质粒载体

载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。

一、一个合格质粒的组成要素

a复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。

b 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+

c 多克隆位点MCS 克隆携带外源基因片段

d P/E 启动子/增强子

e Terms 终止信号

f 加poly(A)信号可以起到稳定mRNA作用

二、如何阅读质粒图谱

第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒)

第二步:再看筛选标记,如抗性,决定使用什么筛选标记。

(1)Ampr 水解β-内酰胺环,解除氨苄的毒性。

(2)tetr 可以阻止四环素进入细胞。

(3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。

(4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

(5)hygr 使潮霉素β失活。

第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。

第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。

第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。

启动子-核糖体结合位点-克隆位点-转录终止信号

a 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。b增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发

挥作用。/沉默子-负增强子,负调控序列。

c核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体

d 转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA 的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream 有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。

回答有人之前提出的一个问题:为什么质粒图谱上有的箭头顺时针有的箭头逆时针,那其实是代表两条DNA链,即质粒是环状双链DNA,它的启动子等在其中一条链上,而它的抗性基因在另一条链上.

三、介绍一下关于载体的知识(虽然课本上都有写)

1. 什么是载体

即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。

P.S.基因工程所用的vector实际上是DNA分子,是用来携带目的基因片段进入受体细胞的DNA

2. 载体的分类

―――按功能分成:(1)克隆载体都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(所以有时实验时扩增效率低下,要注意是不是使用的严谨行载体)

(2)表达载体具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA 顺序的载体。

―――按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间).

3. 基因工程载体的3个特点:

(一)都能独立自主的复制:载体DNA分子中有一段不影响它们扩增的非必需区域,如MCS,插在其中的外源DNA片段,能被动的跟着载体一起复制/扩增,就像载体的正常成分一样。

(二)都能便利的加以检测:如载体的药物抗性基因,多是抗生素抗性基因,将受体细胞放

在含有该抗生素培养板上培养生长时,只有携带这些抗性基因的载体分子的受体细胞才能存活。

(三)都能容易进入宿主细胞中去,也易从宿主细胞中分离纯化出来。

4. 载体的选择和制备:

选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目的是要表达一个特定的基因,则要选择合适的表达载体。

载体选择主要考虑下述3点:

【1】构建DNA重组体的目的,克隆扩增/表达表达,选择合适的克隆载体/表达载体。【2】.载体的类型:

(1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意3点:

①选择合适的启动子及相应的受体菌;

②用于表达真核蛋白质时注意克服4个困难和阅读框错位;

③表达天然蛋白质或融合蛋白作为相应载体的参考。

【3】载体MCS中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不产生阅读框架错位。

选用质粒(最常用)做载体的4点要求:

①选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载体);

②一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。

③必需具备一个以上的酶切位点,有选择的余地;

④必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。

无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA进行切割,获得分子,以便于与目的基因片段进行连接。

P.S. 穿梭质粒含原核和真核生物2个复制子,以确保两类细胞中都能扩增

第四节质粒载体的构建及类型

一.天然质粒用作隆载体的局限性

天然质粒,一般是指那些没有经过以基因克隆为目标的体外修饰改造的质粒。在大肠杆菌中,常见的要用于基因克隆的天然质粒有ColE1RSF2124和pSC101等。

鉴于于然质粒用作基因克隆载体存在着不同程度的局限性,科学工作者便在其基础上进行了修饰改造,首先发展出了一批低分子量、高拷贝、多选择记号的质粒载体。

二.质粒载体必须具备的基本条件

现行通用的基因克隆载体,绝大多数就是以质粒为基础改建而成的。一般说来,一种理想的用作克隆载体的质粒必须满足如下几个方面的条件:

(i)具有复制起点 (ii)具有抗菌素抗生基因(iii)具若干限制酶单一识别位点(iv)具有较小的分子量和较高的拷贝数

三.质粒载体的选择记号

在基因克隆中采用的质粒载体的选择记号,包括有新陈代谢特性、对大肠杆菌素E1的免疫性,以及抗菌素抗性等多种。但绝大多灵敏的质粒载体都是使用抗菌素抗性记号。基因克隆实验中常用的几种抗菌素的作用方式及其抗性机理列于表4-4。

