高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳
高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳(含解析)

题型一:求某边的值

(1)ABC △的内角A B C ,,的对边分别为,,a b c .已知2

5,2,cos 3

a c A ===

,则b =_______.

(2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60?, ∠BCD =135? ,则BC = .

(3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2

-c 2

=3b ,且sin B =8cos A sin C ,则边b = .

(4)钝角△ABC 的面积是1

2

,AB =1,BC = 2 ,则AC = .

(5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -

c =2,cos A =-1

4,则a 的值为________.

(6)在ABC △中,已知3,120AB A ==o

,且ABC △的面积为153

4

,则BC 边长为______.

(7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________.

答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26

题型二:三角形的角

(1)在△ABC 中,B =π4,BC 边上的高等于1

3

BC ,则cos A =________.

(2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c

B b

+=

.则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且

cos sin a c

A C

=,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________.

(6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________.

答案:(1)-10

10

(2)

725

(3)π3A =

解析:tan 2sin cos 2sin 11tan sin cos sin A c A B C B b B A B

+=?+= 即sin cos sin cos 2sin sin cos sin B A A B C B A B +=

, ∴sin()2sin sin cos sin A B C B A B +=

,∴1cos 2

A = ∵0πA <<,∴π3A =. (4)

(5)6

π

(6) 6:5:4

题型三:三角形面积的最值问题

(1)在ABC ?中,角,,A B C 所对的边分别为,,a b c ,2a =且(2)(sin sin )()sin b A B c b C +-=-,则ABC ?面积的最大值为_________.

(2)已知ABC ?的三个内角A B C ,,的对边依次为a b c ,,,外接圆半径为1,且满足

,则ABC ?面积的最大值为___________. (3)在ABC ?中,若2

2

2,8AB AC BC =+=,则ABC ?面积的最大值为___________.

(4)若2,AB AC ==

,则ABC ?面积的最大值为___________.

(5)已知ABC ?面积S 和三边,,a b c 满足:()2

2

,8S a b c b c =--+=则ABC ?面积的最大值为___________.

答案:(1解析 由2a =,(2)(sin sin )()sin b A B c b C +-=-得

()(sin sin )()sin a b A B c b C +-=-.由正弦定理得222()()(),a b a b c b c b c a bc +-=-+-=

,1

cos ,23

A A π==

.因为222b c a bc +-=,所以2222

4,42,4b c bc b c bc bc bc +-=+=+≥≤,当

且仅当b c =时取等号.所以1

sin 2

ABC S bc A =

≤V

(2)

解析:由可得,即

,也即A B A C B A cos sin cos sin 2cos sin -=,故A C B A cos sin 2)sin(=+,也即1cos 2=A ,则060=A ,由正弦定理可得

再由余弦定理可得cb b c 3)(32-+=,即cb b c cb 4)(332≥+=+,所

以3≤cb ,

(3

(4) (5)

64

17

题型四:求三角形边的最值或范围

(1)已知ABC ?是锐角三角形,若B A 2=,则_______. (2)在锐角ABC ?,若2C B =,则

c

b

的取值范围是_______. (3)设A 是ABC ?的最小角,它所对的边为a ,若,1

cos 1

a A a -=+,则a 的取值范围是_______.

(4)在△ABC 中,若3sin 2sin C B =,点E ,F 分别是AC ,AB 的中点,则值范围为 .

(5)在钝角ABC ?中,已知1,2a b ==,则最大边的取值范围是 .

(6)已知顶点在单位圆上的△ABC ,角A ,B ,C 所对的边分别是,,a b c ,且

cos cos a c B b C =+,若b a ≥,则2b c -的取值范围是 .

(7)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .

答案:(1解析:由题意得,在ABC ?中,由正弦定理可得

为B A 2=,又因为锐角三角形,且

(2

(3)[)3,+∞ 解析:A B C π++=,所以,A B A C ≤≤,所以3,03

A A π

π≤<≤

,所以

1

cos 12

A ≤<,所以答案为[)3,+∞ (4)17(,)48

(5)

(

)

3,5 解析:因为是钝角三角形的最大边,所以C 是最大角.22212+>c 即

52>c ,5>∴c 或5-

(

)

3,5.

