2013-2014电介质习题解答

2013-2014电介质习题解答
2013-2014电介质习题解答

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答 习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A) S Q 012ε (B) S Q Q 02 12ε- (C) S Q 01ε (D) S Q Q 02 12ε+ 解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即 S Q S Q S Q E 01010122εεε=+= 板间 所以,应该选择答案(C)。 习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。把它们串联起来在两端加上1000V 的电压,则[ ] (A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有 231221==C V V ① 100021=+V V ② 联立①、②可得 V 6001=V , V 4002=V 可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。 所以,应该选择答案(C)。 习题8—3 三个电容器联接如图。已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。则此电容器组的耐压值为[ ] (A) 500V (B) 400V (C) 300V (D) 150V (E) 600V 解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。由于C 1= C 2=C 3,所以C 1∥C 2=2C 3,故而C 1∥C 2承受的电压为u /3,C 3承受的电压为2u /3。 +Q 1 +Q 2 A B 习题8―1图

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

大学物理电介质练习题

4-1 第十四章 静电场中的导体和电介质习题 第十四章 静电场中的导体和电介质习题 1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( ) A . B A E E > B. B A E E < C .B A E E = D. 0=>B A E E 2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加 3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( ) (1) 高斯定理成立,且可用它求出闭合面上各点的场强。 (2) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立 图3 B 图2

4.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时=′AB U 。 5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况: (1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小 6.真空中有一带电球体和一均匀带电球面,如果它们的半径和所带的总电量都相等,则 (1) 球体的静电能等于球面的静电能 (2) 球体的静电能大于球面的静电能 (3) 球体的静电能小于球面的静电能 (4) 不能确定 二、计算题 1.两块无限大平行带电平板,试证明:(1)相向两面的电荷面密度总是大小相等,符号相反;(2)相背两面的电荷面密度总是大小相等,符号相同;(3)设左边导体板带静电荷2 /6m c μ+。求各板面上的电荷面密度。 d 图4 C 1 C 2 ε 图5

第13章静电场中的导体和电介质教学文案

第13 章静电场中 的 导体和电介质

思考题 13-1尖端放电的物理实质是什么? 答:尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离, 电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2将一个带电+q半径为R B的大导体球B移近一个半径为R A而不带电的小导体球A,试判断下列说法是否正确?并说明理由。 图13-37均匀带电球体的电场能 (1) B球电势高于A球。 答:正确。不带电的导体球A在带电+q的导体球B的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B指向导体球A,故B球电势高于A球。 (2) 以无限远为电势零点,A球的电势:V A < 0 答:不正确。若以无穷远处为电势零点V= 0,从图可知A球的电力线伸向无穷远处。所以,V A >0。 13-3怎样能使导体净电荷为零,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有q 0而导体的电势V M 0。

13-4怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点, 例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总 13-6 为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7感应电荷的大小和分布怎样确定?

电介质材料-考试复习题-200

一、概念题 1、电势 2、电势能 3、电介质 4、束缚电荷 5、有极分子 6、无极分子 7、点电荷 8、电场强度 9、电偶极子 10、等势面 11、库伦定律 12、电场 13、静电场 14、电力线 15、高斯定理 16、电矩 17、电感应强度 18、电位移矢量 19、电介质极化 20、极化强度 21、介电常数 22、自由电荷 23、极化电荷 24、退极化电场 25、相对介电常数 26、有效电场 27、极化率 28、极化系数 29、电子位移极化 30、离子位移极化 31、偶极子转向极化 32、热离子松弛极化 33、空间电荷极化 34、电介质的击穿 35、介电系数的温度系数 36、电介质损耗 37、电导损耗 38、松弛极化损耗 39、谐振损耗 40、正常谐振色散 41、反常谐振色散 42、电离损耗

43、结构损耗 44、复介电常数 45、色散现象 46、电介质电导 47、电介质的电导率 48、迁移率 49、载流子浓度 50、介电强度 51、碰撞电离 52、电子碰撞电离系数 53、热电离 54、电子附着系数 55、阴极的表面电离 56、光电发射 57、载流子的复合 58、非自持放电 59、自持放电 60、本征离子电导 61、弱联系离子电导 62、电子电导 63、表面电导 64、电泳电导 65、铁电体 66、介电反常 67、电滞回线 68、电畴 69、热释电效应 70、相和相变 二、选择题: 1、关于点电荷的下列说法中正确的是: A .真正的点电荷是不存在的. B .点电荷是一种理想模型. C .足够小(如体积小于1)的电荷就是点电荷. D .一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题的影响是否可以忽略不计. 2、下面关于点电荷的说法正确的是() A.只有体积很小的带电体才能看成是点电荷 B.体积很大的带电体一定不能看成是点电荷 C.当两个带电体的大小远小于它们间的距离时,可将这两个带电体看成是点电荷 D.一切带电体都可以看成是点电荷 3、下列说法中正确的是: A .点电荷就是体积很小的电荷.

