膜结构找形及节点分析

膜结构找形及节点分析
膜结构找形及节点分析

膜结构找形及节点分析

摘要:文章概要对比分析了各种膜材料的物理特性及其力学性能,膜结构形状的类型及各种类型的特点及适用范围,并着重分析了应用广泛的张拉式结构型式,简要概括了膜结构常用的找形方法和节点连接方式,最后通过上海世博挪威馆实例分析了膜结构的连接和主要的节点构造,结果表明了木结构和膜结构结合的可行性和可靠性。

关键词:膜材膜结构形状找形分析节点连接

0引言

膜结构与传统的建筑结构相比,形体多样、重量轻,可获得较大跨度的建筑空间,具有较好的经济效益。膜结构的加工和制作均在工厂内完成,仅在现场安装即可,与混凝土结构相比大大缩短了了施工工期。膜结构具有易拆,易建,易搬迁和易更新的特点,膜结构具有较低的能耗、较高的反射性和较低的吸光率,已被广泛用于大型的体育场馆和公共建筑。如美国丹佛国际机场,英国的格林威治的“千年穹顶”张拉膜结构。近年来我国的膜结构也有了较快的发展,上海八万人体育场馆成为我国第一个永久性的膜结构工程,2008年奥运场馆“鸟巢”及2010年上海世博轴的建成表明了膜结构在我国得到了较快的发展。这种独特的建筑形式得到了越来越多的关注和发展。本文主要从膜材,膜结构类型的选择及找形方法和节点连接方面分析了膜结构的特点,并结合上海世博挪威馆分析了膜结构的应用。

1膜材料物理及力学性能分析

膜材料主要有PVC膜材,PTFE膜材及ETFE膜材,其物理力学性能对比分析见表1。

表1:膜材材料物理及力学性能指标比较

2膜结构形状及特点分析

2.1 骨架式

 骨架式膜结构以钢构或集成材料构成屋顶骨架在其上张拉膜材的构造形式。其下部支撑安定性高,因屋顶造型比较单一,开口不易受限制,具有经济效益高等特点,广泛应用于任何大小规模的空间。

2.2 充气式

水立方造型设计分析

水立方造型设计分析 国家游泳中心又被称为“水立方”(Water Cube),位于北京奥林匹克公园内,是北京为2008年夏季奥运会修建的主游泳馆,也是2008年北京奥运会标志性建筑物之一。 水立方的实用性:水立方作为奥运会的主游泳馆而出现,为奥运会的游泳项目的成功进行提供了基础的物质保障,它融建筑设计与结构设计于一体,设计新颖,结构独特,与国家体育场比较协调,功能上完全满足2008年奥运会赛事要求,而且易于赛后运营。赛后,水立方作为一个大型的嬉水乐园呈现在人们面前。水立方的工作性能优良,它的地面做了特殊处理,使人脚踩在上面不会感到冷。其次它的四壁用铁网架焊接为一体,支撑着整个屋顶。这些钢构件在阴雨天一方面可以起到避雷作用,另一方面可以作为天沟收集雨水等等。 水立方的经济性:水立方中采用了多项先进技术,包括热泵的选用、太阳能的利用、水资源综合利用、先进的采暖空调系统,以及控制系统和其他节能环保技术,如采用内外墙保温,减少能量的损失;采用高效节能光源与照明控制技术等。此外,泳池换水全程采用自动控制技术,提高净水系统运行效率,降低净水药剂和电力的消耗,可以节约泳池补水量50%以上。泳池和水上游乐池也都采用防渗混凝土以防渗漏。除了泳池用水,“水立方”的其他用水也十分节约。洗浴等废水,经过生物接触氧化、过滤,再用活性炭吸附并消毒后,用于场馆内便器冲洗、车库地面的冲洗以及室外绿化灌溉。为尽可能减少

人们在使用时对水的浪费,“水立方”对便器、沐浴龙头、面盆等设备均采用感应式的冲洗阀,合理控制卫生洁具的出水量,并在各集中用水点设置水表,计量用水量。 水立方的美观性:最引人注意的外围形似水泡的ETFE膜(乙烯-四氟乙烯共聚物)是一种透明膜,能为场馆内带来更多的自然光,他的内部是一个多层楼建筑,对称排列的大看台视野开阔,馆内乳白色的建筑与碧蓝的水池相映成趣。基于“泡沫”理论的设计灵感,他们为“方盒子”包裹上了一层建筑外皮,上面布满了酷似水分子结构的几何形状,表面覆盖的ETFE膜又赋予了建筑冰晶状的外貌,使其具有独特的视觉效果和感受,轮廓和外观变得柔和,水的神韵在建筑中得到了完美的体现。晚上水立方被冠以深深地蓝色,犹如海洋中的一方水,给钢筋混泥土的城市增添了许多动感。白天,水立方成白色,犹如一个美丽的冰雕,给人以视觉上的美的享受。 水立方是北京奥运会国家游泳中心,它的膜结构是世界之最。它是根据细胞排列形式和肥皂泡天然结构设计而成的,这种形态在建筑结构中从来没有出现过,创意十分奇特。在奥运会结束后,水立方已成为北京市的新地标。

Adina膜结构分析(褶皱膜单元)

