充气膜结构的成形过程分析

充气膜结构的成形过程分析
充气膜结构的成形过程分析

Adina膜结构分析(褶皱膜单元)

ADINA膜结构分析概略 西南交通大学土木学院余志祥 膜结构分析主要包括三个流程:找形分析,荷载分析和裁剪分析。找形阶段也有个别学者将其细分为找形与找态。国外专业的膜结构设计软件价格昂贵,利用常见的通用分析平台进行膜结构设计是一种可行且可替代的办法,但目前裁剪分析还得依靠自编程序或者专业的裁剪软件实现。02年的时候,我利用ANSYS摸索了一套膜结构找形、荷载分析的方法,并发布在专业论坛,实践证明其具有较高通用性,且结果较准确,并且还应用在了个别实际工程中。 膜结构主要分为张拉膜、骨架膜以及充气膜三大类,就找形方法而言,三者基本相似,但在分析方法上,充气膜存在明显差别。无论张拉膜抑或骨架膜,通过找形分析之后获得的结构物理模型基本上算是确定模型,但充气膜在获得初始形态之后仍然不具有确定性,因为这个初始态和必须和相应的气压对应,且在充气膜受荷过程中互动变化,不如张拉膜或者骨架膜,可以在膜材内部导入相应的应变场保持其初始形态和初应力场的对应,保持其形态、应力在受荷阶段实现自动呼应。充气膜要模拟其膜面内压,必须引入第三方介质,即空气场并保证荷载、结构、内压场互动呼应。 基于ADINA卓越的非线性分析能力,进行膜结构分析主要有几个关键点,首先说张拉膜结构和骨架膜。 1、根据建筑设计确定其初始平面形状。这个形状称为零状态形状,可以为平面,也可以为一个实 际模型较为接近的三维曲面形态。 2、膜单元采用adina的2D Solid,并设置相应的单元选项为3D membrane。索单元可以直接用truss 单元等代,两种材料均可直接采用线弹性材料。 3、膜面网格采用三节点三角形或者四节点四边形。单元列式为线形完全积分格式。根据非线性计 算的收敛难易程度,可以关闭非协调元模式。 4、将索和膜材弹性模量降低1000倍,设置支座提升量、增量分析参数,为获得结构找形初始形态 完备分析参数。小弹性模量方法的本质在于让材料自由“伸长”,但内应力却几乎可以不变。 5、虽然adina能够直接提供输入膜材和桁架单元的初始应变,但实际操作中,除桁架单元可以通过 初应变提供预应力外,膜面预应力一般不采用导入初始应变场的方式,那样在完成第一次找形之后,新的应力场无法和初始形态形成平衡,导致存在一系列问题。但3D membrane单元必须依靠一个很小的初始应变场来支撑膜单元的非线性分析(程序单元属性设置使然),因此,可以预定义一个很小的应变场,并赋予相应的膜单元,这个应变场产生的应力应该小到相对于工程预应力可以忽略。膜面的预应力最好通过降温方法施加,方法很简单,给膜材设置一个虚拟的热膨胀系数,比如1,但需要保证加载温度、膨胀系数和膜面预应力的对应关系,由于不是物理意义上的热分析,因此,温度、热膨胀系数都可以虚拟,但由此产生的膜面预应力却是必须符合实际的。具体计算公式很简单,可以参考任何一本弹性力学教材。 6、完成找形分析之后,可以在后处理获取相应的节点position,并导出为txt文件并在excel中完成 编辑复制。 7、在前处理器中将零状态模型打开之后另存一份,并在其中进行编辑:首先将excel中的节点新位 形数据黏贴到node define菜单的表格中,完成坐标更新;并将膜材和索材弹性模量还原到实际状态。这个过程需要注意的是,由于材料物理属性发生变化,控制产生索预应力或者膜预应力的应变设置、温度设置都要相应变化,目的是保持找形后的模型中的预应力保持不变,比如膜材的弹性模量还原时增加1000倍,则热膨胀系数降低1000倍,或者该系数不变,将温度降低1000倍,索单元的属性参数亦然。调整完之后计算分析,可以获得真实参数下的结构新位形。

