整式-分式-因式分解-二次根式解题技巧

整式-分式-因式分解-二次根式解题技巧
整式-分式-因式分解-二次根式解题技巧

1.整式

用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.

只含有数与字母的积的代数式叫单项式.

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 23

13-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.

几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.

单项式和多项式统称整式.

用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整

体”代入.

2.同类项

所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.

注意:(1)同类项与系数大小没有关系;

(2)同类项与它们所含字母的顺序没有关系.

把多项式中的同类项合并成一项,叫做合并同类项.

合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.

去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.

整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.

同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=?(n m ,都是正整数).

幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n

m a a =(n m ,都是正整数).

积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂

相乘.如:()n n n b a ab =(n 为正整数).

单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

注意:单项式乘以单项式的结果仍然是单项式.

单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:

()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).

注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.

②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同

时还要注意单项式的符号.

多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.

①平方差公式:22))((b a b a b a -=-+;

②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;

③立方和公式:3322))((b a b ab a b a +=+-+

④立方差公式:3322))((b a b ab a b a -=++-;

⑤ac bc ab c b a c b a 222)(2222+++++=++.

注意:公式中的字母可以表示数,也可以表示单项式或多项式.

同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).

注意:10=a (0≠a );p a a

a p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的

3.因式分解

把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例

如:23248a ab b a ?=;()111+=+a a

a a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:

()c b a c b a ++=++222,不是因式分解.

(3)因式分解和整式乘法是互逆变形.

(4)因式分解必须在指定的范围内分解到不能再分解为止.如:

4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()

b a b a b a 55522-++.

1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因

式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.

2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.

平方差公式:()()b a b a b a -+=-22.

完全平方公式:()2222b a b ab a +=++;()2

222b a b ab a -=+-.

立方和公式:()()2233b ab a b a b a +-+=+.

立方差公式:()()2233b ab a b a b a ++-=-.

注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.

3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.

4、十字相乘法:()()()q x p x pq x q p x ++=+++2.

5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.

因式分解的一般步骤是:

(1)如果多项式的各项有公因式,那么先提取公因式;

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;

(3)分解因式必须分解到每一个因式都不能再分解为止.

4. 分式

一般的,用B A ,表示两个整式,B A ÷就可以表示成

B A 的形式.如果B 中含有字母,式子B

A 就叫做分式.其中,A 叫做分式的分子,

B 叫做分式的分母.分式和整式通称为有理式.

注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;

(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;

(3)当分子等于零而分母不等于零时,分式的值才是零.

把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.

一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、

分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.

一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式. 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:M

B M A M B M A B A ÷÷=??=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: B

A B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.

例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)222

26.04

11034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.

解:(1)b a b a b a b a b a b a 344612413

112312141313121-+=???? ??-???? ??+=-+; (2)()()()

2222222222222

22

2125568560253040100)6.025.0(1003.04.06.04

11034.0y x y x y x y x y x y x y x y x -+=-+=?-?+=-+ 2

22

212568y x y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:

bd ac d c b a =?;bc

ad c d b a d c b a =?=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:

n n n b a b a =??

? ??(n 为整数). 3、分式的加减法则:

①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:

c

b a

c b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:

bd

bc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算7

8563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7

175********+++++++-+++-+++=x x x x x x x x ??

? ??+++??? ??++-??? ??++-++=711511311111x x x x ??

? ??+-+-+-+=71513111x x x x ()()()()

752312++-++=x x x x ()()()()()()()()

7531312752++++++-++=x x x x x x x x ()()()()

75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.

5.二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式

若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而

b a ,()2b a +,248ab ,x

1就不是最简二次根式.

化二次根式为最简二次根式的方法和步骤:

①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.

②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.

注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.

合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.

把分母中的根号化去,叫分母有理化.如=+1

31 )

13)(13(1

3-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.

注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如

22133)

7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)???<-≥==.

,)0()0(2a a a a a a (3))0,0(≥≥?=b a b a ab . (4))0,0(>≥=b a b

a b a 二次根式的加减法法则:

(1)先把各个二次根式化成最简二次根式;

(2)找出其中的同类二次根式;

(3)再把同类二次根式分别合并.

二次根式的乘法法则:

两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =?(0,≥b a ).此法则可以推广到多个二次根式的情况.

二次根式的除法法则:

两个二次根式相除,被开方数相除,根指数不变,即:b

a b a

=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.

二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).

例1、计算:6

321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6

321263212--+++-- ()()()()

1312213122-+---= ()()()()2

131********+--++=

(

)()131212++-+= ()132+= 232+=.

例2、计算:()()()()7

51755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、

减法的运算法则“ab

a b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()

355737+-+=-,

∴原式7

51751531531321+++-+++-+= 321+= 23-=.

例3、已知2

73-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值.

分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.

解: 272

73+=-=x , 又372<< ,

54<<∴x .

27427,4-=-+==∴b a . ()()()(

)()(

)272727762776274274-+--=+-=-+--=+-∴b a b a 3

1978-=.