ADINA膜结构分析概略 西南交通大学土木学院余志祥 膜结构分析主要包括三个流程:找形分析,荷载分析和裁剪分析。找形阶段也有个别学者将其细分为找形与找态。国外专业的膜结构设计软件价格昂贵,利用常见的通用分析平台进行膜结构设计是一种可行且可替代的办法,但目前裁剪分析还得依靠自编程序或者专业的裁剪软件实现。02年的时候,我利用ANSYS摸索了一套膜结构找形、荷载分析的方法,并发布在专业论坛,实践证明其具有较高通用性,且结果较准确,并且还应用在了个别实际工程中。 膜结构主要分为张拉膜、骨架膜以及充气膜三大类,就找形方法而言,三者基本相似,但在分析方法上,充气膜存在明显差别。无论张拉膜抑或骨架膜,通过找形分析之后获得的结构物理模型基本上算是确定模型,但充气膜在获得初始形态之后仍然不具有确定性,因为这个初始态和必须和相应的气压对应,且在充气膜受荷过程中互动变化,不如张拉膜或者骨架膜,可以在膜材内部导入相应的应变场保持其初始形态和初应力场的对应,保持其形态、应力在受荷阶段实现自动呼应。充气膜要模拟其膜面内压,必须引入第三方介质,即空气场并保证荷载、结构、内压场互动呼应。 基于ADINA卓越的非线性分析能力,进行膜结构分析主要有几个关键点,首先说张拉膜结构和骨架膜。 1、根据建筑设计确定其初始平面形状。这个形状称为零状态形状,可以为平面,也可以为一个实 际模型较为接近的三维曲面形态。 2、膜单元采用adina的2D Solid,并设置相应的单元选项为3D membrane。索单元可以直接用truss 单元等代,两种材料均可直接采用线弹性材料。 3、膜面网格采用三节点三角形或者四节点四边形。单元列式为线形完全积分格式。根据非线性计 算的收敛难易程度,可以关闭非协调元模式。 4、将索和膜材弹性模量降低1000倍,设置支座提升量、增量分析参数,为获得结构找形初始形态 完备分析参数。小弹性模量方法的本质在于让材料自由“伸长”,但内应力却几乎可以不变。 5、虽然adina能够直接提供输入膜材和桁架单元的初始应变,但实际操作中,除桁架单元可以通过 初应变提供预应力外,膜面预应力一般不采用导入初始应变场的方式,那样在完成第一次找形之后,新的应力场无法和初始形态形成平衡,导致存在一系列问题。但3D membrane单元必须依靠一个很小的初始应变场来支撑膜单元的非线性分析(程序单元属性设置使然),因此,可以预定义一个很小的应变场,并赋予相应的膜单元,这个应变场产生的应力应该小到相对于工程预应力可以忽略。膜面的预应力最好通过降温方法施加,方法很简单,给膜材设置一个虚拟的热膨胀系数,比如1,但需要保证加载温度、膨胀系数和膜面预应力的对应关系,由于不是物理意义上的热分析,因此,温度、热膨胀系数都可以虚拟,但由此产生的膜面预应力却是必须符合实际的。具体计算公式很简单,可以参考任何一本弹性力学教材。 6、完成找形分析之后,可以在后处理获取相应的节点position,并导出为txt文件并在excel中完成 编辑复制。 7、在前处理器中将零状态模型打开之后另存一份,并在其中进行编辑:首先将excel中的节点新位 形数据黏贴到node define菜单的表格中,完成坐标更新;并将膜材和索材弹性模量还原到实际状态。这个过程需要注意的是,由于材料物理属性发生变化,控制产生索预应力或者膜预应力的应变设置、温度设置都要相应变化,目的是保持找形后的模型中的预应力保持不变,比如膜材的弹性模量还原时增加1000倍,则热膨胀系数降低1000倍,或者该系数不变,将温度降低1000倍,索单元的属性参数亦然。调整完之后计算分析,可以获得真实参数下的结构新位形。

水立方调查设计研究报告

中矩之方,梦幻之蓝 ——国家游泳中心“水立方”调研报告

国家游泳中心(以下简称“水 立方”)是2008年北京奥运会三大 标志性建筑物之一,也是北京市政 府指定的惟一一个由港澳台侨胞 捐资建设的标志性奥运场馆。奥运 会期间,承担游泳、跳水、花样游 泳等比赛。奥运会赛后将成为一个 多功能的大型水上运动中心;既可 举办大型国际赛事,又能为公众提 供水上娱乐、运动、休闲、健身等 服务。 “水立方”位于奥运公园B区, 坐落于奥林匹克中心区西南角。主 体建筑紧邻城市中轴线,并与国家 体育场相对于中轴线均衡布置。本 工程为特级体育建筑。主体结构设 计使用年限100年。 “水立方”以中国传统文化 中的“天圆地方”为设计理念,采用方盒子的形式,充分运用新的结构形式与膜材料,将现代科技与传统价值观念充分揉合,展现出了强大的表现力与震撼力,为2008年北京奥运会写下浓墨重彩的一笔。 关于水的立面泡泡吧钢结构 二层观众通道热身池

一、项目概况 项目名称:国家游泳中心 项目地点:北京奥林匹克中心区B区 基地面积:6.28m2 建筑面积:8.7万m2 建筑高度:31m 容积率:1.23 坐席数:赛时17000,赛后6000 (固定座位数:4000个永久,2000个可拆除) 停车位:384辆 结构:钢筋混凝土+钢结构 钢结构设计总重量:约6700吨 国标钢材:Q345C、Q420C 钢结构杆件总数:20670根 焊接球:9843个 设计/建成:2003年4月-2006年6月/2008年1月 设计团队:中建总公司国家游泳中心设计联合体 中建总公司 CCDI中建国际设计 PTW Architects Arup 设计总负责人:赵小钧 执行总负责人:郑芳 建设单位:北京市国有资产管理有限公司 施工单位:中建一局 设计团队: 建筑:中建国际(深圳)设计顾问有限公司 PTW Architects 结构:中建国际(深圳)设计顾问有限公司/ARUP 机电:中建国际(深圳)设计顾问有限公司/ARUP 经济:中建国际(深圳)设计顾问有限公司 “水立方”总平面图

钢结构储煤棚与充气膜结构比较

钢结构储煤棚与充气膜结构比较 一、结构安全的差异 充气膜结构是通过机械系统(8台风机)向室内空间连续不间断充气,气体在密闭的空间中逐渐加压而最终使室内外保持一定的压力差,膜体受到上浮力,产生的预张力以托起大空间。单纯的充气膜抵抗风雪荷载的可靠性差,应对极端大风、大雪存在隐患,硬物一旦刮伤损坏,自然塌落,不适用于大跨度的永久性建筑。充气膜结构只能作为条形煤场相对简易的临时仓储,无法适应圆形煤场、异形煤场及超大跨度永久煤场的工程要求,质量缺陷多,有很大局限性。 钢结构网架采用实心球(材质45#高强度钢)及钢管紧密连接,使用年限50年,按70年一遇的地震及风压雪压考虑。其构件在生产车间内加工,标准化程度高,质量易于保证。储煤棚上部钢结构网架,与下部现浇混凝土支承柱及挡煤墙连成整体,传力稳定平衡,制造质量精良,工地安装便捷,此结构被广泛使用。 二、维护使用的差异 充气膜煤棚建设时必备两路电源,满足其加压风机及消防用电。一路6kV电源引自厂区,一路增加设置二套400kW 660V柴油发电机组,作为备用电源。后期使用时,完全依靠电能,不可断电。以一万平方米储煤棚估算,一年消耗超过15万元的电费,增加后期使用成本。 钢结构网架在工厂内机械抛丸除锈,然后喷漆、喷塑或喷锌 处理,增强了抗腐蚀性,在煤棚密闭环境中,需要10-12年对钢架表面防腐处理,按建筑面积计算,每次油漆费用约35-45元/方。 三、建成运行案例的差异

