中,一方面要在意电能质量问题和剧增安全问题,另一方面要将发电成本控制到最低,降低传输损失,从而将整个电力系统的运行成本进行优化。在已经正常运行的电力系统中,调度方案对于其运行经济性有着至关重要的作用。一定要在保证系统的安全的基础上,对于安排备用容量的分布和组合进行整体优化,考虑发电机组的效率和性能,水电厂水头以及燃料种类情况,加上负荷中心距离发电厂的远近等因素,选择一个经济性能最优的电力调度方案。 2电力自动化技术的应用 2.1现场总线技术在电力工程中的的应用 从电力企业现行的发展状况分析,现场总线技术在诸多电力工程中均有所涉及。现场总线技术,引入了数据模型。利用变送器,能够对电量数据进行搜集,发送具体的信号。根据该模型,还可对信号作出处理,最终给出精准的判断。现场总线技术,并非对现场数据或是信息作出分析,更多的是为了有效地控制各类数据。电子工程在日常的活动中,电力装置均有明显的综合性。它将传感器、控制系统、数字通信以及计算机技术集合起来。现场总线技术,可以适应系统以及不同数据提出的变化需求,为信息共享提供诸多的便利。 2.2电网调度技术的自动化 即以计算机为支撑的电网调度系统,可以对电网实际的运行状况作出动态地监控,对设备潜在的故障进行处理,并分析其安全情况。换言之,借助计算机技术处理各类信息,提出针对性的管理方案,使电网系统可以有效地运行。借助电网调度自动化技术,有助于防范和规避电力工程中不同类型的安全事故,同时还可减小电网损耗,将电网损伤降低至最小,使电网可以顺畅地工作。除上述外,电网调度技术同时也能够对某些突发事件进行处置。所以,促进电网调度技术日渐地走向自动化,这是必然的趋势。 2.3变电站技术的自动化 也就是将通讯技术、计算机进行全面地整合,对信息数据作出均衡地处理。同时,也可以对变电站相关信息加以搜集,使变电站设备以及整个电力系统均可完成重组。借助变电站技术,可以适应电网不同程度的建设需求,同时也可以让操作变得更为简单。监控某些数据时,也可以对系统中某些单元模块有无故障作出识别,使其能够在安稳的状态下运行。 2.4主动对象数据库技术在电力工程中的应用 主动对象数据库技术,引入了电力系统本身的监视功能。借助存储技术,结合对象函数,能够对电力工程进行自动化运用。利用主动对象数据库技术,电力工程可以得到较好地监控,增加对数据的输入以及传输速率,为数据管理降低额外的压力。所以,主动对象数据库技术已被视作监控系统中相当有利的主导技术,并受到广泛的认可。 2.5光互联技术在电力工程中的应用 光互联技术,借助电子交换以及电子传输技术,可以对网络作出拓展,同时对编程结构予以重组。该项技术,能够对数据进行采集、分析和控制,让电力系统变得相当的灵活。电容负载,对光互联技术有极大的影响,可以适应不同类型的监控需求。另外,光互联技术同时也能够进行高级应用或是对电网进行分析,为调度员日常的调度工奠定可靠的基础。电力工程中,光互联技术已有较为普遍的运用。它能够提升处理器本身的干涉力,让设备有相当高的抗磁干扰力。同时,电力系统也能够变得更为安全,拥有更完善的功能。可见,将光互联技术引入到电力工程中,有深刻的现实意义。 3电力系统自动化技术的发展趋势 电力系统自动化是我国电力系统的重要发展方向,现如今,我国的电力系统自动化主要体现在发电和配电两个方面。而电力系统自动化技术的未来发展上,还要求对电力系统能够进行远程的监控,并对电力系统的故障进行相应的解决,实现最少人管理甚至无人管理,降