充气膜结构的研究进展

充气膜结构的研究进展 提要:本文从充气膜结构的结构设计原理入手,综述了其形态分析、荷载分析、剪裁分析等方面的研究现状与发展方向。 关键字:充气膜结构;形态分析;荷载分析;剪裁分析 充气膜结构是以性能优良的薄膜为材料,通过向薄膜构成的密闭空间内充气,利用空气压力支撑膜面,从而形成具有一定刚度、能够覆盖大跨度空间的结构体系。 由于膜材所特有的非线性力学特点以及膜结构整体所表现的柔性、张力与形态的统一性,其结构设计原理显著区别于传统结构,属于大形变条件下应变和应力问题[1]。主要包括四个阶段:方案设计、形态分析、荷载分析、剪裁分析。其中,找形分析是基础,荷载分析是关键,剪裁分析是目标和归宿。有关充气膜结构的主要研究工作也就集中在这三者之上[2-4]。 1形态分析 又称找形分析、找形,目的是寻找满足边界条件和初应力平衡条件的结构形状。初始平衡态的寻找是形态分析的关键,力密度法、动力松弛法和非线性有限元法是索膜结构初始形态分析的主要方法。其中,非线性有限元法在我国相关领域内应用最为广泛。 陆鉴恒等人[5]针对膜结构找形中最小曲面的确定问题,采用动力松弛法,对迭代参数进行分析和简化,使迭代参数的简化只跟时间步长有关。从算例数据可得出,在收敛范围内,迭代次数n随着迭代步时间步Δt的增加大体呈先减少再增加的趋势,最小值在T/4附近。并发现:a.动态阻尼动力松弛法的两个参数是相互联系的,跟每一时间步质点对应的周期有关;b.参数的取值:虚拟质量为任意常数,时间步长与对应时刻的质点周期对应,取值范围为(0,T/π),建议取T/4左右;c.此方法简化了参数的选择,明确了参数选择的物理意义。简化虽然增加了迭代的次数,但是在可接受的范围内,且误差比较说明提出的方法计算精度高,结果可靠,值得尝试和进一步研究改进。 东南大学的周树路等人[6] 则针对力密度法的找形过程进行改进,避开其中“力密度”的概念,直接引入膜面应力和索拉力作为初始条件,以节点不平衡力作为控制误差,避免了传统力密度法需要反复试算力密度取值的弊端,使找形计算过程简洁高效。据此编制找形程序,通过复杂算例验证了该算法的正确性和普适性。 鉴于力密度法原理简单但找形结果往往不能满足精度要求;非线性有限元法结果精度高但存在确定初始坐标问题和非线性系统的收敛问题。针对这两种方法的不足,温世峰等人[7]在综合以上两种方法后得到了混合法对膜结构进行找形。

充气膜煤棚建造施工条件要求都有哪些

充气膜煤棚建造施工条件要求都有哪些? 充气膜结构从国外引入国内以来,掀起了膜结构建筑的热潮,受到很很多行业和人们的关注,因充气膜结构其特殊的密闭性逐渐运用于密闭性要求高建筑场所。比如充气膜煤棚,在工业化煤场煤仓行业,充气膜煤棚的出现带来了许多好处,密闭空间加上内部通风等设备,解决了扬尘对空气的污染问题,改善了煤场周边环境以及煤场的储煤量,作业人员的工作环境问题。这样的绿色环保新型建筑很多人还不是很了解,下面我们一起看看在气膜建筑施工安装前中成空间安装团队需要做好哪些准备工作?充气膜煤棚的施工条件要求都有哪些? 充气膜煤棚的施工条件要求 1.检测基础建筑的规格和要求是否达到膜体安装的需求,确保基础建筑的建设标准达到气膜煤棚连接的要求,才能保证整个建筑的稳定性和安全性。 2.检查膜体的出厂证及质量确保书,支承结构及预备构件的需求量检验及校对,铺展膜体和膜体的连接零件的装置及校对,按设计需求形成膜面,并按设计需求施加预张力,膜面与支承结构固定,检验连接件及连接节点,对完成的气膜煤棚进行检测和记录。 3.对膜体及零配件的出厂陈述、产品质保书、检测陈述以及品种、规格、色泽、数量进行检验。 气膜煤棚施工前要检验哪些? 1.膜体外观质量应无破损、无显著折痕、无难以清除的污垢以及无显著色差。 2.膜体上的拼缝及结合处无裂缝、无分离剥落及无显著褶皱。