二次根式的化简技巧

一、 巧用公式法

例1计算b a b

a b a b

a b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()

0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。

解:原式=()b a b

a --2+()()

b a b

a b a +-+=()b a -+()

b a -=2a -2b 二、适当配方法。

例2.计算:3216

3223-+--+

分析:本题主要应该从已知式子入手发现特点,∵分母含有1+32-其分子必有含1+32-的因式,于是可以发现3+22=()221+,且()

21363+=+,通过因式分解,分子所含的1+32-的因式就出来了。

解:原式=

()()32163223-++-+=()()=-++-+3212132121+2 三、正确设元化简法。

例3:化简53262++

分析:本例主要说明让数字根式转化成字母的代替数字化简法,通过化简替代,使其变为简单的运算,再运用有理数四则运算法则的化简分式的方法化简,例如:a =2,c =5,,3b =6=ab ,正好与分子吻合。对于分子,我们发现222c b a =+所以0222=-+c b a ,于是在分子上可加02

22=-+c b a ,因此可能能使分子也有望化为含有c b a ++因式的积,这样便于约分化简。

解:设,2a =,3b =c =5则262=ab 且0222=-+c b a 所以:

原式=()()()5322222

222-+=-+=++-+++=+-+=++-++=++c b a c b a c b a c b a bc a c b a c b a c b a ab c b a ab 四、拆项变形法

例4,计算()()76655627++++

分析:本例通过分析仍然要想到,把分子化成与分母含有相同因式的分式。通过约分化简,如转化成:

b a ab b a 11+=+再化简,便可知其答案。

解:原式==()()()()

()()()()76657676656576657665+++++++=++++

+ 5767567616

51

-=-+-=+++ 五、整体倒数法。

例5、计算()()13251

335++++ 分析:本例主要运用了变倒数后,再运用有关公式:

b a ab b a 11+=+,化简但还要通过折项变形,使其具有公因式。

解:设A=()()13251335++++

()()()()()()1335133513351

3251++

+++=++++=A 则=

235213351

131

-+-=+++ 所以A=2

15152+=- 六、借用整数“1”处理法。

例6、计算6323

2231++-+

分析:本例运用很多方面的知识如: 1=()()

()b a --+.2323和×()22b a b a -=+,然后再运用乘法分配率,使分子与分母有相同因式,再约分化简。 解:原式 =()()()()()

6322

3623236323

2232323++-+-+=++-+-+

=23623)

623)(23(-=+++--

七、 恒等变形整体代入结合法

分析:本例运用整体代入把x+y 与xy 的值分别求出来,再运用整体代入法将x+y 与xy 代入例题中,但一定要把所求多项式进行恒等变形使题中含有x+y 与xy 的因式,

如x 2-xy+y 2=(x+y)2-3xy ,然后再约分化简。

例7:已知X=

21(57+),y =21(-75),求下列各式的值。 (1)x 2-xy+y 2; (2)y x + x

y 解:因为X=21(57+),y =2

1(-75),所以:x+y=7,xy=21。

(1) x 2-xy+y 2=(x+y )2-3 xy=(7)2-3×21=2

11 (2) y x + x y =xy y x 22+=()=-+xy xy y x 221221

212)7(2=?-

八、降次收幂法:

例8、已知x=2+3,求7

25232-+-x x x 的值。 分析:本例运用了使题中2次幂项转化成1次方的项再化简。如例题中把多项式142-+x x 转化为4x -1,这样进行低次幂运算就容易了。

解:由x=2+3,得x -2=3。(x-2)

2=3整理得:x 2=4x -1。 所以:3x 2-2 x+5=3(4 x -1)-2 x+5=10(2+3)+2=22+103

22 x -7(2+3)-7=23-3,所以原式=3323

1022-+-=42+3

374 分式运算的几点技巧

分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。

一. 分段分步法

例1. 计算:

解:原式

说明:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。

同类方法练习题:计算

(答案:)

二. 分裂整数法

例2. 计算:

解:原式

说明:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。

同类方法练习题:有一些“幸福”牌的卡片(卡片数目不为零),团团的卡片比这些多6张,圆圆的卡片比这些多2张,且知团团的卡片是圆圆的整数倍,求团团和圆圆各多少张卡片?(答案:团团8张,圆圆4张)

三. 拆项法

例3. 计算:

解:原式

说明:对形如上面的算式,分母要先因式分解,再逆用公式,各个分式拆项,正负抵消一部分,再通分。在解某些分式方程中,也可使用拆项法。

同类方法练习题:计算:

(答案:)

四. 活用乘法公式

例4. 计算:

解:当且时,

原式

说明:在本题中,原式乘以同一代数式,之后再除以同一代数式还原,就可连续使用平方差公式,分式运算中若恰当使用乘法公式,可使计算简便。

同类方法练习题:计算:

(答案:)

五. 巧选运算顺序

例5. 计算:

解:原式

说明:此题若按两数和(差)的平方公式展开前后两个括号,计算将很麻烦,一般两个分式的和(差)的平方或立方不能按公式展开,只能先算括号内的。

同类方法练习题:解方程

(答案:)

六. 见繁化简

例6. 计算:

解:原式

说明:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。同类方法练习题:解方程(答案:)

因式分解的常见变形技巧

技巧一符号变换

有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。

体验题1(m+n)(x-y)+(m-n)(y-x)

指点迷津y-x= -(x-y)

体验过程原式=(m+n)(x-y)-(m-n)(x-y) =(x-y)(m+n-m+n) =2n(x-y)

小结符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。

实践题1分解因式:-a2-2ab-b2

技巧二系数变换

有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

体验题2分解因式4x2-12xy+9y2

体验过程原式=(2x)2-2(2x)(3y)+(3y)2=(2x-3y)2

小结系数变化常用于可用公式,但用公式的条件不太清晰的情况下。

实践题2分解因式

2

2

1

439

xy y

x++

技巧三指数变换

有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

体验题3分解因式x4-y4

指点迷津把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。

体验过程原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)