电力系统紧急控制与系统恢复读书报告

电力系统紧急控制与系统恢复读书报告 一、电力系统运行状态和稳定性 电力系统可由1组微分方程及2组代数方程来描述。根据约束条件是否满足,系统运行分为正常状态、警戒状态、紧急状态、极端紧急状态和恢复状态。 当扰动概率增加,使系统安全水平逐步降低而进入警戒状态时,虽然所有约束条件仍然满足,但是备用储备减少,某些干扰可能导致不等式约束破坏(如设备过载),使系统安全受到威胁。在这种状态下,应采取预防控制使系统恢复到正常状态。 在采取预防控制之前,如果发生足够严重的干扰,系统就进入紧急状态。此时,不等式约束被破坏,系统安全水平为零。但是,系统仍然完整,应启动紧急控制使系统至少恢复到警戒状态。如果紧急控制措施未及时实施或失效,系统将解列并进入极端紧急状态。在极端紧急状态中,等式和不等式约束都被破坏,系统不再完整,系统大部分负荷丧失。紧急控制作用应尽可能多地挽救解列后的子系统,以避免整个系统完全崩溃。一旦崩溃停止,如果仍有设备运行在额定容量之内,或某些设备紧跟崩溃而重新启动,则系统可能进入恢复状态。采取恢复控制措施,重新带上所有失去的负荷和连接系统,系统可能过渡到警戒状态或正常状态则视情况而定。 通常按扰动性质将系统稳定性分为:静态稳定或小干扰稳定性;暂态稳定性。 紧急控制虽然与暂态稳定密切相关,但不仅仅考虑暂态稳定问题,而应该从整个系统的要求出发。对于系统紧急状态来说,个别电机的不稳定性既不是必要条件,也不是充分条件。系统演变到紧急状态,可能不会直接威胁个别电机的连续同步运行,危及个别电机连续稳定运行的扰动可能(但不需要)出现在系统紧急状态出现之前或演变过程中。防止某台发电机失步或防止某个元件损坏的当地控制作用甚至可能恶化整个系统的性能。例如,1996年7月2日和8月10日美国西部大停电事故中,系统进入紧急状态都没有经历暂态稳定过程。换言之,这种当地紧急控制作用的后果是,使主要联络线或干线以故障前最小静态稳定裕度运行,大多数情况下会进一步加载,从而超过故障后功角特性的最大幅值。按照CIGRE和IEEE提出的术语,这种情况称为“条件稳定性”。 此外,电力系统紧急状态的出现不仅表现在发电和输电设备极限的破坏上,而且表现在基本变量频率和电压极限的破坏上。在电源开断或负荷突然增大时,由于电源和负荷间功率的严重不平衡,会引起系统频率突然大幅度下降。如果系统备用容量不足和不及时采取措施,将使频率进一步下降,渐增加到一定程度时,有可能使电压大幅度下降,而产生频率崩溃,导致全系统的瓦解。由于无功电源不足或无功电源突然切除时,当负荷(特别是无功负荷)逐以致发生电压崩溃现象。 因此,紧急控制的定义是,当系统遭受一个事件的扰动后,部分或整个系统现有容量暂时不再能充分满足负荷需求时,使系统能够维持和恢复到可行的运行状态,而且不会出现不可忍受的过载或不正常的频率(或电压)所采取的措施和过程。 二、紧急控制系统的基本框架 互联电网紧急控制的主要目的是将紧急状态局部化和避免故障扩展到相邻

电力系统频率异常的控制

电力系统频率异常的控制 【摘要】频率是电力系统重要的运行参数,也是衡量电能质量的重要指标,同时为某些安全稳定装置动作提供判据。现代电力系统中装设了大量的频率量测装置,从而可以记录系统中发生的频率动态过程,然而对实际电网进行频率动态过程研究发现,仿真所得的频率轨迹与实测轨迹存在着较大的差别,这就迫切需要对电力系统中影响动态频率特性的相关因素进行分析。 【关键词】电力系统;频率异常;控制分析 一、频率异常的特点和控制措施 由电力系统事故所引起的频率大幅度变化的动态过程称为频率 异常。它不同于正常运行的频率波动.主要表现在频率变化幅度大、速度快。在电力系统尚未解列时,伴随有振荡的出现。当电力系统解列后,在功率严重缺少的被解列的区域网内,又往往会出现频率的单调衰减,即所谓的频率崩溃。 引起电力系统频率异常的根本原因是系统中出现了功率的不平衡,而导致功率突变的直接原因是:①联络线出现故障开关跳闸,两侧功率出现了不平衡;②电力系统内有大容量发电机组突然投入或切除;③电力系统内有大的负荷突然投入或解除。 针对这些原因,可以采用如下所述的措施和控制手段来减少频率事故的出现: ①合理设计电力网结构。如采用双回路联络线,以减少线路故障