3.螺栓、垫圈及铝合金、不锈钢压条无拉伤和锈蚀。 4.索、锚具无涂层损坏,缆绳无污损。 充气膜煤棚改造工程的现场管理主要是在产品材质验收,施工阶段的细节把控以及整体项目工程的验收,一旦项目过程中某个环节出现了差错,也能够很快的及时纠正处理,工作效率也能够很大程度上得到提升。充气膜煤棚的施工条件也不限于此。

钢结构储煤棚与充气膜结构比较

钢结构储煤棚与充气膜结构比较 一、结构安全的差异 充气膜结构是通过机械系统(8台风机)向室内空间连续不间断充气,气体在密闭的空间中逐渐加压而最终使室内外保持一定的压力差,膜体受到上浮力,产生的预张力以托起大空间。单纯的充气膜抵抗风雪荷载的可靠性差,应对极端大风、大雪存在隐患,硬物一旦刮伤损坏,自然塌落,不适用于大跨度的永久性建筑。充气膜结构只能作为条形煤场相对简易的临时仓储,无法适应圆形煤场、异形煤场及超大跨度永久煤场的工程要求,质量缺陷多,有很大局限性。 钢结构网架采用实心球(材质45#高强度钢)及钢管紧密连接,使用年限50年,按70年一遇的地震及风压雪压考虑。其构件在生产车间内加工,标准化程度高,质量易于保证。储煤棚上部钢结构网架,与下部现浇混凝土支承柱及挡煤墙连成整体,传力稳定平衡,制造质量精良,工地安装便捷,此结构被广泛使用。 二、维护使用的差异 充气膜煤棚建设时必备两路电源,满足其加压风机及消防用电。一路6kV电源引自厂区,一路增加设置二套400kW 660V柴油发电机组,作为备用电源。后期使用时,完全依靠电能,不可断电。以一万平方米储煤棚估算,一年消耗超过15万元的电费,增加后期使用成本。 钢结构网架在工厂内机械抛丸除锈,然后喷漆、喷塑或喷锌 处理,增强了抗腐蚀性,在煤棚密闭环境中,需要10-12年对钢架表面防腐处理,按建筑面积计算,每次油漆费用约35-45元/方。 三、建成运行案例的差异

充气膜结构由国外引进,多用于临时建筑(汽车旅馆、临时展出大棚等)拆建方便,气膜储煤棚在国内案例没有20个,也只局限在神华集团的煤炭储煤场方面的临建工程。 钢结构网架储煤棚,技术成熟稳定,后期运营费用极低,初期投资节约,钢材可以回收利用增加效益,诸多优势明显。在电厂、集装站、储运物流园、选煤厂、水泥厂、煤化工项目的封闭煤场项目应用广泛,25年来运行安全可靠。华能、大唐、华电、国电、中电投等,大电力公司、地方电厂、煤炭、钢铁、水泥项目案例超过10000座,且运行安全良好。 四、工程造价的差异 充气膜材料自重轻,对基础挡墙要求相对低,但膜材价格高,上部充气膜1200元/方,2.5米高挡墙无法满足内部输出煤工艺,整体造价高过1500元/方,使工程造价比预期提升。 钢结构网架对基础挡墙要求相对高,网架工厂化制作,在施工现场只须小型工具,不需要脚手架平台,即可拼装,大大节约造价,上部网架900-1000元/方,整体造价1100-1300元/方,。 五、建筑效果的差异 充气膜为白色或彩色,,,膜材,建筑外观漂浮蓬松,像搭建的大帐篷,空间层次上比例失调,显得死板、压抑。