充气膜结构由国外引进,多用于临时建筑(汽车旅馆、临时展出大棚等)拆建方便,气膜储煤棚在国内案例没有20个,也只局限在神华集团的煤炭储煤场方面的临建工程。 钢结构网架储煤棚,技术成熟稳定,后期运营费用极低,初期投资节约,钢材可以回收利用增加效益,诸多优势明显。在电厂、集装站、储运物流园、选煤厂、水泥厂、煤化工项目的封闭煤场项目应用广泛,25年来运行安全可靠。华能、大唐、华电、国电、中电投等,大电力公司、地方电厂、煤炭、钢铁、水泥项目案例超过10000座,且运行安全良好。 四、工程造价的差异 充气膜材料自重轻,对基础挡墙要求相对低,但膜材价格高,上部充气膜1200元/方,2.5米高挡墙无法满足内部输出煤工艺,整体造价高过1500元/方,使工程造价比预期提升。 钢结构网架对基础挡墙要求相对高,网架工厂化制作,在施工现场只须小型工具,不需要脚手架平台,即可拼装,大大节约造价,上部网架900-1000元/方,整体造价1100-1300元/方,。 五、建筑效果的差异 充气膜为白色或彩色,,,膜材,建筑外观漂浮蓬松,像搭建的大帐篷,空间层次上比例失调,显得死板、压抑。

充气膜结构的研究进展

充气膜结构的研究进展 提要:本文从充气膜结构的结构设计原理入手,综述了其形态分析、荷载分析、剪裁分析等方面的研究现状与发展方向。 关键字:充气膜结构;形态分析;荷载分析;剪裁分析 充气膜结构是以性能优良的薄膜为材料,通过向薄膜构成的密闭空间内充气,利用空气压力支撑膜面,从而形成具有一定刚度、能够覆盖大跨度空间的结构体系。 由于膜材所特有的非线性力学特点以及膜结构整体所表现的柔性、张力与形态的统一性,其结构设计原理显著区别于传统结构,属于大形变条件下应变和应力问题[1]。主要包括四个阶段:方案设计、形态分析、荷载分析、剪裁分析。其中,找形分析是基础,荷载分析是关键,剪裁分析是目标和归宿。有关充气膜结构的主要研究工作也就集中在这三者之上[2-4]。 1形态分析 又称找形分析、找形,目的是寻找满足边界条件和初应力平衡条件的结构形状。初始平衡态的寻找是形态分析的关键,力密度法、动力松弛法和非线性有限元法是索膜结构初始形态分析的主要方法。其中,非线性有限元法在我国相关领域内应用最为广泛。 陆鉴恒等人[5]针对膜结构找形中最小曲面的确定问题,采用动力松弛法,对迭代参数进行分析和简化,使迭代参数的简化只跟时间步长有关。从算例数据可得出,在收敛范围内,迭代次数n随着迭代步时间步Δt的增加大体呈先减少再增加的趋势,最小值在T/4附近。并发现:a.动态阻尼动力松弛法的两个参数是相互联系的,跟每一时间步质点对应的周期有关;b.参数的取值:虚拟质量为任意常数,时间步长与对应时刻的质点周期对应,取值范围为(0,T/π),建议取T/4左右;c.此方法简化了参数的选择,明确了参数选择的物理意义。简化虽然增加了迭代的次数,但是在可接受的范围内,且误差比较说明提出的方法计算精度高,结果可靠,值得尝试和进一步研究改进。 东南大学的周树路等人[6] 则针对力密度法的找形过程进行改进,避开其中“力密度”的概念,直接引入膜面应力和索拉力作为初始条件,以节点不平衡力作为控制误差,避免了传统力密度法需要反复试算力密度取值的弊端,使找形计算过程简洁高效。据此编制找形程序,通过复杂算例验证了该算法的正确性和普适性。 鉴于力密度法原理简单但找形结果往往不能满足精度要求;非线性有限元法结果精度高但存在确定初始坐标问题和非线性系统的收敛问题。针对这两种方法的不足,温世峰等人[7]在综合以上两种方法后得到了混合法对膜结构进行找形。

ETFE膜结构在建筑外墙上(水立方)的应用

ETFE膜结构在建筑外墙上(水立方)的应用ETFE的英文为,ethylene-tetra-fluoro-ethylene,中文名为,乙为称-四乙为共聚物~谷,聚乙为~又俗,氟称氟称F-40. 比重,1.7克/立方厘米 成型收为率,3.1-7.7% 成型度,温300-330? ETFE是最强为的塑料~在保持了氟它PTFE良好的耐为、耐化性和为为为性能的同为~耐为学射和机械性能有大程度的改善~拉伸强度可到很达50MPa~接近聚四乙为的氟2倍。更主要 的是其加工性能得以大大提高~特为是和金表面的附着力表为突出~使塑料和为的为为它属氟壳 工为正是以为为~塑料真即氟F40旋为为生为工为~内ETFE旋为加工为品有好的市为前景。很 ETFE为为用在为子为器制造行为中为管为。涂 物料性能, 1、为期使用度温-80--220度~有卓越的耐化腐为性~为所有化品都耐腐为~摩擦系学学数 在塑料中最低~为有好的为性能~其为为为不受度影~有“塑料王”之。很温响称 2、其耐化为品性聚四乙为相似~比偏乙为好。学与氟氟 3、其抗为性和为为强度均比聚四为好~拉伸强度高~但为率可蠕氟达100-300%。介为性好~ 耐为射性能为。异