导致电力系统解列的可能性;环形网供电,以减少辐射阀所引起停电的可能性;用电负荷和供电电源应尽可能就地平衡;②适当地控制系统传输功率。在图1中,为了使联络线故障切除后不引起两侧系统频率急剧下降,应该预先将联络线交换功率限制在适当的限额内。在考虑电力系统的电流分析时,应该尽量保证在一些线路故障切除后,在电流转移的情况下,不会造成其他线路或区域过负荷。 ③系统应具备足够的备用容量。在电力系统中为了防止系统因大量功率缺额而造成系统频率下降,一般需要安排一定数量的发电机作为旋转备用(热备用),当频率下降时可以立即使旋转备用机组提供输出功率;④在电力系统内装设控制频率异常的自动控制装置。能够自动投切发电机组和负荷。 二、消除电力系统频率异常的自动控制装置 按照频率异常时频率上升和下降的不同,自动控制装置可分为:①反映电力系统频率下降时动作的自动控制装置;有低频减负荷自动控制装置颁发电机自启动控制装置、低频蓄能改发电自动控制装置等;②反映电力系统频率上升时动作的自动控制装置。有高频切除发电机组自动控制装置、高频率发电机组输出功率自动控制装置、电气制动自动控制装置等。 这些自动控制装置用频率变化作为测量信号,经过一定的逻辑判断后由控制操作指令,它们都属于反事故自动控制装置。按频率自动减负荷装置是一种有着高度选择性的反事故自动控制装置。当电

电力系统频率变化的影响

电力系统频率偏低偏高有哪些危害 电力系统频率的频率变动会对用户、发电厂、电力系统产生不利的影响。1.对用户的影响:频率的变化将引起电动机转速的变化,从而影响产品质量,雷达、电子计算机等会因频率过低而无法运行;2.对发电厂的影响:频率降低时,风机和泵所能提供的风能和水能将迅速减少,影响锅炉的正常运行;频率降低时,将增加汽轮机叶片所受的应力,引起叶片的共振,减短叶片寿命甚至使其断裂。频率降低时,变压器铁耗和励磁电流都将增加,引起升温,为保护变压器而不得不降低其负荷;3.对电力系统的影响:频率降低时,系统中的无功负荷会增加,进而影响系统,使其电压水平下降。 当供电电路的频率偏高时,1、电动机的转速回高(n=60f/p(1-&) ),当电动机转速增大时,其实际功率成倍增加,其结果电动机很容易过载烧毁;2、中国电气设备是按50赫兹设计的,如果大于其允许的频率数,电气原件容易损坏。当供电电路的频率偏低时,电动机转速会过低,会使有的设备不能正常工作,如水泵可能不出水,风机风量、风压过低。 频率变化对电力用户及电力系统的影响包括哪些 对用户: 1、用户使用的电动机的转速与系统频率有关,频率变化将使电动机的转速变化,从而影响产品的质量。例如,纺织工业都会因为频率的变化出现次品。 2、近代工业,国防和科学技术都已经广泛使用的电子设备受到频率影响较大。 系统本身: 1、低频运行,会对发电机的叶片所受到的应力有影响。甚至引起共振,降低叶片寿命。 2、增大励磁电流,提高温升等。 系统频率的变化主要是引起负荷端异步电动机转速的变化。 如果频率降低的过多,将使电动机停止运转,会引起严重的后果。比如,火电厂的给水泵停止运转,将迫使锅炉停炉。另一方面,如楼上所讲,对于汽轮机在低频运行状态下时,会缩短汽轮机叶片的寿命,严重时会使叶片断裂。(这是因为汽轮机转子一般瘦长,转速较快,可达1500r/s,突然频率过低,会使叶片断裂)。 如果频率过高,则会出现失步等问题。 推荐楼主看《电力系统分析(上)》诸俊伟和《电力系统分析(下)》夏道止 电力系统频率变化的原因