充气膜原理

充气膜原理 充气膜建筑也称为“空气支撑结构”——air supported structures,气膜建筑采用特殊的建筑膜材做外壳构成密闭的建筑空间,,配备一套先进的全智能化机电控制系统在气膜建筑内部提供空气的正压,借助内外的气压差保持膜材的张力,形成设计要求的曲面造型并具备一定的结构强度,把建筑主体支撑起来的一种建筑结构系统。气膜结构通常内外气压差为250Pa,约0.0025个大气压(相当于正常建筑1层与9层的气压差)|河南膜结构,菲奥特(郑州)索膜技术有限公司,https://www.360docs.net/doc/8018973007.html,| ◆安全性: 气膜靠内外气压差来支撑整个建筑。由于材料的柔性和结构固有的有效性和弧形的体形,没有受弯、受扭和受压的构件; 在抗风,抗震,温度变形,沉降变形等方面具有其它结构体系无可比拟的优势。 地震和风荷对其的作用极小,并可以有效地吸收风荷与震波加速度。 ◆舒适性: 气膜建筑系统的内部空间中,所有因素:气压、温度、湿度、新风量、照度等,皆可按需控制,提供舒适宜人的室内环境。 独特照明设计——悬吊式二次反光照明将光源直射到内膜并形成真正的二次反射照明,有效的利用膜材对光的高反射率为建筑内部提供均匀、无晃眼的照明效果 搭配使用透光膜(透光率25%)达到日间充分利用自然光的效果 整体节约30%的照明费用 提供100%的光照效果 漫射光照度均匀,无眩光|河南膜结构,菲奥特(郑州)索膜技术有限公司,https://www.360docs.net/doc/8018973007.html,| 无论是网球篮球还是对照明要求苛刻的羽毛球运动都可完全满足它们对灯光的需要 全面满足各项体育比赛的照度要求 ◆经济性: 传统结构建筑,随着跨度的增加,单位面积建造成本会呈几何倍数增加;气膜建筑恰好相反,随着跨度的增大(最大可达220米),单位面积建造费用呈下降趋势。(超过30米跨度

膜结构行业介绍6

膜结构的发展历史 世界上第一座充气膜结构建成于1946年,设计者为美国的沃尔特·勃德(W.Bird),这是一座直径为15m的充气穹顶。1967年在德国斯图加特召开的第一届国际充气结构会议,无疑给充气膜结构的发展注入了兴奋剂。随后各式各样的充气膜结构建筑出现在1970年大阪世界博览会上。其中具有代表性的有盖格尔设计的美国馆(137m×78m 卵形),以及川口卫设计的香肠形充气构件膜结构。后来人们认为70年大阪博览会是把膜结构系统地、商业性地向外界介绍的开始。大阪博览会展示了人们可以用膜结构建造永久性建筑。而70年代初美国盖格尔-勃格公司 (Geiger-Berger Associates)开发出的符合美国永久建筑规范的特氟隆(Teflon)膜材料为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。 之后,用特氟隆材料做成的室内充气式膜结构相继出现在大中型体育馆中,如1975年建成的密歇根州庞蒂亚克“银色穹顶”(椭圆形220×159m),1988年建成的日本东京体育馆(室内净面积4,6767㎡)。 张拉形式膜结构的先行者是德国的奥托(F.Otto),他在1955年设计的张拉膜结构跨度在25m左右,用于联合公园多功能展厅。由于张拉膜结构是通过边界条件给膜材施加一定的预张应力,以抵抗外部荷载的作用,因此在一定初始条件(边界条件和应力条件)下,其初始形状的确定、在外荷载作用下膜中应力分布与变形以及怎样用二维的膜材料来模拟三维的空间曲面等一系列复杂的问题,都需要有计算来确定,所以张拉膜结构的发展离不开计算机技术的进步和新算法的提出。 目前国外一些先进的膜结构设计制作软件已非常完善,人们可以通过图形显示看到各种初始条件和外荷载作用下的形状与变形,并能计算任一点的应力状态,使找形(初始形状分析)、裁剪和受力分析集成一体化,使得膜结构的设计大为简便,它不但能分析整个施工过程中各个不同结构的稳定性和膜中应力,而且能精确计算由于调节索或柱而产生的次生应力,完全可以避免各种不利荷载式况产生的不测后果。 因此计算机技术的迅猛发展为张拉膜结构的应用开辟了广阔的前景。而特氟隆膜摸材料的研制成功也极大地推动了张拉膜结构的应用。比较著名的有沙特阿拉伯吉达国际航空港、沙特阿拉伯利雅得体育馆、加拿大林德塞公园水族馆、英国温布尔登室内网球馆、美国新丹佛国际机场等。 张拉膜结构的特征 张拉膜结构作为一种建筑体系所具有的特性主要取决于其独特的形态及膜材本身的性能。恰由于此,用膜结构可以创造出传统建筑体系无法实现的设计方案。 轻质:张拉膜结构自重小的原因在于它依靠预应力形态而非材料来保持结构的稳定性。从而使其自重比传统建筑结构的小得多,但却具有良好的稳定性。建筑师可以利用其轻质大跨的特点设计和组织结构细部构件,将其轻盈和稳定的结构特性有机地统一起来。 透光性:透光性是现代膜结构最被广泛认可的特性之一。膜材的透光性可以为建筑提供所需的照度,这对于建筑节能十分重要。对于一些要求光照多且亮度高的商业建筑等尤为重要。通过自然采光与人工采光的综合利用,膜材透光性可为建筑设计提供更大的美学创作空间。夜晚,透光性可将膜结构变成了光的雕塑。 膜材透光性是由它的基层纤维、涂层及其颜色所决定的。标准膜材的光谱透射比在10%~20%之间,有的膜材的光谱透射比可以达到40%,而有的膜材则是不透光的。膜材的透光性及对光色的选择可以通过涂层的颜色或是面层颜色来调节。