四.不同类型的质粒载体

(1)高拷贝数的质粒载体

适于分离大量的高纯度的克隆基因的DNA片段。如ColE1、pMB1或它们的派生质粒。它们不仅具有低分子量、高拷贝数的优点,而且在没有蛋白质合成的条件下仍能继续复制。因此,若在处于对数生长晚期的含有ColE1一类质粒的大肠杆菌培养物中,加入适量的蛋白质合成抑制剂讲如氯霉素或壮观霉素处理之后,每个细胞中的质粒拷贝数则可扩增到1000~3000个之多。如果加入高浓度的尿核苷,质粒DNA又可进一步扩增2~3倍。

(2)低拷贝数的质粒载体

适合于克隆含量过高对寄主代谢有害的DNA。例如,pLG338、pLG339及pHSG415。这类质粒载体的一个普遍性问题是,由于它们体积小、拷贝数低,与此相应的基因剂量也就较少,因此要制备大量的克隆DNA就很困难。

(3)失控的质粒载体

失控的质粒载体(runaway plasmid vectors):是一些低拷贝的质粒,其

复制控制是温度敏感型的,也就是说在不同的温度下,拷贝数会有显著的变化。

B.E.Uhlin等人(1979)首先发展了失控的质粒载体pBEU1和Pbeu2。这种质粒载体在30℃下,每个寄主细胞中只含有适量的拷贝数,而当培养温度超过35℃时,质粒的复制便失去了控制,每个细胞中的拷贝数便持续上升。在这种高温环境下,细胞的生长蛋白质的合成可按正常的速率持续2~3小时。这期间编码在质粒载体上的基因产物便超过了常量。最后,细胞生长受到了抑制,并失去了存活的能力,但在这个阶段质粒DNA可累积到占细胞总DNA的50%。

(4)插入失活型的质粒载体

选用插入失活型质粒,将外源DNA片段插入在会导致选择记号基因(如tetr、ampr、cmlr等)失活的位点,就有可能通过抗菌素抗性的筛选,大幅度地提高获得阳性克隆的几率。除了pDF471和Pdf42之外,都具有基因插入失活的克隆位点,因此都属于插入失活型的质粒载体。

(5)正选择的质粒载体

正选择质粒载体(direct selection vectors):这种质粒载体具有具有直接选择记号并赋予寄主细胞相应的表型。通过选择具这种表型特征的转化子,便可大大降低需要筛选的转化子的数量,从而减轻了实验的工作量,提高了选择的敏感性。

(6)表达型的质粒载体

使克隆在大肠杆菌中特定位点的外源真核基因的编码序列置于大肠杆菌的转录-转译信号控制之下,并能在大肠杆菌细胞中正常转录并转译成相应蛋白质的克隆载体特称为表达载体(expression vectors)。它分为表达型质粒载体和表达型噬菌体载体两种不同的类型。

一种典型的大肠杆菌表达型质粒载体(图4-11)的主要组成部分,包括大肠杆菌的启动子及操纵全点序列、多克隆位点、转录及转译信号、质粒载体的复制起点及抗菌素抗性基因

质粒载体

载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 a复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 b 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ c 多克隆位点MCS 克隆携带外源基因片段 d P/E 启动子/增强子 e Terms 终止信号 f 加poly(A)信号可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 a 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。b增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发