小结指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。

实践题3分解因式a4-2a4b4+b4

技巧四展开变换

有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。然后再分组。

体验题4a(a+2)+b(b+2)+2ab

指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。然后分组。

体验过程原式= a2+2a+b2+2b+2ab=(a+b)2+2(a+b)=(a+b)(a+b+2)

小结展开变化常用于已经分组,但此分组无法分解因式,相当于重新分组。

实践题4x(x-1)-y(y-1)

技巧五拆项变换

有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。

体验题5 分解因式3a3-4a+1

指点迷津本题最高次是三次,缺二次项。三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。所以我们将一次项拆开,拆成

-3a-a试试。

体验过程原式= 3a3-3a-a+1=3a(a2-1)+1-a= 3a(a+1)(a-1)-(a-1) =(a-1) [3a(a+1)-1]

=(a-1)(3a2+3a-1)

另外,也可以拆常数项,将1拆成4-3。

原式=3a3-4a+4-3=3(a3-1)-4(a-1) =3(a-1)(a2+a+1)-4(a-1)

=(a-1)(3a2+3a+3-4)=(a-1)( 3a2+3a-1)

小结拆项变化多用于缺项的情况,如整式3a3-4a+1,最高次是三,其它的项分别是一,零。缺二次项。通常拆项的目的是将各项的系数调整趋于一

致。

实践题5分解因式3a3+5a2-2

巧六添项变换

有些多项式类似完全平方式,但直接无法分解因式。既然类似完全平方式,我们就添一项然后去一项凑成完全平方式。然后再考虑用其它的方法。

体验题6分解因式x2+4x-12

指点迷津 本题用常规的方法几乎无法入手。与完全平方式很象。因此考虑将

其配成完全平方式再说。

体验过程 原式= x 2+4x+4-4-12=(x+2)2-16=(x+2)2-42=(x+2+4)(x+2-4)=(x+6)(x-2)

小结 添项法常用于含有平方项,一次项类似完全平方式的整式或者是缺

项的整式,添项的基本目的是配成完全平方式。

实践题6 分解因式x 2-6x+8 实践题7 分解因式a 4+4

技巧七 换元变换

有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。然后再考虑用公式法或者其它方法。

体验题7 分解因式 (x+1)(x+2)(x+3)(x+4)+1

指点迷津 直接展开太麻烦,我们考虑两两结合。看能否把某些部分作为整体考虑。

体验过程 (x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x 2+5x+4)(x 2+5x+6)+1*

令x 2+5x=m.

上式变形为(m+4)(m+6)+1

m 2+10m+24+1=(m+5)2=(x 2+5x+5)2

*式也可以这样变形,令x 2+5x+4=m

原式可变为:m(m+2)+1=m 2+2m+1=(m+1)2=(x 2+5x+5)2

小结 换元法常用于多项式较复杂,其中有几项的部分相同的情况下。如

上题中的x 2+5x+4与x 2+5x+6就有相同的项x 2+5x.,换元法实际上是

用的整体的观点来看问题。

实践题8 分解因式x(x+2)(x+3)(x+5)+9

实践题答案

实践题1 分解因式:-a 2-2ab-b 2

实践详解 各项提出符号,可用平方和公式.

原式=-a 2-2ab-b 2=-( a 2+2ab+b 2)= -(a+b)2

实践题2 分解因式2

21439

xy y x ++ 实践详解 原式=(2x )2+2.2x ?3y ?+(3y )2=(2x +3

y )2

实践题3 分解因式 a 4-2a 4b 4+b 4

指点迷津 把a 4看成(a 2)2,b 4=(b 2)2

实践详解 原式=(a 2-b 2)2=(a+b)2(a-b)2

八年级分式和二次根式综合

辅导教案

18、已知实数x ,y 满足x 2+y 2-4x -2y+5=0,则32x y y x +-的值为________ 19、计算:(318+ 151504)322-÷= 20、如果 ,则=_______. 21、若 互为相反数,则_______。 22、将 根号外的a 移到根号内,得 __________ 23、在实数范围内分解因式 (1) ; (2) 24、 的整数部分是_________,小数部分是________。 25、 若 =3,则x 的取值范围是______ 26、 观察下列各式及其验证过程: , 验证:; 验证: .

(1)按照上述两个等式及其验证过程的基本思路,猜想 4 4 15 的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程. 27、已知,则a_________ 28、已知,则a______ 29、二次根式、、的大小关系是______ 30、当0

35、如果xy= ,x -y=5-1,那么(x+1)(x -1)的值为________。 36、若m 为正实数,且13m m - =,221m m -则= 37、若a<-2, 的化简结果是________ 38、已知x=2+1,求( 22121x x x x x x +---+)÷1x 的值. 39、对于题目“化简求值:1a +2212a a +-,其中a=15”,甲、乙两个学生的解答不同. 甲的解答是:1a +2212a a +-=1a +21()a a -=1a +1a -a=2495 a a -= 乙的解答是: 1a +2212a a +-=1a +21()a a -=1a +a -1a =a=15 谁的解答是错误的?为什么? 40、已知x =12,x=________ 41、化简 = 42、已知三个数x ,y ,z 满足xy x y +=-2,yz y z +=43,zx z x +=-43 .则xyz xy yz zx ++的值为 .