电力系统自动化技术专业介绍

电力系统自动化技术专业 一、专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装臵,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装臵等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装臵和以离线计算为基础的经济功率分配装臵,并广泛采用远动通信技术。各种新型自动装臵如晶体管保护装臵、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装臵和继电保护装臵中广泛采用微型计算机。 主要领域按照电能的生产和分配过程,电力系统自动化包括电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息自动传输系统、电力系统反事故自动

电力系统频率调整及控制

12.1.1.1频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

电力系统紧急状态时安全控制策略

电力系统紧急状态时安全控制策略 紧急状态时安全控制的目的是迅速抑制事故及电力系统异常状态的发展和扩大,尽量缩小故障延续时间及其对电力系统其它非故障部分的影响。紧急状态的安全控制可分为三大阶段:第一阶段的控制目标是事故发生后快速而有选择地切除故障,这主要由继电保护装置和自动装置完成;第二阶段的控制目标是防止事故扩大和保持系统稳定,这需要采取各种提高系统稳定性的措施;第三阶段是在上述努力均无效的情况下,将电力系统在适当地点解列。在紧急状态中的电力系统可能会出现问题,如果不能迅速采取有效措施消除这些险情,系统将会崩溃瓦解,出现大面积停电的严重后果。 一、电力系统的频率紧急控制 当系统内大机组突然退出运行,或有大宗负荷突然投入时,有功功率供需关系就突然遭到破坏,在出力严重不足的情况下,将引起电力系统频率大幅度急剧下降,威胁到电力系统的安全运行。 在频率大幅度下降时,应当立即采取的紧急控制措施有以下几项:⑴立即增加具有旋转备用的发电机组的有功出力;⑵立即将调相运行的发电机组改为发电运行;⑶立即将抽水蓄能电站的抽水机组改为发电运行;⑶迅速启动备用机组;⑸由低频减负荷装置根据频率降低的程度,自动分几轮切除不重要的负荷;⑹可将发电厂内几台机组与系统解列,专门带厂用电及部分重要用户,以避免频率继续下降使整个发电厂瓦解,同时还利于恢复阶段的操作迅速进行;⑺还可采用短时间里降低电压5%-8%的办法。 二、电力系统的电压紧急控制 当无功电源被突然切除,或者无功电源不足的系统中无功负荷缓慢但是持续地增加到一定程度时,就有可能使电压大幅度下降到低于极限电压,以致发生所谓电压崩溃现象。 从电压下降到发生电压崩溃可能有几十秒到几分钟的时间,在这个时间内可以采取一些紧急措施,如⑴立即加大发电机励磁电流,增加发电机的无功出力,甚至可以在短时间里允许发电机电流过载15%;⑵立即增加调相机的励磁电流,增大调相机的无功出力;⑶立即投入并联电容;⑷迅速调节有载调压变压器分接头用以维持电压,启动备用机组。 三、电力系统的过负荷紧急控制 当多条平行供电线路中有一条因故障而切除,其它线路就可能过负荷。过负荷可能超过稳定极限而使系统失去稳定。变压器的过负荷大大影响使用使用寿命甚至烧毁。线路、开关等接头部分也会因过负荷造成的过热而损坏。 对过负荷的安全控制不同于传统的过负荷保护。过负荷保护属于元件保护,它主要是保护过负荷的输变电设备本身免于因长期发热可能造成的毁坏,并不考虑元件切除后对系统运行引起的不利后果,更没有考虑针对切除后果的措施。这种单纯的过负荷保护往往会引起更严重的系统事故。而过负荷安全控制则不同,它是以保护系统安全为前提,用切除部分电源或负荷的方法,消除某些元件的过负荷。