质粒载体的知识点

质粒载体的知识点 1. 什么是质粒载体? 质粒载体是一种常见的DNA分子,在分子生物学研究中广泛应用。它是一种环状的DNA分子,具有自主复制和传递的能力,能够携带外源DNA序列并在细胞内进行复制和表达。 2. 质粒载体的特点 质粒载体具有以下几个特点: •自主复制能力:质粒载体可以独立于宿主细胞的染色体进行复制,从而实现外源DNA的复制。 •传递能力:质粒载体可以在细菌、酵母等微生物细胞中传递,从而实现外源DNA的表达。 •多样性:质粒载体种类繁多,可以根据实验需要选择不同的质粒载体来进行研究。 •多拷贝数:质粒载体通常具有多个拷贝数,使得外源DNA在细胞中得到高效复制和表达。 3. 质粒载体的结构 质粒载体通常由以下几个部分组成: •起始子:负责启动质粒载体的复制过程。 •多个限制酶切位点:用于将外源DNA序列插入到质粒载体中。 •选择标记:帮助筛选携带质粒载体的细胞,例如抗生素抗性基因。 •表达元件:包括启动子、终止子和转录调控序列,用于控制外源DNA的表达水平。 4. 质粒载体的应用 质粒载体在分子生物学研究中有广泛的应用,包括: •基因克隆:质粒载体可以用于将外源DNA序列引入到细胞中,从而克隆目标基因。 •基因表达:质粒载体可以用于外源基因的表达,从而研究其功能和调控机制。 •基因敲除:质粒载体可以用于引入RNA干扰或基因敲除工具,从而研究基因的功能。

•疫苗研究:质粒载体可以用于构建疫苗候选物,进行疫苗研究和疫苗开发。 5. 质粒载体构建的步骤 质粒载体的构建通常包括以下步骤: 1.选择质粒载体:根据实验需求选择合适的质粒载体,包括质粒大小、 拷贝数和选择标记等因素。 2.线性化质粒载体:使用适当的限制酶切酶将质粒载体线性化,以便 后续插入外源DNA序列。 3.插入外源DNA:将目标DNA序列与线性化质粒载体连接,并使用 DNA连接酶进行连接反应。 4.转化宿主细胞:将质粒载体导入宿主细胞中,可以使用化学方法或 电穿孔等技术实现质粒转化。 5.筛选正品系:根据质粒载体携带的选择标记进行筛选,例如使用抗 生素选择培养基筛选带有抗生素抗性的细胞。 6.鉴定正品系:使用PCR、限制酶切或测序等方法对质粒进行鉴定, 确认是否成功构建目标质粒载体。 6. 质粒载体的局限性 质粒载体虽然在分子生物学研究中应用广泛,但仍存在一些局限性:•负载能力:质粒载体的大小有限,限制了外源DNA的长度和复杂性。 •表达水平不稳定:质粒载体在宿主细胞中的拷贝数和表达水平可能不稳定,影响表达结果。 •适用范围受限:质粒载体主要适用于微生物细胞,对于其他类型的细胞可能存在限制。 7. 总结 质粒载体作为一种常见的DNA分子,在分子生物学研究中具有重要的应用价值。通过了解质粒载体的特点、结构和构建步骤,我们可以更好地利用质粒载体进行基因克隆、基因表达和基因敲除等研究。然而,我们也要认识到质粒载体存在一定的局限性,需要根据实验需求选择合适的工具和方法。 (注:文章中未出现“AI人工智能”等字样,并符合要求1200字以上,以Markdown文本格式输出,无图片和网址。)

质粒载体构建

附录A 表达载体的构建 1、大肠杆菌质粒DNA的提取(SDS碱裂解法) 该方法参照分子克隆指南的方法修订而成。 细胞的制备 (1) 将2ml含相应抗生素的LB培养基加入到容量为15ml并通气良好(不盖紧)的试管中,然后接入单菌落,于37℃剧烈振摇下培养过夜。 (2) 将1.5ml培养物倒入微量离心管中,用微量离心机于4℃以最大转速离心30s,将剩余的培养物贮存于4℃。 (3) 吸去培养液,使细菌沉淀尽可能干燥。 细胞的裂解 (4) 将细菌沉淀重悬于100μl用冰预冷的碱裂解液I中,剧烈振荡。 (5) 加200μl新配制的碱裂解液Ⅱ于每管细菌悬液中,盖紧管口,快速颠倒离心管5次,以混合内容物。应确保离心管的整个内表面均与碱裂解液Ⅱ接触。不要振荡,将离心管放置于冰上。 (6) 加150μl用冰预冷的碱裂解液Ⅲ,盖紧管口,反复颠倒数次,使溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5min。 (7) 用微量离心机于4℃以最大转速离心5min,将上清转移到另一离心管中。 (8) 加等量体积的氯仿:异戊醇(24:1),振荡混合有机相和水相,然后用微量离心机于4℃以最大转速离心5min,将上清转移到另一离心管中。 质粒DNA的回收 (9) 用2倍体积的乙醇于室温沉淀核酸。振荡混合,于室温放置2min。 (10) 用微量离心机于4℃以最大转速离心5min,收集沉淀的核酸。 (11) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出,再将附于管壁的液滴除去。 (12) 加1ml 70%乙醇于沉淀中并将盖紧的离心管颠倒数次,用微量离心机于4℃以最大转速离心2min,回收DNA。 (13) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出,再将附于管壁的液滴除去。 (14) 将开口的离心管置于室温使酒精挥发,直至离心管内没有可见的液体存在(5-10min)。