大跨度充气膜结构的应用和施工技术

摘要:大跨度空间结构是我国目前发展最快和工业领域应用最广泛的结构类型。随着社会经济的发展,大跨度膜结构的作用会更加广泛,但膜结构在施工过程中以及建成后的使用和维护,任何的错误或者不严谨都可能会影响到膜结构的正常运行。因此,我们还需进一步加强对其的研究和施工技术的不足,从而推动大跨度膜结构在我国的健康发展。 关键词:大跨度;膜结构;应用;技术 一、充气膜结构的定义与发展 充气膜结构是一种新型建筑结构,是轻型空间结构的一个重要分支,有单层、双层、气肋式三种,具有丰富多彩的造型,建筑特性、结构特性和适宜的经济性。因此,充气膜结构的诞生,就迅速在世界各地发展起来。充气膜结构是一个相对密闭的空间结构,与传统空间结构不一样的是,它是通过风机向结构整体内部送风,使膜内外形成一定的压力差,以保证膜结构整体的刚度,达到所设计的形状。之后,由压力控制系统使结构维持一定的内外压差,保证结构的稳定性。 充气膜结构建筑主要应用于体育场馆、大型娱乐休闲设施、展览会馆、物流仓储及环保工业等大跨度建筑结构,其技术广泛应用在比较发达的国家,主要集中在美国、加拿大、日本及欧洲的部分国家。我国对气膜结构的研究始于上世纪90年代初,当时与世界水平相比,无论是设计理念还是施工技术都存在一定的差距。 充气膜结构不同于其他膜结构,其形状虽然没有张拉膜丰富多样,但要求空间密闭,通过室内外压差保持结构的稳定性和安全性,并符合国内外规范要求和承受风雪荷载。它是集结构力学、机电系统、计算机控制系统于一体的较高技术水平的系统化结构形式。充气膜结构突出的优势是智能化管理系统,管理人员可以通过手机APP来实时检测气膜的状况,同时系统也会实时对气膜的状况发送至手机,这样的管理系统让气膜更智能化。有效的提升建筑的安全稳定性以及使用寿命。充气膜结构作为一种新型的空间建筑,具有传统建筑无法比拟的优势。特别对于需要大面积大空间的作业厂区,它比任何建筑更具有优势,因此它可广泛应用在需要大跨度作业空间。 二、大跨度膜结构施工技术的研究 (一)、土建基础