大学物理(第四版)课后习题及答案 电介质

题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0?10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-?=R 的同轴圆筒形阳极。阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5?10-2 m 。假设电子从阴极射出时的速度为零。求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。 题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。由此,可求得电子到达阳极时的动能和速率。 (2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。 解:(1)电子到达阳极时,势能的减少量为 J 108.417ep -?-=-=?eV E 由于电子的初始速度为零,故 J 108.417ep ek ek -?=?-=?-E E E 因此电子到达阳极的速率为 17ek s m 1003.122-??=== m eV m E v (2)两极间的电场强度为 r 02e E r πελ -= 两极间的电势差 1 200ln 2d 2d 2 1 21 R R r r V R R R R πελ πελ-=- =?=?? r E 负号表示阳极电势高于阴极电势。阴极表面电场强度 r 1 2 1r 1 0ln 2e e E R R R V R = - =πελ 电子在阴极表面受力 N e E F r 141037.4-?=-=e 这个力尽管很小,但作用在质量为9.11?10- 31 kg 的电子上,电子获得的加速度可达重力加 速度的5?1015倍。 题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。求此系统的电势和电场的分布。 题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。并由?∞ ?=p v l E d P 或电势叠加求 出电势的分布。最后将电场强度和电势用已知量210R R Q V 、、、表示。 题8.2解:根据静电平衡时电荷的分布,可知电场分布呈球对称。取同心球面为高斯面,由高斯定理()∑?=?=?024d πq r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域

大学物理第13章习题解答

第十三章习题解答 1选择题:1B ,2A ,3B ,4A ,5D 2填空题:1,2sin /d πθλ;2,0.45mm ;3,900nm ;4,变密;5,向上;6,向下;7,棱边,保持不变。 3计算题: 1 用λ=500nm 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹。若劈尖上面媒质的折射率n 1大于薄膜的折射率n (n =1.5).求: ⑴ 膜下面媒质的折射率n 2与n 的大小关系; (2) 第10条暗纹处薄膜的厚度; ⑶ 使膜的下表面向下平移一微小距离e ?,干涉条纹有什么变化?若e ?=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据? 解:⑴ n 2>n 。因为劈尖的棱边是暗纹,对应光程差为:2 ) 12(2 2λ λ +=+=?k ne , 膜厚e =0处,有k =0,只能是下面媒质的反射光有半波损失 2 λ 才合题意; (2) 3995009 1.5102 22 1.5 n e n λλ-??=? = ==?? mm (因10个条纹只有9个条纹间距) ⑶ 膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=?e μm ,原来第10条暗纹处现对应的膜厚为)100.210 5.1(33 --?+?='?e mm 34 3.5102 1.5212 5.010 n e N λ--'?????===? 现被第21级暗纹占据. 2 ⑴ 若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k +1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径. (2) 又如在牛顿环中用波长为500nm 的第5个明环与用波长为λ2的第6个明环重合,求未知波长λ2. 解: ⑴ 由牛顿环暗环公式:λkR r k = 据题意有 21)1(λλR k kR r +== ,∴ 2 12λλλ-= k ,代入上式得: 2 121λλλλ-=R r =3 1085.1-?=m (2) 用1500λ=nm 照射,51=k 级明环与2λ的62=k 级明环重合,则有: 2)12(2)12(2211λλR k R k r -=-= ∴1 21221251 500409.121261k k λλ-?-==?=-?-nm 3 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d 1= 1.40×10-2m 变为d 2=1.27×10-2m ,求液体的折射率. 解: 由牛顿环明环公式