(6)[3,23) 解析:由已知可得:1cos 2A =,得3

A π=, 由2sin sin b c

B C

==,得2sin b B =,2sin c C =, 所

224sin 2sin 4sin 2sin(

)3sin 3cos 3b c B C B B B B π-=-=--=-23sin()6

B π=-.因为b a ≥,所以

23

3B π

π≤<

,即662

B πππ

≤-<, 所以223sin()[3,23)6

b c B π

-=-

∈. (7)(62-,6+2)解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重

合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得

sin sin BC BE

E C

=

∠∠,即

o o

2sin 30sin 75BE

=

,解得BE =

6+2

题型五:求三角形中角的最值或取值范围

(1

)ABC

?各角的对应边分别为c

b

a,

,

,满足1

+

+

+b

a

c

c

a

b

,则角A的范围是______. (2)在锐角三角形ABC中,若sin2sin sin

A B C

=,则tan tan tan

A B C的最小值是 . (3)已知ABC

?中,角A B C

,,的对边依次为a b c

,,,若cos2cos22cos2

A B C

+=,则cos C的最小值是 .

(4)在ABC

?中,角A B C

,,的对边依次为a b c

,,,若222

,,

a b c成等差数列,则cos B 的最小值是 .

(5)在△ABC中,角A,B,C的对边分别为a,b,c,已知

2

a b

c

+

=,则cos C的最小值是 .

答案:(1)]

3

,0(

π

解析:

(2)8 解析

(3)

1

2

(4)

1

2

解析:222

2b a c

=+,

22222

22

1

cos

222

a c

b b b

B

ac ac a c

+-

==≥=

+

,当且仅当a c

=

时等号成立.

(5)

1

2

解析:因为

2

a b

c

+

=,所以

2

22

2222

cos

22

a b

a b

a b c

C

ab ab

+

??

+- ?

+-??

==

311

842

b a

a b

??

=+-≥

?

??

,当且仅当a b

=时,等号成立.故cos C的最小值为

1

2

题型六:判断三角形的形状

(1)在三角形ABC 中,三边a 、b 、c 满足::21)a b c =,则三角形的形状为________.

(2)在ABC ?中,设,,,BC a CA b AB c ===u u u r r u u u r r u u u r r 若,a b b c c a ?=?=?r r r r r r

则三角形的形状为

________.

(3)在ABC ?中,若2

2

tan :tan :,A B a b =则三角形的形状为________.

答案:(1)锐角三角行 解析:a b c <

且2

4c =+228a b +=, 222

c a b ∴<+,则最大角C 为锐角,所以三角形为锐角三角形

(2)等边三角形 解析:0a b c ++=r r r r

Q ,22,()a b c a b c ∴+=-+=r r r r r r ,2222a b a b c ∴++?=r r r r r 同理2222b c b c a ++?=r r r r r ,两式相减,得2222

2()a c a b b c c a -+?-?=-r r r r r r r r ,

Q a b b c ?=?r r r r

,∴2a r =2c r ,a c =r r ,同理a b =r r ,∴a b c ==r r r ,故ABC ?是等边三角

形。

(3)等腰三角形或直角三角形 :由已知条件及正弦定理可得22

sin cos sin cos sin sin A B A

A B B

=,,A B Q 为三角形的内角,

sin 0,sin 0A B ∴≠≠,sin 2sin 2,22A B A B ∴=∴=或22A B π=-,A B ∴=或 2

A B π

+=

,所以ABC ?为等腰三角形或直角三角形。

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高考真题突破:数学归纳法

专题十三 推理与证明 第三十九讲 数学归纳法 解答题 1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈* N . 证明:当n ∈* N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1 122 n n n n x x x x ++-≤ ; (Ⅲ)1211 22 n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1 (1)()n n n b n a n n +=+∈N ,e 为自然对数的 底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1 (1)n n +与e 的大小; (Ⅱ)计算 11b a ,1212 b b a a ,123123 b b b a a a ,由此推测计算12 12n n b b b a a a 的公式,并给出证明; (Ⅲ)令112()n n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 3.(2014江苏)已知函数0sin ()(0) x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (Ⅰ)求()() 122222 f f πππ+的值; (2)证明:对任意的n *∈N ,等式()( ) 1444n n nf f -πππ+=成立. 4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p +>+1)1(; (Ⅱ)数列{}n a 满足p c a 11>,p n n n a p c a p p a -++-= 111, 证明:p n n c a a 1 1>>+. 5.(2014 重庆)设1 11,(*)n a a b n N +==+∈