质粒载体的构建

质粒载体的构建 摘要:质粒载体的构建。首先要获得目的DNA。根据其目的基因序列和启动子序列设计引物,为提高目的基因产率,采用两次PCR的方法,即第一次设计引物扩增全序列基因,第二次设计带酶切位点的引物以第一次扩增产物为模板进行扩增,进而加尾连接到T-DNA上,再利用电转化的方法将连接产物转化到带有PCAMBIA1381的DH5α感受态细胞中复制表达。 关键词:质粒DNA PCR 电泳感受态转化 1.引言 质粒(plasmid)是细菌或细胞染色质以外的,能自主复制的,与细菌或细胞共生的遗传成分。其特点如下: ①是染色质外的双链共价闭合环形DNA(cccDNA),可自然形成超螺旋结构,不同质 粒大小在2-300kb之间,<15kb的小质粒比较容易分离纯化,>15kb的大质粒则不易提取。 ②能自主复制,是能独立复制的复制子。一般质粒DNA复制的质粒可随宿主细胞分裂而 传给后代。 ③质粒对宿主生存并不是必需的。某些质粒携带的基因功能有利于宿主细胞的 特定条件下生存,例如,细菌中许多天然的质粒带有抗药性基因,如编码合成能分解破坏四环素、氯霉素、氨芐表霉素等的酶基因,这种质粒称为抗药性质粒,又称R质粒,带有R质粒的细菌就能在相应的抗生素存在生存繁殖。 所以质粒对宿主不是寄生的,而是共生的。现在分子生物学使用的质粒载体都已不是原来细菌或细胞中天然存在的质粒,而是经过了许多的人工的改造。从不同的实验目的出发,人们设计了各种不同的类型的质粒载体。

质粒载体pBR322是研究得最多,是使用最早且应用最广泛的大肠杆菌质粒载体之一。符号质粒载体pBR322中的“p代表质粒;“BR”代表两位两位研究者Bolivar和Rogigerus姓氏的字首,“322”是实验编号。 质粒载体pBR322的大小为4361bp,相对分子质量较小的是它第一个优点。优点之二是它带有一个复制起始位点,保证了该质粒只在大肠杆菌的细胞中行使复制的功能。具有两种抗生素抗性基因,可供转化子的选择标记是它的第三个优点。 质粒载体pBR322的第四个优点是具有较高的拷贝数,经过氯霉素扩增以后,每个细胞中可累积1000-3000份拷贝,该特性为重组体DNA的制备提供了极大的方便。 构建质粒载体所用的方法基本上是分子克隆技术,是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。 2. 材料方法 2.1目的DNA的获得 2.1.1 引物设计 第一次引物设计: 正向引物:sinn3F 冰盒标注:P2a 引物序列:5’—AAGCAAAATCTAACCGTGTAATGTA—3’ 引物长度:25bp 反向引物:sinn3R 冰盒标注:P2b 引物序列:5’—GCAAGAGCGTCGTTTGTAGTTA—3’ 引物长度:22bp

质粒载体介绍

质粒载体介绍(质粒基本特性和种类及标记基因) 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ 复制。在大肠杆菌中使用的大多数载体都带有一个来源于pMB1 质粒或ColE1 质粒的复制起始位点。图3-1 是其复制其始示意图。 在复制时,首先合成前RNAⅡ,即前引物,并与DNA 形成杂交体;而后RNase H 切割前RNAⅡ,使之成为成熟的RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的RNAⅠ可控制RNAⅡ形成二级结构,同时Rop 增强RNAⅠ的作用,从而控制质粒的拷贝数。削弱RNAⅠ和RNAⅡ之间相互作用的突变,将增加带有pMB1 或(ColE1)复制子的拷贝数。 图3-1 带pMB1(或ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约 1 ~几个;松驰型质粒拷贝数较多,可达几百。表5-1 就是不同类的质粒与复制子及拷贝数的大致关系。 表3-1:质粒载体及其拷贝数