4、ETFE加工成型性好~物理性能均衡、机械为性好、耐射为性能为~为材料具有聚四异氟氟属数碳乙为的耐腐为特性~克服了聚四乙为为金的不粘和性缺陷~加之其平均为膨为系接近为 的为膨为系~使数ETFE;F-40)成为和金的理想为合材料。属 主要用于工为用为为为为为~原子反为堆为为和为为用为为及制作~工为用料等。涂 ETFE;F-40)塑料源于美杜邦公司和日本旭硝子公司~主要为用于防腐为为里。为材氟来国 料具有聚四乙为的面耐腐为特性~同为又有为金特有的为强粘着特性~克服了聚四乙为为金氟属氟 属数碳数的不粘合性缺陷~加之其平均为膨为系接近为的为膨为系~使 ETFE(F-40)成为和金的属 理想为合材料~具有为良的耐为为特性。极 用途, 1、适于制作耐腐为件~磨耐磨件、密封件、为为件和为器械零件。减医 2、为为、为为为为~防腐为为、密封材料、为为为套~和化容器。学 成型性能, 1、为晶料~吸小。可采用通常得为塑性塑料得加工方法加工成制品。湿 2、流为性差~易分解~分解为为生腐为。宜为格控制成型度不要超为极气体温350度~模具为加为100-150度~为注系为为料流阻力为小。可成型0.7-0.8毫米厚的薄壁为为制品。 3、透明粒料~注塑、为出成型。成型度温300-330度~350度以上容易引起为色或为生泡。气宜高速低为成型~注意模为困为。并脱会 ETFE膜材料介为,

水立方调研分析报告样本

水立方调研分析报告

中矩之方,梦幻之蓝 ——国家游泳中心“水立方”调研报告

国家游泳中 心(以下简称“水 立方”)是2008年 北京奥运会三大 标志性建筑物之 一,也是北京市政 府指定的惟一一 个由港澳台侨胞 捐资建设的标志 性奥运场馆。奥运会期间,承担游泳、跳水、花样游泳等比赛。奥运会赛后将成为一个多功能的大型水上运动中心;既可举办大型国际赛事,又能为公众提供水上娱乐、运动、休闲、健身等服务。 “水立方”位于奥运公园B区,坐落于奥林匹克中心区西南角。主体建筑紧邻城市中轴线,并与国家体育场相对于中轴线均衡布置。本工程为特级体育建筑。主体结构设计使用年限100年。 “水立方”以中国传统文化中的“天圆地方”为设计理念,采用方盒子的形式,充分运用新的结构形式与膜材料,将现代科技与传统价值观念充分揉合,展现出了强大的表现力与震撼力,为

2008年北京奥运会写下浓墨重彩的一笔。 关于水的立面 泡泡吧钢结构 二层观众通道 热身池 一、项目概况 项目名称:国家游泳中心 项目地点:北京奥林匹克中心区B区 基地面积: 建筑面积: 建筑高度:31m

容积率: 坐席数:赛时17000,赛后6000 (固定座位数:4000个永久,2000个可拆除)停车位:384辆 结构:钢筋混凝土+钢结构 钢结构设计总重量:约6700吨 国标钢材:Q345C、Q420C 钢结构杆件总数:20670根 焊接球:9843个 设计/建成:2003年4月-2006年6月/2008年1月 设计团队:中建总公司国家游泳中心设计联合体中建总公司 CCDI中建国际设计 PTW Architects Arup 设计总负责人:赵小钧 执行总负责人:郑芳 建设单位:北京市国有资产管理有限公司 施工单位:中建一局

大跨度充气膜结构的应用和施工技术

摘要:大跨度空间结构是我国目前发展最快和工业领域应用最广泛的结构类型。随着社会经济的发展,大跨度膜结构的作用会更加广泛,但膜结构在施工过程中以及建成后的使用和维护,任何的错误或者不严谨都可能会影响到膜结构的正常运行。因此,我们还需进一步加强对其的研究和施工技术的不足,从而推动大跨度膜结构在我国的健康发展。 关键词:大跨度;膜结构;应用;技术 一、充气膜结构的定义与发展 充气膜结构是一种新型建筑结构,是轻型空间结构的一个重要分支,有单层、双层、气肋式三种,具有丰富多彩的造型,建筑特性、结构特性和适宜的经济性。因此,充气膜结构的诞生,就迅速在世界各地发展起来。充气膜结构是一个相对密闭的空间结构,与传统空间结构不一样的是,它是通过风机向结构整体内部送风,使膜内外形成一定的压力差,以保证膜结构整体的刚度,达到所设计的形状。之后,由压力控制系统使结构维持一定的内外压差,保证结构的稳定性。 充气膜结构建筑主要应用于体育场馆、大型娱乐休闲设施、展览会馆、物流仓储及环保工业等大跨度建筑结构,其技术广泛应用在比较发达的国家,主要集中在美国、加拿大、日本及欧洲的部分国家。我国对气膜结构的研究始于上世纪90年代初,当时与世界水平相比,无论是设计理念还是施工技术都存在一定的差距。 充气膜结构不同于其他膜结构,其形状虽然没有张拉膜丰富多样,但要求空间密闭,通过室内外压差保持结构的稳定性和安全性,并符合国内外规范要求和承受风雪荷载。它是集结构力学、机电系统、计算机控制系统于一体的较高技术水平的系统化结构形式。充气膜结构突出的优势是智能化管理系统,管理人员可以通过手机APP来实时检测气膜的状况,同时系统也会实时对气膜的状况发送至手机,这样的管理系统让气膜更智能化。有效的提升建筑的安全稳定性以及使用寿命。充气膜结构作为一种新型的空间建筑,具有传统建筑无法比拟的优势。特别对于需要大面积大空间的作业厂区,它比任何建筑更具有优势,因此它可广泛应用在需要大跨度作业空间。 二、大跨度膜结构施工技术的研究 (一)、土建基础