分式与二次根式练习题

分式练习题 1. (2013年天津市3分)若x=-1,y=2,则 222x 1x 64y x 8y ---的值等于【 】 A .117- B .117 C .116 D .115 2. (2013年内蒙古包头3分)函数1y x 1=+中,自变量x 的取值范围是【 】 A .x >﹣1 B .x <﹣1 C .x ≠﹣1 D .x ≠0 3. (2013年广东深圳3分)分式2x 4x 2 -+的值为0,则【 】 A.x=-2 B. x=±2 C. x=2 D. x=0 4. (2013年湖南娄底3分)有意义的x 的取值范围是【 】 A .1x 2≥-且x≠1 B .x≠1 C .1x 2 ≥- D .1x>2-且x≠1 5. (2013年湖北襄阳3分)有意义的x 的取值范围是 . 6. (2013年重庆市B10分)先化简,再求值:2x 2x 1x 4x x 2x 4x 4+--??-÷ ?--+??,其中x 是不等式3x 71>+的负整数解。 7. (2013年贵州贵阳6分)先化简,再求值:22312x x x 1x x 2x 1 -??-÷ ?+++??,其中x=1. 8 (2013年黑龙江牡丹江农垦5分)先化简:24x 4x 4x x x ++??-÷ ?? ?,若﹣2≤x≤2,请你选择一个恰当的x 值(x 是整数)代入求值.

二次根式练习题 1.(2013年上海市4分)下列式子中,属于最简二次根式的是【】 (A)(B(C)(D 2.(2013年广东珠海3分)实数4的算术平方根是【】 A.-2 B.2 C.±2 D.±4 3.(2013年广西贺州3分)1的值在【】 A.2到3之间B.3到4之间C.4到5之间D.5到6之间 4.(2013年广西崇左3分)下列根式中,与是同类二次根式的是【】 A B C D 5.(2013年湖北武汉3分)x的取值范围是【】A.x<1 B.x≥1 C.x≤-1 D.x<-1 6.(2013年湖北荆州3分)计算】 A B C D 7.(2013年海南省3分)】 A B.C.D.2 8.(2013年山东临沂3分)】 A.B C.D 9. (2013年湖南常德3分)】 A.﹣1 B.1 C.4-D.7 10.(2013年湖北襄阳3分)有意义的x的取值范围是. 11.(2013年江苏宿迁3分)+的值是. 12.(2013年内蒙古包头3分)=.

分式和二次根式专题训练

分式和二次根式专题训练 一、填空题:(每题 3 分,共 36 分) 1、当 x ____时,分式有意义。 2、当____时,有意义。 3、计算:-a -1=____。 4、化简:(x 2-xy)÷=____。 5、分式,,的最简公分母是____。 6、比较大小:2____3。 7、已知=,则的值是____。 8、若最简根式和是同类根式,则 x +y =____。 9、仿照2=·==的做法,化简3 =____。 10、当 2<x <3 时,-=____。 11、若的小数部分是 a ,则 a =____。 12、若 =++2成立,则 x +y =____。 二、选择题:(每题 4 分,共 24 分) 1、下列各式中,属于分式的是( ) A 、 B 、 C 、x + D 、 2、对于分式总有( ) A 、= B 、= C 、= D 、= 3、下列根式中,属最简二次根式的是( ) A 、 B 、 C 、 D 、 4、可以与合并的二次根式是( ) A 、 B 、 C 、 D 、 x 2 x -3 a -2a 2 a -1 x -y xy b 2a 24a 3bc a 5c 2 32x +2y 2y 5 2x +y y x +1y 30.5220.54×0.5213 (2-x)2(x -3)231-x x -1x -y 22x +y 12x 2 1x -1 1x -1x -1(x -1)21x -1x +1x 2-11x -112(x -1)21x -111-x 27x 2+112a 2b 1827613 8y y

5、如果分式中的 x 和 都扩大为原来的 2 倍,那么分式的值( ) A 、扩大 2 倍 B 、扩大 4 倍 C 、不变 D 、缩小 2 倍 6、当 x <0 时,|-x |等于( ) A 、0 B 、-2x C 、2x D 、-2x 或0 三、计算:(每题 6 分,共 24 分) 1、()3÷()0×(-)-2 2、(+)÷ 3、-+ 4、(3-2)2 四、计算:(每题 6 分,共 24 分) 1、-+ 2、÷(x +1)· 3、-· 4、4b +-3ab (+) 2x x +y x 2b 2a 22b 23a b a x 2x -242-x x +22x 84 21223x x +y y y -x 2xy x 2-y 2x 2-1x 2+4x +4x 2+3x +2x -120+5 51 312a b 2 a a 5 b 31 ab 4ab y

中考总复习:分式与二次根式—知识讲解(提高)与例题讲解

中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】 1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程; 2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】

【考点梳理】 考点一、分式的有关概念及性质 1.分式 设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义. 2.分式的基本性质 (M为不等于零的整式). 3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点诠释: 分式的概念需注意的问题: (1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用; (2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0; (3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断. (4)分式有无意义的条件:在分式中, ①当B≠0时,分式有意义;当分式有意义时,B ≠0. ②当B=0时,分式无意义;当分式无意义时,B=0.