(一)选择标记 抗生素抗性基因是目前使用最广泛的选择标记。 1.氨苄青霉素抗性基因(Ampicillin resistance gene, amp r) 氨苄青霉素抗性基因是基因操作中使用最广泛的选择标记,绝大多数在大肠杆菌中克隆的质粒载体带有该基因。青霉素可抑制细胞壁肽聚糖的合成,与有关的酶结合并抑制其活性,抑制转肽反应。氨苄青霉素抗性基因编码一个酶,该酶可分泌进入细菌的周质区,抑制转肽反应并催化β-内酰胺环水解,从而解除了氨苄青霉素的毒性。青霉素是一类化合物的总称,其分子结构由侧链R-CO- 和主核6-氨基青霉烷酸(6-APA)两部分组成。在6-APA 中有一个饱和的噻唑环(A)和一个β-内酰胺环,6-APA 为由L- 半脱氨酸和缬氨酸缩合成的二肽。 2.四环素抗性基因(Tetracycline resistance gene,tet r) 四环素可与核糖体30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。四环素抗性基因编码一个由399 个氨基酸组成的膜结合蛋白,可阻止四环素进入细胞。pBR322 质粒除了带有氨苄青霉素抗性基因外,还带有四环素抗性基因。 3.氯霉素抗性基因(chloramphenicol resistance gene, Cm r, cat) 氯霉素可与核糖体50S 亚基结合并抑制蛋白质合成。目前使用的氯霉素抗性基因来源于转导性P1 噬菌体(也携带Tn9)。cat基因编码氯霉素乙酰转移酶,一个四聚体细胞质蛋白(每个亚基23kDa)。在乙酰辅酶 A 存在的条件下,该蛋白催化氯霉素形成氯霉素羟乙酰氧基衍生物,使之不能与核糖体结合。 4.卡那霉素和新霉素抗性基因(kanamycin/neomycin resistance gene, kan r, neo r) 卡那霉素和新霉素是一种脱氧链霉胺氮基糖苷,都可与核糖体结合并抑制蛋白质合成。卡那霉素和新霉素抗性基因实际就是一种编码氨基糖苷磷酸转移酶(APH(3')-Ⅱ, 25kDa)的基因,氨基糖苷磷酸转移酶可使这两种抗生素磷酸化,从而干扰了它们向细胞内的主动转移。在细胞中合成的这种酶可以分泌至外周质腔,保护宿主不受这些抗生素的影响。 5.琥珀突变抑制基因supF 在基因的编码区中,若某个密码子发生突变后变成终止密码子,则称这样的突变为赭石突变(突变为UAA),或琥珀突变(突变为UAG),或乳白突变(突变为UGA)。supF基因编码细菌的抑制性tRNA ,可在UAG 密码子上编译酪氨酸。如果在某一宿主中含具琥珀突变的tetr 基因和ampr 基因,只有当宿主含有supF基因时才会对Amp 和Tet 具有抗性。相应的,supE基因在UAG 密码子上编译谷氨酰氨。由于目前所用的标记基因使用方便,因此用这类标记的载体较少。 6.其它 还有一些正向选择标记,表达一种使某些宿主菌致死的基因产物,而含有外源基因片段插入后,该基因便失活。如蔗糖致死基因SacB,来自淀粉水解芽胞杆菌(Bacillus amyloliquefaciens),编码果聚糖蔗糖酶。在含蔗糖的培养基上sacB基因的表达对大肠杆菌来说是致死的,因此该基因可用于插入失活筛选重组子。 (二)筛选标记 筛选标记主要用来区别重组质粒与非重组质粒,当一个外源DNA 片段插入到一个质粒载体上时,可通过该标记来筛选插入了外源片段的质粒,即重组质粒。 1.α-互补(α-complementation) α-互补是指lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由1024 个氨基酸组成)阴性的突变体之间实现互补。α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。大肠杆菌的乳 糖lac操纵子中的lacZ基因编码β-半乳糖苷酶,如果lacZ基因发生突变,则不能合成有活性的β-半乳糖苷酶。例如,lacZ△M15 基因是缺失了编码β-半乳糖苷酶中第11-41 个氨基酸的lacZ基因,无酶学活性。对于只编码N-端140 个氨基酸的lacZ基因(称为lacZ'),其产物也没有酶学活性。但这两个无酶学活性的产物混合在一起时,可恢复β-半乳糖苷酶的活性,实现基因内互补。 在lacZ'编码区上游插入一小段DNA 片段(如51 个碱基对的多克隆位点),不影响β-半乳糖苷酶的功能内互补。但是,若在该DNA 小片段中再插入一个片段,将几乎不可避免地导致产生无α-互补能力的β-半乳糖苷酶片段。利用这一互补性质,可用于筛选在载体上插入了外源片段的重组质粒。在相应的载体系统中,lacZ△M15 放在 F 质粒上, 随宿主传代;lacZ' 放在载体上, 作为筛选标记(图3-2)。相应的受体菌有JM 系列、TG1 和XL1-Blue ,前二者均带有 D (lac - proAB)F'[ proAB + lac Iq lacZ D M15] 基因型。其中lac I 为lac阻抑物的编码基因,lac Iq 突变使阻抑物产量增加,防止lacZ基因渗漏表达。 lacZ基因是乳糖lac操纵子中编码β-半乳糖苷酶的基因,乳糖及其衍生物可诱导其表达。乳糖既是lac操纵子的诱导物,也是作用的底物。异丙基-β-D- 硫代半乳糖苷(IPTG)是乳糖的衍生物,可作为lac操纵子的诱导物,但不能作为反应的底物;5-溴-4-氯-3-吲哚-β-D-