一种新颖的电力系统实时紧急控制方案

第32卷增刊1电网技术V ol.32Supplement1 2008年6月Power System T echnology Jun.2008文章编号:1000-3673(2008)S1-0029-05中图分类号:TM712文献标识码:A学科代码:4704054 一种新颖的电力系统实时紧急控制方案 王俊1,王建全2 (1.上海电力公司市东供电公司,上海市浦东区200122; 2.浙江大学电气工程学院,浙江省杭州市310027) A Novel Real-Time Emergency Control Scheme for Power System WANG Jun1,WANG Jian-quan2 (1.Shidong Electric Power Supply Company,Shanghai Municipal Electric Power Company,Pudong District,Shanghai200122,China;2.School of Electrical Engineering,Zhejiang University,Hangzhou310027,Zhejiang Province,China) 摘要:总结了基于策略表形式的电力紧急控制系统的研究和发展现状,提出一种实时决策、实时控制的电力系统紧急控制方案。该方案实时采集故障前、故障期间及故障清除后短时间内系统的功角、有功功率等信息,利用这些信息通过最优参数选取算法将原系统在线动态等值为简单系统,并在等值系统上进行暂态稳定预测和分析,进而搜索最优控制策略。仿真结果验证了该方案的实时性、准确性和可靠性。 关键词:安全稳定;紧急控制;在线实时决策;最优参数选取;相量测量单元(PMU) 0引言 随着电力系统规模的不断扩大,电网结构日益复杂,单机容量进一步提高,区域间联络线和远距离大容量输电系统不断出现,由此而引起的电力系统安全问题日趋严重。为保证电力系统安全稳定运行,除了要合理优化电源、加强电网建设,安装安全稳控装置也成为防止系统出现大的灾变事故的有效手段[1-3]。 作为第二道防线的紧急控制是指电力系统由于扰动进入紧急状态或极端紧急状态时,为防止系统稳定遭破坏、运行参数严重超出规定范围以及事故进一步扩大引起大范围停电而进行的控制[2],如切机、快关汽门、电气制动、切负荷等。紧急控制不仅能以较小的控制代价维持系统在严重故障后的安全稳定性,而且能提高某些输电线路的传输功率甚至使其接近静态稳定极限。因此研究和实施相应的暂态稳定紧急控制措施不但可以提高系统运行的可靠性,而且可以产生直接的经济效益。 本文综述了目前紧急控制的研究成果和工程应用情况,结合较成熟的相量测量技术和在线动态等值技术,提出一种实时决策,实时控制的电力系统紧急控制方法,并用IEEE算例进行了仿真验证。 1紧急控制系统研究和应用现状 根据装置的组成和分布范围可将目前的紧急控制系统安稳装置分为就地型和区域型。电力系统是一个复杂的大规模非线性系统,地理分布很广,而紧急控制又要求控制速度非常快,一般要求动作时间不大于0.3~0.4s,否则将无法维持系统稳定或需要花费较大的控制代价。为使紧急控制系统同时满足控制精度和速度的要求,在实际工程中通常采用控制策略表来确定控制决策。根据策略表的形成方式不同,目前的稳控系统分为2种类型:①离线决策、实时匹配型;②在线预决策、实时匹配型。文献[4]介绍了我国最早完成的实用化的离线决策安全稳定控制系统。文献[5]提出了在线预决策的紧急控制系统框架。文献[6]完成了基于扩展等面积准则(extended equal-area criterion,EEAC)的在线预决策暂态稳定紧急控制系统。 传统的离线决策、实时匹配方式离线计算工作量大,适应电网运行方式变化的能力差,且由于离线制定控制策略是按最严重情况考虑的,具体实施时容易过量,并可能发生失配[2]。但是在我国目前的调度自动化水平下,离线决策仍是不可缺少的控制方式。具体工程如日本东北电力公司的BSPC系统、华北神头地区的区域性安全稳定控制系统、东北辽西稳定控制系统、福建的WLK-1型微机联切控制系统等。 在线预决策是基于当前工况给出预想事故,其

相关文档
最新文档