膜结构找形及节点分析

膜结构找形及节点分析 摘要:文章概要对比分析了各种膜材料的物理特性及其力学性能,膜结构形状的类型及各种类型的特点及适用范围,并着重分析了应用广泛的张拉式结构型式,简要概括了膜结构常用的找形方法和节点连接方式,最后通过上海世博挪威馆实例分析了膜结构的连接和主要的节点构造,结果表明了木结构和膜结构结合的可行性和可靠性。 关键词:膜材膜结构形状找形分析节点连接 0引言 膜结构与传统的建筑结构相比,形体多样、重量轻,可获得较大跨度的建筑空间,具有较好的经济效益。膜结构的加工和制作均在工厂内完成,仅在现场安装即可,与混凝土结构相比大大缩短了了施工工期。膜结构具有易拆,易建,易搬迁和易更新的特点,膜结构具有较低的能耗、较高的反射性和较低的吸光率,已被广泛用于大型的体育场馆和公共建筑。如美国丹佛国际机场,英国的格林威治的“千年穹顶”张拉膜结构。近年来我国的膜结构也有了较快的发展,上海八万人体育场馆成为我国第一个永久性的膜结构工程,2008年奥运场馆“鸟巢”及2010年上海世博轴的建成表明了膜结构在我国得到了较快的发展。这种独特的建筑形式得到了越来越多的关注和发展。本文主要从膜材,膜结构类型的选择及找形方法和节点连接方面分析了膜结构的特点,并结合上海世博挪威馆分析了膜结构的应用。 1膜材料物理及力学性能分析 膜材料主要有PVC膜材,PTFE膜材及ETFE膜材,其物理力学性能对比分析见表1。 表1:膜材材料物理及力学性能指标比较 2膜结构形状及特点分析 2.1 骨架式  骨架式膜结构以钢构或集成材料构成屋顶骨架在其上张拉膜材的构造形式。其下部支撑安定性高,因屋顶造型比较单一,开口不易受限制,具有经济效益高等特点,广泛应用于任何大小规模的空间。 2.2 充气式

国家游泳中心水立方结构分析

国家游泳中心水立方结构分析 国家游泳中心 水立方结构分析 姓名:岳敏 学号:1101103-21 指导老师:蒋毅 主要内容 一、工程概况 二、多面体刚架结构的几何、受力分析 三、ETFE膜结构材料、力学性能分析 四、荷载与结构整体受力分析 1、工程概况 本工程的建筑造型为“充满水的立方体”,平面尺177.338m×177.338m,建筑墙体底标高+1.059m,屋顶标高30.587m。屋面及支撑墙结构由新型多面体空间钢架构成水滴的骨架。钢结构总用钢量共约6300吨,钢材选用Q345C、Q420C。结构节点形式分为球型、半球型、方钢管相贯三种,杆件分为圆钢管、方钢管两种形式。所有构件壁厚由6mm到40mm。节点9290个,杆件数量将近20670根。 1、三维空间的最有效分割 十九世纪末,爱尔兰数学家Lord Kelvin提出这样一个问题:如果将三维空间细分为若干个小部分,并且每个部分体积相等但要保证接触面积最小,那么这些细小的部分应该是什么形状,” 1993年,爱尔兰教授Denis Weaire和Robert Phelan提出一种解答:在一个组合体系中设置6个十四面体和2个十二面体,两

者共有三种表面形状,一种六边形和两种五边形,棱边有四种边长,有三种角点形式(如图1)。这种空间者虽不能被认定为最终解答,却是三维空间最理想的空间组合结构。如果将这样的解答延伸到建筑、结构领域,无疑会给材料的节约与经济带来很大的优势。这是Weaire-Phelan(下称W-P)多面体组合成为国家游泳中心的原因之一。 2、整体结构的生成 该结构最基本的特点是其几何构成不同于传统的空间网架结构,传统的网架结构都是由简单的基本单元(三角锥,四角锥等)组合而成。而该结构以由W-P气泡衍生改良得到的多面体为基本单元,进行空间阵列,形成一个比“水立方”的实际体量大得多的空间多面体阵列结构。这种经过阵列而未经旋转即进行切割得到的平板型多面体空间刚架结构的

整体空气支承式膜结构的计算分析

整体空气支承式膜结构的计算分析 向阳 (北京思博福瑞空间结构技术有限公司,北京100102) 提要:依据《膜结构技术规程》,膜结构大致可分为四大类。空气支承式膜结构是其中应用较少的类型之一。本文将空气支承式膜结构又细为整体空气支承式和局部空气支承式,并针对整体空气支承式膜结构的特点,以一个实际工程为例,对其在结构计算中的一般规定、初始形态分析、荷载效应分析,从膜张力分布、膜结构变形、膜结构反力等方面进行了论述。以期对此种类型膜结构的进一步理论研究及工程应用做一些有益的贡献。 关键词:充气膜、整体空气支承式膜结构、计算分析 一、引言 膜结构的分类,依照《膜结构技术规程》CECS158:2004可分为四大类,即整体张拉式、骨架支承式、索系支承式、空气支承式。 本文又将空气支承式膜结构,细分为整体空气支承式和局部空气支承式。 整体空气支承式膜结构是在整个密闭建筑物内部充气,使建筑物内外形成压力差,从而抵御外荷载。以前习惯称之为气承式膜结构,人处于密闭的充气建筑内部,如图1、2所示。 图1、整体空气支承式膜结构图2、整体空气支承式膜结构示意图 局部空气支承式膜结构是在一个相对较小的气囊内充 气,使气囊内、外形成压力差,从而抵御外荷载,如图3 所示意。 多个气囊可以组合使用,根据气囊功能不同,又可细 图3、局部空气支承式膜结构示意图

分为气肋式(类似于结构构件—拱,如图4所示)、气梁式(类似于结构构件—梁,如图5所示)、气枕式(类似于结构构件—板,如图6所示) 。人处于密闭的充气囊外部。 图4、气肋式图5、气梁式图6、气枕式本文结合一个实际工程,针对整体空气支承式膜结构的计算分析进行介绍。局部空气支承式膜结构另文介绍。 二、初始形态分析 该工程坐落在北京,是一个膜结构部分长52米、宽32米、高12米的网羽运动馆。膜结构的一端连接在一个高4米、长10.5米的砼结构的服务裙房上, 如图7所示。采用P类膜材,属于中小规模的整体空气 支承式膜结构。 空气支承式膜结构的计算分析与其它类型的膜结 构的计算分析在理论上没有区别,同样采用含有膜单元 的非线性有限元方法。设计过程依然是初始形态设计、 荷载效应分析、裁剪设计。重要的区别在于空气支承式 膜结构始终存在一个内部空气压力。 这里先定义几个名词: 最小工作内压,是指在正常气候条件、正常使用条件,结构能维持稳定的最小气压,一般不低于200Pa。 最大工作内压,是指在最不利的荷载作用下,满足膜材设计强度、结构不会出现过大的变形的气压值。 正常工作内压,是指在正常气候条件、正常使用条件、常遇荷载作用下,结构能维持稳定的气压值,并应保持室内环境的舒适度。一般取250Pa(250Pa=0.25kN/m2=0.00247大气压),大气压变化不到3‰,因此人进入到充气状态下的膜结构建筑内,基本感觉不到压力的变化。 本项目取膜的初始预张力为4kN/m、正常工作内压为250Pa进行初始形态设计,并以此作为裁剪设计的基础。初始形态设计结果如图8 所示。 图7、计算简图