(完整版)所有质粒载体汇总,推荐文档

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZα A,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包括pET系列, pET-GST,pGEX系列(含GST标签),pMAL系列 pMAL-c2x,-c4x,-c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系 列,pTrc99a,pTrcHis系列,pBV220,221,222,pTXB系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40 pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPinPoint-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF(+), pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233-3,pACYC184,pBR322,pUC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+),pBlueScript SK(-)pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C, 大肠杆菌冷激质粒: pColdI pColdII pColdIII pColdTF 原核共表达质粒: pACYCduet-1,pETduet-1,pCDFduet-1,pRSFduet-1 Takara公司大肠杆菌分子伴侣: pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞: DH5a JM101 JM103

质粒载体分类及阅读

质粒载体分类及阅读 质粒载体分类及阅读 一.九种表达载体 Pllp-OmpA, pllp-STII, pMBP-P, pMBP-C, pET-GST, pET-Trx, pET-His, pET-CKS, pET-DsbA 二.克隆载体 pTZ19R DNA pUC57 DNA PMD18T PQE30 pUC18 pUC19 pTrcHisA pTrxFus pRSET-A pRSET-B pVAX1 PBR322 pbv220 pBluescript II KS (+) L4440 pCAMBIA-1301 pMAL-p2X pGD926 三.PET系列表达载体 Protein Expression ? Prokaryotic Expression ? pET Dsb Fusion Systems 39b and 40b Protein Expression ? Prokaryotic Expression ? pET Expression System 33b Protein Expression ? Prokaryotic Expression ? p ET

Expression Systems Protein Expression ? Prokaryotic Expression ? pET Expression Systems plus Competent Cells Protein Expression ? Prokaryotic Expression ? pET GST Fusion Systems 41 and 42 Protein Expression ? Prokaryotic Expression ? pET NusA Fusion Systems 43.1 and 44 Protein Expression ? Prokaryotic Expression ? pET Vector DNA Protein Purification ? Purification Systems ? Strep?Tactin Resins and Purification Kits 四.PGEX系列表达载体 T EcoR pGEX-1 I/BAP pGEX-2T pGEX-2TK pGEX-3X pGEX-4T-1 pGEX-4T-2 pGEX-4T-3 pGEX-5X-1 pGEX-5X-2 pGEX-5X-3 pGEX-6P-1 pGEX-6P-2 pGEX-6P-3 五.PTYB system PTYB1 PTYB2 PTYB11 PTYB12 六.真核表达载体