③当B≠0且A = 0时,分式的值为零. 考点二、分式的运算 1.基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算错误!未找到引用源。±错误!未找到引用源。=错误!未找到引用源。 同分母的分式相加减,分母不变,把分子相加减. ; 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算. (2)乘法运算 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (4)乘方运算(分式乘方) 分式的乘方,把分子分母分别乘方. 2.零指数. 3.负整数指数

整式、分式、二次根式的性质和概念

1、整式的概念和指数: 与 统称为整式。 单项式包括: 、 、 ; 一个单项式中所有字母的 叫做这个单项式的次数。 多项式:几个单项式的代数和多项式。 单项式中次数最 的项就是这个多项式的次数。 2、分式的概念和意义: 一般地,形如式子B A ,且 B ≠0叫做分式。 (1)、分式有意义的条件: (2)、分式无意义的条件: (3)、分式为0的条件: (4)、分式的基本性质:分式的分子与分母同时 (一个不等于0)的整式,分式的值不变。 (5)、约分: (6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。 (7)、通分: (8)、最简公分母: (9)、分母有理化:把分母中的根号化去,叫做分母有理化。注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。 3、二次根式的概念和意义: (1)、定义:形如a (a ≥0)的式子,叫做二次根式。 (2)、二次根式有意义的条件: 二次根式无意义的条件: (3)、二次根式的性质: ()a 2 =a(a ≥0);

a 2=a =?????<-=>)0()0(0)0(a a a a a a b =a b ? (a ≥0, b ≥0); ④b a =b a ( a ≥0, b >0)。 (4)、最简二次根式: 中不含二次根式; 被开方数中不含能开得尽的因数或因式。 (5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。 知识点二:代数式的运算 (一)、整式的加减运算 (1)、同类项: (2)、合并同类项法则: (3)、去括号法则: (4)、整式的加减的实质就是合并同类项。 (二)、整式的乘除 (1)、同底数幂的乘法:a m ·a n = ,底数不变,指数相加. (2)、幂的乘方与积的乘方:(a m )n = ,底数不变,指数相乘; (3)、(ab)n = ,积的乘方等于各因式乘方的积. (4)、单项式的乘法:系数相乘,相同字母 ,只在一个因式中含有的字母,连同指数写在积里. (5)、单项式与多项式的乘法:m(a+b+c)= ,用单项式去乘多项式的每一项,再把所得的积相加.

整式,分式,因式分解,二次根式解题技巧

1.整式 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式. 只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数 表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313 -.一个单项式中, 所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式. 几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数. 单项式和多项式统称整式. 用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值. 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整 体”代入. 2.同类项 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项. 注意:(1)同类项与系数大小没有关系; (2)同类项与它们所含字母的顺序没有关系. 把多项式中的同类项合并成一项,叫做合并同类项. 合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号. 去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号. 整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项. 同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:

中考数学代数式整式分式二次根式知识点

知识点大全 2. 代数式(分类) 2.1. 整式(包含题目总数:15) 001020; 001030; 001040; 001050; 001070; 001110; 001130; 001140; 001150; 001160; 001170; 001180; 001200; 001220; 001230; 2.1.1. 整式的有关概念 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式. 只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如: b a 2314-这种表示就是错误的,应写成:b a 23 13-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式. 几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的 项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数. 单项式和多项式统称整式. 用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.

知识点大全 注意: (1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入. (2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入. 2.1.2. 同类项、合并同类项 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项. 注意: (1)同类项与系数大小没有关系; (2)同类项与它们所含字母的顺序没有关系. 把多项式中的同类项合并成一项,叫做合并同类项. 合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 2.1. 3. 去括号法则 去括号法则1:括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号.

分式和二次根式

分式和二次根式 (三) (分式和二次根式) 一、填空题:(每题 3 分,共 36 分) 1、当 x ____时,分式x 2 x -3 有意义。 2、当____时,a -2有意义。 3、运算:a 2 a -1 -a -1=____。 4、化简:(x 2-xy)÷x -y xy =____。 5、分式b 2a 2,4a 3bc ,a 5c 2的最简公分母是____。 6、比较大小:23____32。 7、已知x +2y 2y = 5 2,则x +y y 的值是____。 8、若最简根式x +1和y 3是同类根式,则 x +y =____。 9、仿照20.5=22·0.5=4×0.5=2的做法,化简3 1 3 =____。 10、当 2<x <3 时,(2-x)2-(x -3)2 =____。 11、若3的小数部分是 a ,则 a =____。 12、若 =1-x +x -1+2成立,则 x +y =____。 二、选择题:(每题 4 分,共 24 分) 1、下列各式中,属于分式的是( ) A 、x -y 2 B 、2 x +y C 、12x + D 、x 2 2、关于分式1 x -1总有( ) A 、1 x -1=x -1(x -1)2 B 、1x -1=x +1x 2-1 C 、1x -1=12(x -1)2 D 、1x -1=11-x 3、下列根式中,属最简二次根式的是( ) A 、27 B 、x 2+1 C 、1 2 D 、a 2b 4、能够与18合并的二次根式是( ) A 、27 B 、6 C 、1 3 D 、8 5、假如分式 2x x +y 中的 x 和 都扩大为原先的 2 倍,那么分式的值( ) A 、扩大 2 倍 B 、扩大 4 倍 C 、不变 D 、缩小 2 倍 6、当 x <0 时,|x 2-x |等于( ) y y y

中考总复习:分式与二次根式

中考总复习:分式与二次根式 【考纲要求】 1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程; 2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算. 【知识网络】 【考点梳理】 考点一、分式的有关概念及性质