水立方详细介绍

水立方详细介绍 国家游泳中心是北京2008年奥运会比赛场馆之一,其创意来自于肥皂泡的结构,因其外观酷似一个蓝色方盒子而被称为“水立方”。与“鸟巢”一样,“水立方”独特的结构设计给施工带来了很大难度,因为它是世界上第一个尝试实现这一肥皂泡结构体系的建筑。“水立方”的建筑外围护采用新型的环保节能ETFE(四氟乙烯)膜材料,由3000多个气枕组成,覆盖面积达到10万平方米。 建设地点:奥林匹克公园 建筑面积(M2):65000-80000。 座席数:永久座席为6000个,临时性座席11000个。 赛时功能:游泳、跳水、花样游泳、水球。 开工时间:2003.12.24。 工时间:2007年四季度。 “水立方”是世界上首个基于“气泡理论”建造的多面体钢架结构建筑。独特的结构设计给施工带来了很大困难。国家游泳中心总经理康伟说,“水立方”的创意来自于肥皂泡的构造。这种在自然界常见的形态从未在建筑结构中出现过。

“从截面上看,‘水立方’墙面和屋顶都分为内外3层,9803个球形节点、20870根钢质杆件中,没有一个零件在空间定位上是完全平行的,传统的二维图纸无法标出工件的坐标。因此,定位难成为‘水立方’施工中遇到的最大挑战。”康伟说。 在业主的委托下,中建国际(深圳)设计顾问有限公司联合国内4家研究单位,仅用了半个多月便把“水立方”的所有工件在三维空间上一一标出了坐标。30513个工件、91539个坐标值,堆成了两尺多高的施工图纸。作为自主创新成果,《新型多面体空间钢架结构设计理论》为“水立方”的钢结构搭建提供了技术标准。 随着奥运工程进度的不断推进,新标准、新工艺不断涌现。这些新标准、新工艺是奥运工 程留下的一笔宝贵财富,今后将成为同类建筑的参照标准。

从“水立方”看建筑中的技术

从“水立方”看建筑中的技术 引言 20世纪80年代以来,在全球兴起了绿色运动,是人类在可持续发展道路上的重要之举,改善生存环境,从建筑的角度,实现绿色,节能,环保建筑愈发体现出其重要性。而建筑技术作为实现其的一种手段,在建筑设计中将技术与艺术相结合,将极大的提高建筑的科技含量与艺术欣赏性。本文主要针对这一问题,并结合自己的学习体会,谈一下自己的体会,希望引起大家的共鸣。 1,建筑技术的发展及现状 近年来,我国的建筑业蓬勃发展,建筑技术的发展也是突飞猛进,建筑新材料的不断出现,大规模的生产方式。使我国出现了一大批雄伟,高耸,气度非凡的建筑物;建筑技术的交叉性与综合性以及多样性推动了建筑的发展与进步。科技水平的提高使现代文明的重要标志之一,随着人们对建筑技术认识的不断加深,对技术在建筑设计中的作用必将有更加全面与深入的思考,技术因素将作为解决问题的重要手段放在首要的位置,如何发挥技术的积极作用,将成为建筑设计中的关键问题。 目前,我国已经涌现出许多高质量的具有节能,环保理念,体现绿色理念的优秀建筑作品。这些作品都是建筑技术与艺术的完美结合。下面以国家游泳中心(水立方)为例,具体谈一下建筑设计中技术理念的体现。 2,实例分析(以“水立方”为例) 随着北京申奥成功及2008北京奥运的准备工作的进行,国家游泳中心,国家体育场等一大批的高水平建筑相继出现。它们引起了社会各界的广泛关注,对我国建筑技术的进步的推动作用使史无前例的。它们是我国建筑史上划时代的里程碑下面从几个方面,以水立方为例,探讨一下建筑技术在建筑设计中的具体体现。 (1),从建筑结构选型的角度来看 国家游泳中心,属于骨架支撑薄膜结构,以主体钢结构骨架支撑为主,将ETFE薄膜覆盖固定在薄膜骨架单元上,形成围护结构。 “水立方”相对于一班的建筑的最大不同是没有了传统建筑的元素(如门,窗,柱子,墙等)取而代之的是多面体空间钢结构单元,最终通过它们拼接形成整体结构。屋面采用平板结构的形式,受高跨比的制约厚度很大,所以钢结构大的用量很大。 钢结构用量的实现,ETFE薄膜通过钢转接架和铝合金膜架固定与钢军阿构主体架上。新技术的使用,使“水立方”的整体性和艺术性得到完美结合。 (2),从建筑构造原理与设计的角度来看

骨架式膜结构

骨架式膜结构 以钢构构成的屋顶骨架后,在其上方张拉膜材的构造形式。下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。 张拉式膜结构 以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式。 张拉式膜结构 以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式。 充气式膜结构 充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因利用气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可得更大的空间,施工快捷,经济效益高。 膜材料用于膜结构建筑中的膜材是一种具有强度,柔韧 性好的薄膜材料,是由纤维编织成织物基材,在其基材两面以树脂为涂层材所加工固定而成材料,中心的织物基材分为聚酯纤维及玻璃纤维,而作为涂层材使用的树脂有聚氯乙烯树脂(PVC),聚四氟乙烯树脂(PTFE)。 织物基材——抗拉强度,抗撕裂强度,耐热性,耐久性,防火性。 涂层材——耐候性,防污性,加工性,耐水性,耐品,透光性。 二、建筑物的构造组成 基础 墙或柱 楼地层 六大基本组成 楼梯 屋顶 门窗 特有构配件:阳台、坡道、雨篷、女儿墙、台阶、花池等 基础 是墙和柱子下面的放大部分,它直接与土层相接触, 承受建筑物的全部荷载,并将这些荷载连同本身的重量 一起传给地基。 基础是建筑物的主要承重构件,处在建筑物地面以 下,属于隐蔽工程。基础质量的好坏,关系着建筑物的 安全问题。建筑设计中合理地选择基础极为重要。