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++??????=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

用放缩法证明不等式的方法与技巧答案

用放缩法证明不等式的方法与技巧 一.常用公式 k(k +1) k(k -1) 2. _____________ w ___ £ ________ ____ k 2 2 >k (k > 4) k 4. 1 x 2x 3x”…X k >2 (k > 2) 丄凸丄 k ! 2 ( k _1)! b (待学) 二?放缩技巧 (1) 所谓放缩的技巧:即欲证 A < B ,欲寻找一个(或多个)中间变量 C ,使A < C < B , 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 若 t 〉0, a+t >"a,a — t ■7^^ = n 1 1 1 —— --- = -------- n n +1 n(n +1) (4) 2( J n +1 - >/n)= 1 1 11,^

----- ,一 < ---- b b+m b b 1 “1 + 1 . . 1 n! 2 22 2n 」 1 1 1 1 + …c 1 +(1 —一) +(— 一一) n 2 2 3 + 1 3! 1 (7) (8) =2(V n - J n -1) J 2! 1 + — + — 22 32 1 1 1 --)(因为—< -------------- ) n n (n-1) n 丄+丄+丄1 n +1 n +2 n +3 或丄十丄十丄 n +1 n +2 n +3 1 +丄+丄+…+丄 …亠丄 2n n +1 ,丄」 2n A 丄+丄+… 需T n +丄 n +1 十丄+ 2n 2n ?+丄 T n "丄 n +1 2n —<1 n +1 _ n _ 1 —2n — 2 -n = V n 等等。 v n 三?常见题型 (一).先求和再放缩: 1?设 s, =! + 1+ 丄+■- + 2 6 12 n(n+1) 1 ,求证:Si <1 1 M 2 .设0=— ( n 匸N ),数列{b n b n^}的前n 项和为T n ,求证: n

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

高考数学专题训练 数学归纳法

数学归纳法 注意事项:1.考察内容:数学归纳法 2.题目难度:中等难度 3.题型方面:10道选择,4道填空,4道解答。 4.参考答案:有详细答案 5.资源类型:试题/课后练习/单元测试 一、选择题 1.用数学归纳法证明“)1 2...(312))...(2)(1(-???=+++n n n n n n ”从k 到1+k 左端需增乘 的代数式为 ( ) A .12+k B .)12(2+k C . 112++k k D .1 3 2++k k 2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +- D .()2f n n +- 3.已知 11 1 ()()12 31 f n n n n n *= +++ ∈++-N ,则(1)f k +=( ) A .1 ()3(1)1 f k k + ++ B .1 ()32f k k + + C .1111 ()3233341f k k k k k +++- ++++ D .11 ()341 f k k k +- ++ 4.如果命题()p n 对n k =成立,那么它对2n k =+也成立,又若()p n 对2n =成立,则下列 结论正确的是( ) A .()p n 对所有自然数n 成立 B .()p n 对所有正偶数n 成立 C .()p n 对所有正奇数n 成立 D .()p n 对所有大于1的自然数n 成立 5.用数学归纳法证明,“当n 为正奇数时,n n x y +能被x y + 整除”时,第二步归纳假设应写 成( ) A .假设21()n k k * =+∈N 时正确,再推证23n k =+正确

数学归纳法知识点大全

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

数学归纳法

数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.7 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. 1.利用数学归纳法证明问题时有哪些注意事项? 剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明. (2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析. 2.运用数学归纳法时易犯的错误有哪些? 剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错. (2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了. (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.

【自主练习】 1.已知f (n )=1n +1n +1+1n +2+…+1 n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1= 2? ???1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2)

相关文档
最新文档