大学物理13.第十三章思考题

1、如图13-9所示,薄膜介质的折射率为n 1,薄膜上下介质的折射率分别为n 1和n 3,并且n 2比n 1和 n 3都大。单色平行光由介质1垂直照射在薄膜上,经 薄膜上下两个表面反射的两束光发生干涉。已知薄膜的 厚度为e , 1为入射光在折射率为 n 1的介质中的波 长,则两束反射光的光程差等于多少? 【答案:2 21 12λn e n S - =?】 详解:由于入射光在上表面从光疏介质投射到光密介质上存在半波损失,因此反射光一的光程为 2 1λ = S 由于入射光在下表面从光密介质投射到光疏介质上没有半波损失,因此反射光二的光程为 e n S 222= 两束反射光的光程差为 2 2212λ - =-=?e n S S S 其中λ为光在真空的波长,它与介质1中的波长的关系为λ=n 1λ1,因此 2 21 12λn e n S - =? 2、在双缝干涉实验中,两缝分别被折射率为n 1和n 2、厚度均为e 的透明薄膜遮盖。波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差等于多少? 【答案:λ ?e n n )(π212-= ?】 详解:设从双缝发出的两束光到屏中央处的距离为r ,依题意它们到达屏中央处的光程分别为 n 1 n 2 n 3 图13-9 入射光 射光一 射光二 e

)(11e r e n S -+= )(22e r e n S -+= 它们的光程差为 12S S S -=?e n n )(12-= 因此,在屏中央处两束相干光的相位差为 λ ?S ?= ?π2λ e n n )(π212-= 3、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取哪些办法? 【答案:增大双缝与屏之间的距离D 、增大入射光波长λ、减小双缝间距d 、减小折射率n 】 详解:双缝干涉条纹间距为 dn D x λ = ? 因此,为使屏上的干涉条纹间距变大,可以增大双缝与屏之间的距离D 、改用波长λ较长的光进行实验、将两缝的间距d 变小、将实验装置放在折射率n 较小的透明流体中。 4、如图13-10所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹。如果将缝S 1 盖住,并在S 1 S 2连线的垂直平分面处放置一个高折射率玻璃反射面M ,则此时P 点处是明条纹还是暗条纹? 【答案:是暗条纹】 详解:设S 1、S 2到P 点的距离分别为r 1和r 2。由于 P 点处原来是明条纹,因此 λk r r =-21 如果在S 1 S 2连线的垂直平分面处放置一个高折射率 玻璃反射面M ,由于从S 2发出的光经M 反射时存在半波损失,因此到达P 点的反射光与直射光的光程差为 212 r r S -+ =?λ 2 λ λ+ =k 2 ) 12(λ +=k 图13-10 P S

导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 0 0εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

最新《大学物理AⅠ》静电场中的导体和电介质习题、答案及解法(.6.4)

静电场中的导体和电解质习题、答案及解法 一.选择题 1.一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的距离为a 处放一点电荷q +,如图1所示。用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A ) a q 02πε; (B )0 ; (C )R q 04πε-; (D ) ??? ??-R a q 1140πε。 参考答案:)1 1(4)11( 4400 2 0R a q a R q dl R q Edl V R a R a -=--===?? πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为 (A )1 ; (B )2 ; (C )3 ;(D )4 。 [ B ] 解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 12 21d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为 [ B ] (A ) 2 04r q πε,0 ; (B )0, 2 04r q πε ; (C )0,r q 04πε ; (D )0,0 。 1 r 2 r O P Q +q +a O R 1 d 2 σ2 d 1 σ

参考答案:??? ? ??= ??? ? ? ?-∞-==?+?=?=????∞ ∞∞2 020 201 411441 22 2 r Q r Q dr r Q l d E l d E l d E U r r r r p p πεπεπε 4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零; (D ) 导体内任一点与其表面上任一点的电势差等于零。 参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。 5.两个同心薄金属球壳,半径分别为) (和2121R R R R <,若内球壳带上电荷Q ,则两者的电势分别为2 21 14R 4R Q V Q V πεπε= = 和,(选无穷远处为电势零点)。现用 导线将两球壳相连接,则它们的电势为 [ D ] (A )1V (B )()2121V V + (C )21V V + (D )2V 参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势 面。 6.当平行板电容器充电后,去掉电源,在两极板间充满电介质,其正确的结果是[ C ] (A ) 极板上自由电荷减少 (B ) 两极板间电势差变大 (C ) 两极板间电场强度变小 (D ) 两极板间电场强度不变

导体和电介质习题

第六章静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A )升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2将一带负电的物体M 靠近一不带电的导体N,在N 的左端感应出正电荷,右端感 应出负电荷。若将导体N 的左端接地(如图所示),则() (A )N 上的负电荷入地(B)N 上的正电荷入地 (C)N上的所有电荷入地(D)N上所有的感应电荷入地 I 6-2 图

(D ) E o d ,v 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 端接地无关。因而正确答案为( A )。 6 — 3如图所示将一个电量为 q 的点电荷放在一个半径为 R 的不带电的导体球附近, 荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心 0点有( (B )E 宀比 (C ) E 0,v (A) E 0,v q 4 o d 在哪一 点电 )