膜结构水立方的分析

建筑结构选型结课论文 姓名:谢昆柱 学号:1401102-07 所在院系:建筑与城市规划学院 学科专业:城乡规划 指导教师:张弘 日期:二零一六年十二月二十五日

对于膜结构建筑——“水立方”的分析 膜结构在国内的应用晚于国外近50年,但近十几年来,膜结构在国内的应用发展速度高于世界任何地区。目前,膜结构已广泛应用于大型体育馆,展览中心,航空和铁路交通,文化娱乐等公共建筑中。 膜结构是一种古老的结构型式,它具有轻盈,纤薄,柔软的质感,与传统的混凝土有明显的区别,常常能给人以耳目一新的艺术感受。膜结构属于柔性材料,膜材本身的受弯刚度几乎为零,但通过不同的支撑体系可以使薄膜结构承受张力,从而形成具有一定刚度的稳定曲面。膜结构能够从根本上克服传统结构在大跨度建筑上实现所遇到的困难,可建造出巨大,明亮,无遮挡的可视大空间。膜结构突破了传统的建筑结构形式,可形成各种自由空间曲面,不重复,多变化。这也是薄膜结构更具有艺术性的一个原因。例如在上海世博会世博轴膜屋面正是应用了这种特性,才建出了轻质大跨度的结构。除了这些在建筑结构上的特性,还有以下在物理与在实际生活上的特点。 <1>具有优良的力学特性。膜结构的受力为单纯受拉,膜材只承受沿膜面的张力,因而可充分发挥材料的受拉性能。它是跨度重量比最大的一种结构,且单位面积的结构自重与造价不会随跨度的增加而明显地增加。 <2>膜结构透光自洁,减少能源消耗,降低维护费用。膜结构是半透明的织物,透光率一般可达4%~16%,能够满足大跨度建筑在平时使用时利用自然光的采光要求,白天几乎不需要人工照明。但是冬季

太阳光对于膜结构屋盖内部的气温升高效应不大,而夏天却相反,膜结构的室内气温比室外高出5—10度,有时会使人感到明显的不适。因此,膜结构多采用反射能力强的淡色材料。 <3>使用范围广,可拆卸,易运输。从气候条件看,它适用于广阔的地域;从规模上看,可以小到花园小品,大到覆盖几万,几十万平方米的建筑。膜结构可作巡回演出,展览等临时建筑,其拆卸和安装所需时间短。 综上所述,膜结构建筑外观雅致飘逸,空间开阔灵秀,结构轻盈,透光阻燃,经久自洁,安装快捷,节能建耗,造价适中,维修简便。但是膜结构也有缺点,主要就是耐久性较差,早期的织物薄膜不仅强度低而且只有5~10年的寿命,因此膜结构常常被认为只能用于临时性建筑。虽然由于近年来高强,防火,透光,耐久性好,性能稳定的膜材的出现和应用,膜结构的设计寿命可达20年以上。而膜结构存在的另一个问题是,由于薄膜张力的连续性,局部的破坏就会造成整个膜结构垮掉。此外,膜材隔声和隔热效果较差,也限制了膜结构的应用范围。 在中国有一个膜结构的完美体现——水立方。“水立方”是世界上最大的膜结构工程,除了地面之外,外表都采用了膜结构———ETFE 材料,蓝色的表面出乎意料的柔软但又很充实。“水立方”不仅是一幢优美和复杂的建筑,她还能激发人们的灵感和热情,丰富人们的生活,为人们提供记忆的载体。因此设计中不仅利用水的装饰作用,同时还利用其独特的微观结构。采用在整个建筑内外层包裹的ETFE膜

北京水立方工程施工详细介绍

北京水立方工程施工介绍 一、工程概况 国家游泳中心建筑总体布置为正方形,总平面尺寸约177m×177m。地下深度约12m,地上高度约31m。主要由比赛厅、多功能馆和戏水乐园三大部分组成,建筑面积87283m2,其中地下二层,57456m2,地上四层,29827m2。 外墙体和屋面围护结构采用新型钢膜结构体系,该钢膜结构体系由一系列类似于细胞、水晶体的钢框架单元和ETFE(聚乙烯——四氟乙烯共聚物)充气薄膜共同组成;观众看台和室内建筑物为钢筋混凝土结构。基础形式为桩支撑基础一无梁抗水板,混凝土部分为框架一多筒体抗震墙结构,上部钢结构为新型延性多面体空间钢框架结构。设计基准期为50年,设计使用年限为100年。

二、重点技术的应用 (一)高性能混凝土 1、混凝土裂缝防治技术 泳池的抗渗防裂是本工程的施工重点之一。本工程采取以下抗渗防裂措施: (1)混凝土中粉煤灰的替代比例达到25%左右。降低了水化热,改善了混凝土的和易性。 (2)在池壁迎水面增加抗裂钢筋网,配筋为Φ4@100,泳池底板迎水面配筋为中Φ4@200。 (3)泳池侧壁水平向钢筋放置在竖向钢筋外侧,有利于减少池壁位置的混凝土裂缝。 (4)泳池底板和池壁混凝土施工均分为两段进行,防止一次混凝土施工过长而产生收缩裂缝。 (5)在水池的侧壁混凝土内掺加聚丙烯纤维(掺加量为0.9kg /m),使其内部形成一种均匀的三维不定向拉结体系,增加了混

凝土的抗折强度,抑制混凝土早期塑性裂缝的产生。 (6)混凝土终凝之后,及时压光,及早浇水养护,池壁混凝土强度达到1.2MPa以上时,松动池壁模板,进行“带模养护”,向模板与己形成的池壁混凝土之间的缝隙浇水。 (7)拆模后覆盖塑料布继续深水、保水养护14天,遇干燥、多风季节养护21天。 (8)由于泳池池壁的预埋件、预留洞非常多,需提前落实好每一个预埋件、预留洞的位置及尺寸,避免由于漏埋或尺寸不对而造成的返工,从而导致混凝土池壁的渗漏。 (9)采取渗透结晶型防水涂料加柔性防水:渗透结晶型防水涂料能封闭细小裂纹,对1.0mm以内宽度的裂缝遇水后有自愈修复能力。 2、混凝土耐久性技术 (1)该工程混凝土总用量为71700m3,混凝土的使用年限达到了100年,首先设计上对混凝土原材料、配合比提出了比现行规范更加严格的规定,降低影响混凝土耐久性有害物质的含量:

膜结构的三种分类

常州泽拉膜结构厂-常州景观棚,常州停车棚,膜结构雨棚,常州膜结构 膜结构的三种分类 膜结构建筑是21世纪最具代表性与充满前途的建筑形式。它打破了纯直线建筑风格的模式,以其独有的优美曲面造型,简洁、明快、刚与柔、力与美的完美组合,呈现给人以耳目一新的感觉,同时给建筑设计师提供了更大的想象和创造空间。膜结构的分类有很多,下面小编就为大家介绍一下。 第一种:骨架式膜结构 骨架式膜结构是以钢构或是集成材构成的屋顶骨架,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因为屋顶造型比较单纯,开口部不容易受限制,而且经济效益高,所以它广泛的适用于任何大,小规模的空间。 第二种:张拉式膜结构 张拉式膜结构以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达到安定的效果。除了可以实践而且还具有创意,除了具有创新且美观的造型外,也是最能展现膜结构精神的构造形式。大型跨距空间也多采用了以钢索与压缩材构成钢索网来支撑上部膜材的形式。因此施工精度要求高,结构性能强,而且具有丰富的表现力,所以造价略高于骨架式膜结构。 第三种:充气式膜结构 充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因为利用了气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可以得到更大的空间,施工快捷,经济效益高,但是需要维持进行24小时送风机运转,在持续运行以及机器维护费用的成本上都是比较高。 我国虽然是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。这是我国空间膜结构领域面临的巨大机遇。

充气膜结构的受力分析

充气膜结构的受力分析 膜结构车棚采用的充气膜结构技术,其受力分析为解决气枕式充气膜结构在荷载作用下的变形问题,采用非线性有限元方法对气枕式充气膜结构进行形态分析的基本方法。 气忱式充气膜结构的形态分析分为找形分析和找态分析两个阶段,由此可得到满足相应要求的几何模型与应力状态. 假设密封气枕内质量一定的气体满足理想气体状态方程,在荷载作用下,内压随着体积的变化而变化。给出在一定压力作用下半球状气枕的验证算例并与材料力学中给出的理论解进行比较;基于该方法,另对气枕式充气膜结构在不同外荷载作用下的受力状态进行分析并给出相应的算例,计算结果表明采用理想气体状态方程可以模拟在外部荷载作用下气枕的变形、应力状态以及内压变化情况,且是合理有效并具有较高的准确性。 张拉膜结构的找形采用动力松弛法,对膜结构找形分析时,为了防止节点的聚集以获得更精确的膜曲面,提出了一种新的控制网格变形的找形技术。 膜单元采用平面三角形单元描述,在单元每两节点间引入了与单元边长变化速率成正比的阻尼项,通过阻尼项产生的节点力来控制网格在找形过程中的变形,对悬链面找形时发现,当黏性系数不大于0.7时,动力松弛法收敛,网格节点分布较无阻尼时均匀。 对Scherk-1ike曲面找形时发现,能够控制网格变形且满足收敛性的黏性系数的上限为1.5。此方法能够有效地解决膜结构找形分析中网格的大变形问题,保证了单元密度,尤其是克服了曲率较小处网格过于稀疏的缺陷。 文章来源:https://www.360docs.net/doc/301101582.html,/news_show_1629.html https://www.360docs.net/doc/301101582.html,/employ.asp

水立方的设计思想及结构CHRIS作

自然的魅力——“水立方” 2008年北京奥运会标志性场馆之一——国家游泳中心,[1]具有巧夺天工的设计、纷繁复杂的结构、简洁晶莹的造型,蕴含着先进的绿色科技,凝聚了中国人的智慧和自主创新的勇气,极好地体现了北京奥运会“绿色奥运、科技奥运、人文奥运”的三大理念。这一切,使得天蓝色的“水立方”成为世界建筑史上的标志性建筑,英国《卫报》发表文章称其为“理论物理学的杰作”[2]。 “水立方”的建筑灵感源于对肥皂泡的形学和力学特性的研究成果。肥皂泡在生活中是再常见不过的了,在孩提时代,几乎每个人都有吹肥皂泡的经验。但并不是所有的人都知道肥皂泡里蕴含着很深的学问。它那极其脆弱的几何结构的对称性,以及既非固态也非液态的力学特性,使无数物理学家和数学家着迷。正如开尔文(Kelvin)所说:“如果你吹一个肥皂泡并进行观察,你可以对它进行一生的研究并能从中获得一个又一个的物理规律。”[3] 普拉托规则 肥皂泡总是试图最小化它们的表面积,以使它们的表面能量最小化。对于一个孤立的肥皂泡,最佳的表面就是一个球面。公元320年,亚历山大的帕普斯(Pappus)首次对肥皂泡的球状结构进行了数学分析。1884年,德国数学家施瓦茨(H. A. Schwarz)用微积分对此给出了严格的证明。然而,肥皂泡的问题远没有彻底解决,如当两个或多个肥皂泡聚集在一起,它们的结构又会如何呢? 1840年,比利时物理学家普拉托(J. Plateau)对最小表面积问题着手进行实验研究,实验始于一次偶然,他的一个仆人把油溅到了盛有水和酒精的容器中,普拉托注意到油在混合物中呈现完美的球形,后来他改用肥皂溶液和甘油并把蘸湿的线框放入其中进行实验。在一系列实验之后,普拉托于1873年指出,当肥皂泡沫聚集到一起时,它们以三个侧面成120°连接在一起,一次聚集4个皂泡,在每一个角点上有4条边交汇,它们形成的四面角大约为109.47°。这即是著名的普拉托规则(Plateau rule)。 普拉托的结论如此简单,连他自己都感到吃惊,他说:“……这些规则使得我们得到一个非常值得关注的结论:那些香槟、啤酒和肥皂水中的泡沫很明显是液体薄膜的结合体……因此,尽管泡沫在人们看来是极其易变的,但它一定会受到以上规则支配的。”[4] 开尔文问题 麦克斯韦提出电磁辐射理论,认为光是电磁波,赫兹实验也表明电磁波具有光的一切性质。1900年前后,物理学家确认光是一种电磁波。根据经典力学,波动是需要有介质的,为了

相关文档
最新文档