膜结构体育看台效果图_膜结构看台结构型式有哪些

膜结构体育看台效果图_膜结构看台结构型式有哪些 膜结构体育看台常用的结构型式有三种,从膜结构的构造和受力特点可将膜结构体育看台分为张拉膜结构体育看台、充气膜结构体育看台和框式膜结构体育看台三大类。不同的结构形式可以建造成各种不同的造型。膜结构体育看台等膜结构工程在我们的生活中经常出现,膜结构产品不仅外观好看,易于清洗,而且非常耐用。下面膜结构厂家给大家看一些膜结构体育看台效果图。 【膜结构看台结构型式】 1、张拉膜结构看台 张拉膜结构是通过边界条件给膜材施加一定的预张应力,膜既是建筑物的维护体又作为结构以抵抗外部荷载的作用,因此在一定的初始条件下,其形状的确定、在外荷载作用下膜中应力分布与变形,以及怎样用二维的膜材料来模拟三维的空间曲面等一系列复杂的问题,都需通过计算确定,张拉膜结构体育看台的发展离不开计算机技术的进步和新算法的提出。

2、充气膜结构看台 气承式膜结构依靠曲面内外气压差来维持膜曲面的形状。气承式膜结构体育看台是在由膜结构构成的室内充入空气,保持使室内的空气压力始终大于室外的空气压力,由此使膜材料处于张力状态来抵抗负载荷及外力的构造形式。充气膜结构分为单层结构和双层结构,单层结构如同肥皂泡,单层膜的内压大于外压。 此结构具有大空间,重量轻,建造简单的特点。但需要不断输入超压气体及需日常维护管理。双层结构是双层膜之间充入气体,和单层相比可以充入高压空气,形成具有一定刚性的结构,而且进出口可以敞开。 3、框式膜结构看台 框式膜结构中膜面仅仅起到对框架结构的维护作用,框架结构可以是传统的刚性结构,也可以是各类索结构。 【膜结构看台设计核心】 1、膜材一种新兴的建筑材料,已被公认为是继砖、石、混凝土、钢和木材之后的“第六种建筑材料”。

膜结构找形及节点分析

膜结构找形及节点分析 摘要:文章概要对比分析了各种膜材料的物理特性及其力学性能,膜结构形状的类型及各种类型的特点及适用范围,并着重分析了应用广泛的张拉式结构型式,简要概括了膜结构常用的找形方法和节点连接方式,最后通过上海世博挪威馆实例分析了膜结构的连接和主要的节点构造,结果表明了木结构和膜结构结合的可行性和可靠性。 关键词:膜材膜结构形状找形分析节点连接 0引言 膜结构与传统的建筑结构相比,形体多样、重量轻,可获得较大跨度的建筑空间,具有较好的经济效益。膜结构的加工和制作均在工厂内完成,仅在现场安装即可,与混凝土结构相比大大缩短了了施工工期。膜结构具有易拆,易建,易搬迁和易更新的特点,膜结构具有较低的能耗、较高的反射性和较低的吸光率,已被广泛用于大型的体育场馆和公共建筑。如美国丹佛国际机场,英国的格林威治的“千年穹顶”张拉膜结构。近年来我国的膜结构也有了较快的发展,上海八万人体育场馆成为我国第一个永久性的膜结构工程,2008年奥运场馆“鸟巢”及2010年上海世博轴的建成表明了膜结构在我国得到了较快的发展。这种独特的建筑形式得到了越来越多的关注和发展。本文主要从膜材,膜结构类型的选择及找形方法和节点连接方面分析了膜结构的特点,并结合上海世博挪威馆分析了膜结构的应用。 1膜材料物理及力学性能分析 膜材料主要有PVC膜材,PTFE膜材及ETFE膜材,其物理力学性能对比分析见表1。 表1:膜材材料物理及力学性能指标比较 2膜结构形状及特点分析 2.1 骨架式  骨架式膜结构以钢构或集成材料构成屋顶骨架在其上张拉膜材的构造形式。其下部支撑安定性高,因屋顶造型比较单一,开口不易受限制,具有经济效益高等特点,广泛应用于任何大小规模的空间。 2.2 充气式