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷 q 在导 体球表面感应等量异号的感应电荷土q',导体球表面的感应电荷土q'在 球心0点激发的电势 为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A)。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是() (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关

第13章电介质

一、电极化强度 1、电极化强度是描述电介质极化强弱程度的物理量,定义单位为体积内分子电偶极矩的矢量和,即:。 2、电极化规律,电极化强度与介质中的电场强度成正比,比例系数叫电极化率,各项同性时 3、极化强度与极化电荷面密度的关系 式中为极化强度与介质表面外法线方向的夹角。 两介质界面 二、电介质中的高斯定理电位移矢量 1、高斯定理在有介质条件下的应用。 由真空中的高斯定理,在介质中考虑到极化电荷的影响 又 得 2、电位移矢量 定义: 3、介质中的高斯定理 引进电位移矢量之后使介质中的高斯定理形式简化,闭合曲面的电位移通量只和自由电荷有关,而与电介质的极化电荷无关。应注意极化电荷(或极化强度)的作用隐含在电位移矢量中,所以电位移矢量既描述了

介质中的场强也描述了介质的极化。 4、各向同性均匀电介质充满电场所在空间,或各向同性均匀电介质的表面是等势面时,参量,,等之间的相互关系。 由定义式 及 可得: 在上述条件下并且有 5、介质的击穿 在很强的电场作用下介质的绝缘性能会遭到破坏,这称为介质的击穿。某种介质能承受的最大电场强度叫做击穿场强。 三、电场的边值关系(在边界面上无自由电荷的条件下) 1、电介质分界面两边电位移的法向分量相等,即 2、电介质分解面两边电场强度的切向分量相等,即 3、电位移线的折射定律 四、电场的能量 1、点电荷的能量 或

或 2、电荷连续分布时的电能 对体电荷分布 对面电荷分布 3、电场的能量 电场的能量密度 五、各向同性介质中静电场量基本关系 第13章电介

质 【例13-1】如题图13-1a所示平行板电容器,两板间距为。将它充电至电势差为,然后断开电源,插入的相对介电常数为的电介质平板 (1)求电介质中的,,的大小及电介质表面的极化电荷。 (2)求电容器两板板间的电势差; (3)画出电容器内的线、线及线; (4)如果在插入电介质平板后,保持电源接通。那么电介质中的、、又为多大? 【解】(1)插入电介质平板之前,电容器极板间的场强,又因此。虽然插入介质。由于已断开电源所以不变,由此我们可计算、、,由介质中高斯定理可知 插入介质板后两平行板间的电势差

电介质习题思考题

习题13 13-1.如图为半径为R 的介质球,试分别计算下列两种情况下球表面上的极化面电荷密度和极化电荷的总和,已知极化强度为P (沿x 轴)。 (1)0P P =;(2)R x P P 0=。 解:可利用公式'cos S S q P d S P d S θ=-?=-????v v 乙算出极化电荷。 首先考虑一个球的环形面元,有:2sin ()d S R Rd πθθ=, (1)0P P =时,由'cos P σθ=知10'cos P σθ=, 220 100 'cos 2sin sin 2202 R P q P R d d π π πθπθθθθ=-?=- =?? ; (2)R x P P 0 =时,22000cos 'cos cos cos x R P P P R R θσθθθ=== 2 2 2 2 200 'cos 2 sin 2cos cos q P R d R P d ππ θπ θθπθθ=-?=?? 2230 00 24cos 3 3 R P R P πππθ ==-。 13-2.平行板电容器,板面积为2cm 100,带电量C 109.87 -?±,在两板间充满电介质后,其场强为V/m 104.16 ?,试求:(1)介质的相对介电常数r ε;(2)介质表面上的极化电荷密度。 解:(1)由0r E σεε=,有:18.710100104.11085.8109.84 61270=??????==---ES Q r εε (2)520'(1)7.6610r P E C m σεε-==-=? 13-3.面积为S 的平行板电容器,两板间距为d ,求:(1)插入厚度为3 d ,相对介电常数为r ε的电介质,其电容量变为原来的多少倍?(2)插入厚度为3 d 的导电板,其电容量又变为原来的多少倍? 解:(1)电介质外的场强为:00 E σε=, 而电介质内的场强为:0r r E σεε= , 所以,两板间电势差为:00233r d U d σσεεε= ?+?, 那么,03(21)r r S Q S C U U d εεσε===+,而00S C d ε=,∴0321r r C C εε=+; (2)插入厚度为3d 的导电板,可看成是两个电容的串联, 有:00123/3S S C C d d εε===, ∴002 1212 323C d S C C C C C ==+= ε?0 3 2 C C =。 P v θ 3 d 3d 3 d