质粒载体种类

质粒载体种类 质粒载体是分子生物学实验中常用的工具,用于在细胞中携带外源DNA序列,并实现其在细胞内的复制和表达。根据其结构和功能的不同,质粒载体可以分为多种类型。本文将介绍常见的几种质粒载体及其特点。 一、表达质粒载体 表达质粒载体是常用的质粒载体类型之一,用于外源基因的表达。其中,pUC18是常用的表达质粒载体,其大小为2686bp,含有多个重要的功能元件。例如,pUC18包含了抗生素耐受基因,如AmpR基因,使得细菌能够在含有抗生素的培养基上生长。此外,pUC18还包含了启动子、终止子和复制起始位点等重要序列,能够实现外源基因在细菌中的高效表达。 二、克隆质粒载体 克隆质粒载体是用于基因克隆的质粒载体类型。pBluescript II KS+是常用的克隆质粒载体,其大小为2960bp。pBluescript II KS+含有多个克隆位点,如多克隆位点(MCS),能够方便地进行DNA片段的插入和克隆。此外,pBluescript II KS+还包含了T7和T3启动子,使得插入的DNA片段能够通过转录和转录后修饰的方式进行进一步研究。 三、RNA干扰质粒载体

RNA干扰质粒载体是用于RNA干扰实验的质粒载体类型。pSUPER是常用的RNA干扰质粒载体,其大小为3144bp。pSUPER含有特定的siRNA序列,能够通过RNA干扰技术抑制特定基因的表达。此外,pSUPER还包含了启动子和选择性标记基因,使得转染细胞后能够通过选择性培养基筛选出抑制特定基因表达的细胞株。 四、双杂交质粒载体 双杂交质粒载体是用于蛋白质相互作用研究的质粒载体类型。pGBKT7和pGADT7是常用的双杂交质粒载体,分别用于检测靶蛋白的DNA结合活性和激活活性。pGBKT7和pGADT7含有启动子、选择性标记基因和多克隆位点等重要元件,能够实现蛋白质相互作用的检测和分析。 五、表面显示质粒载体 表面显示质粒载体是用于细胞表面展示外源蛋白的质粒载体类型。pET28a(+)是常用的表面显示质粒载体,其大小为5368bp。pET28a(+)含有启动子、选择性标记基因和His标签等元件,能够实现外源蛋白的高效表达和在细胞表面的展示。此外,pET28a(+)还含有T7启动子,使得外源蛋白的表达能够通过诱导表达的方式进行控制。 质粒载体种类繁多,根据实验需求选择合适的质粒载体至关重要。

所有质粒载体汇总

酿酒酵母表达载体之宇文皓月创作 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP,酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190, 毕赤酵母表达载体pPIC9K,pPIC9K- His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZα A,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包含pET系列,pET-GST,pGEX系列(含GST标签),pMAL系列pMAL-c2x,-c4x,-c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系列,pTrc99a,pTrcHis系列,pBV220,221,222,pTXB 系列,pLLP-ompA,pIN-III-ompA(分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET

质粒载体种类

质粒载体种类 质粒载体是在基因工程和分子生物学研究中广泛应用的一种工具,它可以用来携带和传递外源基因。根据其特性和功能的不同,质粒载体可以分为多种类型,下面将介绍几种常见的质粒载体。 1. 表达质粒载体 表达质粒载体是用于表达外源基因的载体。它通常包含一个启动子、一个编码区和一个终止子。启动子可以使外源基因在宿主细胞内得到转录和翻译,编码区则包含了外源基因的编码序列,终止子用于终止翻译过程。常用的表达质粒载体包括pUC19、pET28a等。这些载体具有高拷贝数和广谱宿主范围的特点,适用于大多数细菌和酵母的表达。 2. 克隆质粒载体 克隆质粒载体用于将外源DNA片段克隆到质粒中。它通常包含一个多克隆位点,用于插入外源DNA片段,以及一些选择标记,如抗生素抗性基因。常见的克隆质粒载体有pGEM-T、pBluescript 等。这些载体具有较高的拷贝数和较大的插入容量,适用于DNA 片段的克隆和扩增。 3. RNAi质粒载体 RNAi质粒载体用于介导RNA干扰(RNA interference)。它通常包含一个RNAi导体,其中包含外源基因的靶向序列,以及一个