1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零, 否则分式没有意义. 2.分式的基本性质(M为不等于零的整式). 3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点诠释: 分式的概念需注意的问题: (1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用; (2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0; (3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断. (4)分式有无意义的条件:在分式中, ①当B≠0时,分式有意义;当分式有意义时,B≠0. ②当B=0时,分式无意义;当分式无意义时,B=0. ③当B≠0且A = 0时,分式的值为零. 考点二、分式的运算 1.基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算±= 同分母的分式相加减,分母不变,把分子相加减. ; 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算. (2)乘法运算 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (4)乘方运算(分式乘方) 分式的乘方,把分子分母分别乘方. 2.零指数. 3.负整数指数 4.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的. 5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. 约分需明确的问题: (1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;

整式、分式、二次根式的性质和概念;

第五章整式、分式、二次根式的知识梳理 1、整式的概念和指数: 与统称为整式。 单项式包括:、、; 一个单项式中所有字母的叫做这个单项式的次数。多项式:几个单项式的代数和多项式。 单项式中次数最的项就是这个多项式的次数。 2、分式的概念和意义: A,且B≠0叫做分式。 一般地,形如式子 B (1)、分式有意义的条件: (2)、分式无意义的条件: (3)、分式为0的条件: (4)、分式的基本性质:分式的分子与分母同时(一个不等于0)的整式,分式的值不变。 (5)、约分:

(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。 (7)、通分: (8)、最简公分母: (9)、分母有理化:把分母中的根号化去,叫做分母有理化。注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。 3、二次根式的概念和意义: (1)、定义:形如a (a ≥0)的式子,叫做二次根式。 (2)、二次根式有意义的条件: 二次根式无意义的条件: (3)、二次根式的性质: ()a 2 =a(a ≥0); a 2=a =?? ???<-=>)0()0(0)0(a a a a a ab =a b ? (a ≥0, b ≥0);

④b a =b a ( a ≥0, b >0)。 (4)、最简二次根式: 中不含二次根式; 被开方数中不含能开得尽的因数或因式。 (5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。 知识点二:代数式的运算 (一)、整式的加减运算 (1)、同类项: (2)、合并同类项法则: (3)、去括号法则: (4)、整式的加减的实质就是合并同类项。 (二)、整式的乘除 (1)、同底数幂的乘法:a m ·a n = ,底数不变,指数相加.

(二)整式、分式、二次根式

3 整式与分解因式 【知识梳理】 1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 n m n m a a a +=?(m 、n 为正整数) ;②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n a a 1 = -(a≠0,n 为正整数); 2.整式的乘除法: (1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项. (3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式. (5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即2 2))((b a b a b a -=-+; (6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2 222)(b ab a b a +±=± 3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式. 4.分解因式的方法: ⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=± 5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区: ⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等 【例题精讲】 【例1】下列计算正确的是( ) A. a +2a=3a 2 B. 3a -2a=a C. a 2?a 3=a 6 D.6a 2÷2a 2=3a 2 【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的 结果是( ) A .m B .m C .m +1 D .m -1 【例3】若2 320a a --=,则2 526a a +-= . 【例4】下列因式分解错误的是( ) A .2 2 ()()x y x y x y -=+- B .22 69(3)x x x ++=+ C .2()x xy x x y +=+ D .2 2 2 ()x y x y +=+ 【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一

分式及二次根式运算

分式及二次根式运算 一、知识点梳理 1. 分式:整式A 除以整式B ,可以表示成 A B 的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 A B 无意义;若 ,则 A B =0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 . 3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分. 4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分. 5.分式的运算 ⑴ 加减法法则:① 同分母的分式相加减: . ② 异分母的分式相加减: . ⑵ 乘法法则: .乘方法则: . ⑶ 除法法则: . 6.二次根式的有关概念 ⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式. ⑵ 最简二次根式:被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式:化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式. 7.二次根式的性质 ⑴ a 0; ⑵ ()=2a (a ≥0) ⑶ =2a ; ⑷ =ab (0,0≥≥b a ); ⑸=b a (0,0>≥b a ). 8.二次根式的运算 (1) 二次根式的加减: ①先把各个二次根式化成 ; ②再把 分别合并,合并时,仅合并 , 不变. (2)二次根式的乘法、除法公式: (1)a b=ab a 0b 0?≥≥(,) (2)a a =a 0b 0b b ≥f (,) 9.二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 三、【典例精析、发散思维】 例1(1) 当x 时,分式x -13无意义;(2)当x 时,分式3 92--x x 的值为零. 例2 ⑴ 已知 31=-x x ,则221x x + = . ⑵ 已知113x y -=,则代数式21422x xy y x xy y ----的值为 . 例3 先化简,再求值:

分式和二次根式

2006年中考数学第一轮复习专题训练 (三) (分式和二次根式) 一、填空题:(每题 3 分,共 36 分) 1、当 x ____时,分式x 2x -3有意义。 2、当____时,a -2有意义。 3、计算:a 2a -1-a -1=____。 4、化简:(x 2-xy)÷x -y xy =____。 5、分式b 2a 2,4a 3bc ,a 5c 2的最简公分母是____。 6、比较大小:23____32。 7、已知x +2y 2y = 5 2,则x +y y 的值是____。 8、若最简根式x +1和y 3是同类根式,则 x +y =____。 9、仿照20.5=22·0.5=4×0.5=2的做法,化简313=____。 10、当 2<x <3 时,(2-x)2-(x -3)2=____。 11、若3的小数部分是 a ,则 a =____。 12、若 =1-x +x -1+2成立,则 x +y =____。 二、选择题:(每题 4 分,共 24 分) 1、下列各式中,属于分式的是( ) A 、x -y 2 B 、2x +y C 、12x + D 、x 2 2、对于分式1x -1总有( ) A 、1x -1=x -1(x -1)2 B 、1x -1=x +1x 2-1 C 、1x -1=12(x -1)2 D 、1x -1=11-x 3、下列根式中,属最简二次根式的是( ) A 、27 B 、x 2+1 C 、12 D 、a 2b 4、可以与18合并的二次根式是( ) A 、27 B 、6 C 、13 D 、8 5、如果分式2x x +y 中的 x 和 都扩大为原来的 2 倍,那么分式的值( ) A 、扩大 2 倍 B 、扩大 4 倍 C 、不变 D 、缩小 2 倍 6、当 x <0 时,|x 2-x |等于( ) A 、0 B 、-2x C 、2x D 、-2x 或0 三、计算:(每题 6 分,共 24 分) y y y … … … … … … … … … … 密 … … … … … … … … 封 … … … … … … … … 装 … … … … … … … … 订 … … … … … … …学校:______ 班级:_____ 姓名:______ 座号:____

2019届中考数学总复习:分式与二次根式

2019届中考总复习:分式与二次根式—知识讲解 【考纲要求】 1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程; 2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算. 【知识网络】

【考点梳理】 考点一、分式的有关概念及性质 1.分式 设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则 分式没有意义. 2.分式的基本性质 (M为不等于零的整式). 3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点诠释: 分式的概念需注意的问题: (1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用; (2)分式中,A和B均为整式,A可含字母,也可 不含字母,但B中必须含有字母且不为0; (3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.

(4)分式有无意义的条件:在分式中, ①当B≠0时,分式有意义;当分式有意义时,B≠0. ②当B=0时,分式无意义;当分式无意义时,B=0. ③当B≠0且A = 0时,分式的值为零. 考点二、分式的运算 1.基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算±= 同分母的分式相加减,分母不变,把分子相加减. ; 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算. (2)乘法运算 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (4)乘方运算(分式乘方) 分式的乘方,把分子分母分别乘方. 2.零指数. 3.负整数指数 4.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的.

分式运算与根式运算

分式运算与根式运算 一、分式运算 1.下列各式:x 2、22+x 、x xy x -、33y x +、 23+πx 、 ()() 1123-++x x x 中,分式有( ) A .1个 B .2个 C .3个 D .4个 2.()()23+÷-m m 写成分式为____________,且当m ≠_____时分式有意义; 3.若分式x 231-的值为正数,则 x 的取值应是 ( )A .0>x , B .23=x C . 2 3

分式和二次根式知识总结

分式和二次根式知识总结

————————————————————————————————作者: ————————————————————————————————日期: ?

分式与二次根式—知识讲解 【知识网络】 知识点一、分式的有关概念及性质?1.分式?设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.?2.分式的基本性质?

(M为不等于零的整式).?3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点诠释: 分式的概念需注意的问题:? (1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用; (2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;?(3) 判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.?(4)分式有无意 义的条件:在分式中, ①当B≠0时,分式有意义;当分式有意义时,B≠0.?②当B=0时,分式无意义;当分式无意义时,B=0.?③当B≠0且A = 0时,分式的值为零. 知识点二、分式的运算?1.基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算±= 同分母的分式相加减,分母不变,把分子相加减. ; 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算. (2)乘法运算 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (4)乘方运算(分式乘方) 分式的乘方,把分子分母分别乘方.?2.零指数.?3.负整数指数 4.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的.

九年级数学分式和二次根式

第三讲 分式和二次根式 一、考点链接: 1.形如 的式子,叫做分式,其中A 叫做 ,B 叫做 。 2.分式的基本性质:分式的分子、分母都 的整式,分式的值 。 3.分式的值为零的条件是 ,分式有意义的条件是 。 4.若实数a≠0,则有0a = ,n a -= (n 为正整数) 5.分式的乘方:n b a ?? ? ??= (n 为正整数) 6.约分的定义: 7.通分的定义: 8.最简分式的定义:分式的分子与分母中 9. 异分母分式相加减,先 ,再相加减 10.分式的混合运算:分式的加、减、乘、除、乘方混合运算是先算 ,再算 ,最后算 , 遇到括号,先算括号内的 11.形如 的代数式叫做二次根式.(即一个 的算术平方根叫做二次根式)强调:二次 根式被开方数不小于0 12.二次根式的性质:双重非负性 =2)a ( (a≥0), =2 a =???<≥0)(a 0)(a =a b (a≥0,b≥0) =b a (a≥0,b >0) 13.二次根式的运算: 二次根式乘法法则 二次根式除法法则 ab b a =?(a≥0,b≥0) ab b a =(a≥0,b >0) 二次根式的加减:类似于合并同类项,把相同二次根式的项合并. 二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用,原来所学的乘法公式(如22222b 2ab a )b a (;b a b)-b)(a (a +±=±-=+)仍然适用.