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 0200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

电介质物理基础习题答案

参考答案 第一章 1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称 为电介质的极化。其宏观参数是介电系数ε。 2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。 退极化电场: 平均宏观电场: 充电电荷产生的电场: 3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。 4.氖的相对介电系数: 单位体积的粒子数:,而 所以: 5.洛伦兹有效电场: εr与α的关系为: 介电系数的温度系数为:

6.时,洛伦兹有效电场可表示为: 7. 克----莫方程赖以成立的条件:E”=0。其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。 8.按洛伦兹有效电场计算模型可得: E”=0 时, 所以 9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数. 10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。 11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。电子、离子的位移极化的极化 完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极 化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。 12.参照书中简原子结构模型中关于电子位移极化率的推导方法。

第13章答案

第13章 静电场中的导体和电解质 一、选择题 1(D),2(A),3(C),4(B),5(C) 二、填空题 (1). σ (x ,y ,z )/ε 0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (2). σ ,σ / ( ε 0ε r ); (3). R q 04επ ; (4). P ,-P ,0; (5). εr , εr 三、计算题 1.如图所示,一半径为a 、外半径为b 的金属球壳,带电荷Q ,在球壳空腔内距球心r 处放一点电荷为q , 设无限远处为电势零点,试求:(1)球壳内外表面上的电荷. (2)球心O 点处,由球壳内表面上电荷产生的电势。 (3)球心O 点处的总电势。 解:点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加。 (1)球壳内表面上的电荷为-q ;外表面上的电荷为q+Q 。 (2)球心O 点处,由球壳内表面上电荷产生的电势:a q U o 04πε- = (3)球心O 点处的总电势:000111444o q q Q q U r a b πεπεπε-+=++ 2. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问: (1) 当电压升高时,哪层介质先击穿? (2) 该电容器能承受多高的电压? 解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为 E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即 E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1) 已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿, λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为: r r r r U R R r M R R r M d 2d 22 1 201012?? +=επελεπελ??? ? ??+=R R R R RE r r M r 22112ln 1 ln 1εεε

最新大学物理-电介质习题思考题及答案

大学物理-电介质习题思考题及答案

习题 13-1. 如图为半径为R 的介质球,试分别计算下列两种情况下球表面上的极化面电荷密度和极化电荷的总和.已知极化强度为P (沿x 轴). (1)0P P =;(2)R x P P 0 =. 解:(1)??='='ds P ds q θσcos 由于0P P =介质被均匀极化,所以 0='q (2)在球面上任取一个球带 2 cos 22sin x q ds P ds P R Rd R π σθπθθ''== =????? )(cos cos 20 1 20θθd R P ?-= 2 043 P R π= 13-2. 平行板电容器,板面积为2cm 100,带电量C 109.87-?±,在两板间充满电介质后,其场强为V/m 104.16?,试求 :(1)介质的相对介电常数r ε (2)介质表面上的极化电荷密度. 解:(1)S Q E r εε0= 18.710100104.11085.8109.846127 0=??????==---ES Q r εε (2)5201 (1)7.6610r Q P D E C m S σεε-'==-= -=? 13-3. 面积为S 的平行板电容器,两板间距为d ,求:(1)插入厚度为 3 d ,相对介电常数为r ε的电介质,其电容量变为原来的多少倍?(2)插入厚度为3 d 的导电板,其电容量又变为原来的多少倍?

解:(1)d S C 00ε= S Q E 01ε= S Q E r εε02= 3 3200d S Q d S Q U r ?+?= εεε 0021323C d d S U Q C r r r r εεεεε+=+== (2)插入厚度为3 d 的导电板,可看成是两个电容的串联 d S C C 0213ε= = 0021212 3 23C d S C C C C C ==+= ε 13-4. 在两个带等量异号电荷的平行金属板间充满均匀介质后,若已知自由电荷与极化电荷的面电荷密度分别为0σ与σ'(绝对值),试求:(1)电介质内的场强E ;(2)相对介电常数r ε. 解:(1)00 ()S d σσε'-?=?E S '00 () E σσε-= (2) 0 0r E σεε= 0000 0000r E σσεσεεεσσσσ= =?='' -- 13-5. 电学理论证明:一球形均匀电介质放在均匀外电场中会发生均匀极化.若已知此极化介质球的半径为R ,极化强度为P .求极化电荷在球心处产生的场强E '. 解:球面上极化电荷的面密度 θP σcos ='

相关文档
最新文档