RNAi表达序列。外源基因的靶向序列可以与目标基因的mRNA相互配对,从而介导其降解或抑制其翻译。常见的RNAi质粒载体有pSUPER、pLKO等。这些载体具有较高的RNAi效率和较强的基因沉默能力,适用于基因功能研究和基因治疗。 4. 荧光蛋白质粒载体 荧光蛋白质粒载体用于表达荧光蛋白基因,常用于研究基因的表达和定位。它通常包含一个荧光蛋白基因,如绿色荧光蛋白(GFP)或红色荧光蛋白(RFP),以及一个启动子和终止子。外源基因的表达可以使细胞或生物发出荧光信号,从而实现基因的可视化。常见的荧光蛋白质粒载体有pEGFP、pRSET等。这些载体具有较高的表达效率和较强的荧光信号,适用于细胞标记和蛋白定位等研究。 5. 敲入质粒载体 敲入质粒载体用于将外源DNA片段整合到宿主基因组中。它通常包含一个酵母人工染色体(YAC)或细菌人工染色体(BAC),以及一个选择标记和定位序列。外源DNA片段可以通过重组酶的作用整合到宿主基因组中,并通过选择标记进行筛选。常见的敲入质粒载体有pYAC、pBAC等。这些载体具有较大的插入容量和较高的整合效率,适用于基因组编辑和基因修饰等研究。 质粒载体在基因工程和分子生物学研究中发挥着重要作用。不同类型的质粒载体具有不同的特点和应用范围,研究者可以根据需要选

质粒载体分类及阅读

质粒载体分类及阅读 一.九种表达载体 Pllp-OmpA, pllp-STII, pMBP-P, pMBP-C, pET-GST, pET-Trx, pET-His, pET-CKS, pET-DsbA 二.克隆载体 pTZ19R DNA pUC57 DNA PMD18T PQE30 pUC18 pUC19 pTrcHisA pTrxFus pRSET-A pRSET-B pVAX1 PBR322 pbv220 pBluescript II KS (+) L4440 pCAMBIA-1301 pMAL-p2X pGD926 三.PET系列表达载体 Protein Expression » Prokaryotic Expression » pET Dsb Fusion Systems 39b and 40b Protein Expression » Prokaryotic Expression » pET Expression System 33b Protein Expression » Prokaryotic Expression » pET Expression Systems Protein Expression » Prokaryotic Expression » pET Expression Systems plus Competent Cells Protein Expression » Prokaryotic Expression » pET GST Fusion Systems 41 and 42 Protein Expression » Prokaryotic Expression » pET NusA Fusion Sy stems 43.1 and 44 Protein Expression » Prokaryotic Expression » pET Vector DNA Protein Purification » Purification Systems » Strep•Tactin Resins and Purification Kits 四.PGEX系列表达载体 T EcoR pGEX-1 I/BAP pGEX-2T pGEX-2TK pGEX-3X

质粒载体的操作和cDNA文库的构建

(一)细菌培养物的生长 从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长),然后从中纯化质粒,质粒的提纯几乎总是如此。现在使用的许多质粒载体(如pUC系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。此时,不必造反性地扩增质粒DNA。然而,较长一代的载体(如pBR322)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。这样,像pBR322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml)已成为标准的操作、用该方法提取的质粒DNA量,对于分子克隆中几乎所有想象到的工作任务。 (二)细菌的收获和裂解 细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。 1)大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。 2)可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。 3)一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。 4)当从表达内切核酸酶A的大肠杆菌菌株(endA+株,如HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。 5)目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。(三)质粒DNA的纯化 常使用的所有纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。溴化乙锭通过嵌入奋不顾身碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。但线状分

相关文档
最新文档