二、归类探究: 1.识别分式的概念 例1:如果分式 32x -+2|x|-1x 的值为零,那么x 等于( ) A.-1 B.1 C.-1或1 D.1或2 2.分式的基本性质的识别 例2:(1)下列各式与x y x y -+相等的是( ) A. ()5()5x y x y -+++; B. 22x y x y -+; C. 222()()x y x y x y -≠- D. 22 22x y x y -+ (2)(11·珠海)若分式2a a +b 中的a 、b 的值同时扩大到原来的10倍,则此分式的值( ) A .是原来的20倍 B .是原来的10倍 C .是原来的110 D .不变 3. 二次根式相关概念。 例3:⑴、在函数y =x 的取值范围是 。 x 的取值范围是 。 4. 二次根式的主要性质。 例4: ,2= = ,()0a ≤。 5. 二次根式的运算。 例5:(1)(2011山东济宁,4,3分)下列各式计算正确的是( ) A = B .2= C .= D = (2) 。 (312-+2︱-03sin30。

2020年八年级数学分式方程与二次根式方程练习题

分式方程与二次根式方程 〖知识点〗 分式方程、二次根式的概念、解法思路、解法、增根 〖大纲要求〗 了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。 内容分析 1.分式方程的解法 (1)去分母法 用去分母法解分式方程的一般步骤是: (i)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (ii)解这个整式方程; (iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去. 在上述步骤中,去分母是关键,验根只需代入员简公分母. (2)换元法 用换元法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数. 2.二次根式方程的解法 (1)两边平方法 用两边平方法解无理方程的—般步骤是: (i)方程两边都平方,去掉根号,化成有理方程; (ii)解这个有理方程; (iii)把有理方程的根代入原方程进行检验,如果适合,就是原方程的根,如果不适合,就是增根,必须舍去. 在上述步骤中,两边平方是关键,验根必须代入原方程进行. (2)换元法 用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数. 〖考查重点与常见题型〗 考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现在选择题中另一部分习题考查完整的解题能力,习题出现在中档解答题中。 考题类型 1.(1)用换元法解分式方程 3x x2-1 + x2-1 3x =3时,设 3x x2-1 =y,原方程变形为() (A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=0 2.用换元法解方程x2+8x+x2+8x-11 =23,若设y=x2+8x-11 ,则原方程可化为() (A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=0

整式+分式+二次根式

整式的乘法与因式分解 一、选择题: 1.下列计算中正确的是 ( ) A .842a a a =? B .22a a a =÷ C .5322a b a =+ D .6 3 2)(a a -=- 2.下列运算中,正确的是 ( ) A. 632x x x =? B. 623)(x x =- C.2523a a a =+ D. 3 33)(b a b a =+ 3.化简2 3 )()(x x -?-的结果正确的是 ( ) A.6x - B.6x C.5x D.5x - 4.下面是某同学在一次测验中的计算摘录,其中正确的个数有 ( ) ①5236)2(3x x x -=-?;②ab b a b a 2)2(42 3 -=-÷③5 23)(a a = ; ④2 3)()(a a a -=-÷- A .1个 B .2个 C .3个 D .4个 5.如果)(m x +与)3(+x 的乘积中不含x 的一次项,则m 的值为 ( ) A .-3 B .3 C .0 D .1 6.若153=x ,53=y 则y x -3等于 ( ) A .5 B .3 C .15 D .10 7.))((2 2 a ax x a x ++-的计算结果是 ( ). A .3232a ax x -+ B .33a x - C.3232a x a x ++ D .322322a a ax x -++ 8.计算232x x ÷的结果是( ) A .x B .x 2 C .52x D .62x 9.下列各式是完全平方式的是 ( ). A .4 1 2+ -x x B .21x + C .1++xy x D .122-+x x 10. 若16)3(22 +-+x m x 是完全平方式,则m 的值等于 ( ) A. 3 B. -5 C. 7 D. 7或-1 11.把多项式a ax ax 22 --分解因式,下列结果正确的是 ( ) A .)1)(2(+-x x a B .)1)(2(-+x x a C .2 )1(-x a D .)1)(2(+-ax ax 12.下列多项式中能用平方差公式分解因式的是( )

《分式与二次根式》专题复习

分式与二次根式 一、选择题: 1、分式-12x 2 , 5x-14(m-n) ,2n-m 的最简公分母为( ) (A) 4(m -n)(n -m)x 2 (B)14x 2(m-n) (C)4x 2(m -n)2 (D)4(m -n)x 2 2、下列各式的变号中,正确的是 (A)x-y y-x = - y-x x-y ( B)x-y y-x 2 =y-x y-x 2 (C)-x-1-y+1 =x-1y+1 (D)-x-y y-x =- x+y y-x 3、若x >y>0,则x+1y+1 - y x 的结果是( ) (A) 0 (B)正数 (C) 负数 (D) 以上情况都有可能 4、下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( ) (A)1 (B)2 (C)3 (D)4 5、(x -2)2 +(2-x )2 的值一定是( ) (A )0 (B )4-2x (C )2x -4 (D )4 6、计算 3 m 2m 963m m 2-÷--+的结果为( ) (A )3m 3m +- (B )1 (C )3m 3m -+ (D )3 m 3m + 7、计算)a 1(1a)a 1(-÷-的结果为( ) (A )a -1 (B )-a -1 (C )1-a (D )a+1 8、适合a 33)(a 2-=-的正整整a 的值有( )个. (A )1 (B )2 (C )3 (D )4 9、化简a a 4)2a a a 2a (2 -?+---的结果是( ) (A )-4 (B )4 (C )2a (D )2a+4 10、如果a 满足014a a 2=++,那么22a 1a + 的值是( ) (A )154 (B )14 (C )17 4 (D )4 二、填空题: 11、当x=-------------------时,分式|x|-3x 2+4x+12 的值为零? 12、(5827 ·113 ·354 )=------------------- 13、18 +22-1 -412 -2( 2 +1)0=-------------------

相关文档
最新文档