整体空气支承式膜结构的计算分析

整体空气支承式膜结构的计算分析 向阳 (北京思博福瑞空间结构技术有限公司,北京100102) 提要:依据《膜结构技术规程》,膜结构大致可分为四大类。空气支承式膜结构是其中应用较少的类型之一。本文将空气支承式膜结构又细为整体空气支承式和局部空气支承式,并针对整体空气支承式膜结构的特点,以一个实际工程为例,对其在结构计算中的一般规定、初始形态分析、荷载效应分析,从膜张力分布、膜结构变形、膜结构反力等方面进行了论述。以期对此种类型膜结构的进一步理论研究及工程应用做一些有益的贡献。 关键词:充气膜、整体空气支承式膜结构、计算分析 一、引言 膜结构的分类,依照《膜结构技术规程》CECS158:2004可分为四大类,即整体张拉式、骨架支承式、索系支承式、空气支承式。 本文又将空气支承式膜结构,细分为整体空气支承式和局部空气支承式。 整体空气支承式膜结构是在整个密闭建筑物内部充气,使建筑物内外形成压力差,从而抵御外荷载。以前习惯称之为气承式膜结构,人处于密闭的充气建筑内部,如图1、2所示。 图1、整体空气支承式膜结构图2、整体空气支承式膜结构示意图 局部空气支承式膜结构是在一个相对较小的气囊内充 气,使气囊内、外形成压力差,从而抵御外荷载,如图3 所示意。 多个气囊可以组合使用,根据气囊功能不同,又可细 图3、局部空气支承式膜结构示意图

分为气肋式(类似于结构构件—拱,如图4所示)、气梁式(类似于结构构件—梁,如图5所示)、气枕式(类似于结构构件—板,如图6所示) 。人处于密闭的充气囊外部。 图4、气肋式图5、气梁式图6、气枕式本文结合一个实际工程,针对整体空气支承式膜结构的计算分析进行介绍。局部空气支承式膜结构另文介绍。 二、初始形态分析 该工程坐落在北京,是一个膜结构部分长52米、宽32米、高12米的网羽运动馆。膜结构的一端连接在一个高4米、长10.5米的砼结构的服务裙房上, 如图7所示。采用P类膜材,属于中小规模的整体空气 支承式膜结构。 空气支承式膜结构的计算分析与其它类型的膜结 构的计算分析在理论上没有区别,同样采用含有膜单元 的非线性有限元方法。设计过程依然是初始形态设计、 荷载效应分析、裁剪设计。重要的区别在于空气支承式 膜结构始终存在一个内部空气压力。 这里先定义几个名词: 最小工作内压,是指在正常气候条件、正常使用条件,结构能维持稳定的最小气压,一般不低于200Pa。 最大工作内压,是指在最不利的荷载作用下,满足膜材设计强度、结构不会出现过大的变形的气压值。 正常工作内压,是指在正常气候条件、正常使用条件、常遇荷载作用下,结构能维持稳定的气压值,并应保持室内环境的舒适度。一般取250Pa(250Pa=0.25kN/m2=0.00247大气压),大气压变化不到3‰,因此人进入到充气状态下的膜结构建筑内,基本感觉不到压力的变化。 本项目取膜的初始预张力为4kN/m、正常工作内压为250Pa进行初始形态设计,并以此作为裁剪设计的基础。初始形态设计结果如图8 所示。 图7、计算简图

骨架式膜结构

骨架式膜结构 以钢构构成的屋顶骨架后,在其上方张拉膜材的构造形式。下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。 张拉式膜结构 以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式。 张拉式膜结构 以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式。 充气式膜结构 充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因利用气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可得更大的空间,施工快捷,经济效益高。 膜材料用于膜结构建筑中的膜材是一种具有强度,柔韧 性好的薄膜材料,是由纤维编织成织物基材,在其基材两面以树脂为涂层材所加工固定而成材料,中心的织物基材分为聚酯纤维及玻璃纤维,而作为涂层材使用的树脂有聚氯乙烯树脂(PVC),聚四氟乙烯树脂(PTFE)。 织物基材——抗拉强度,抗撕裂强度,耐热性,耐久性,防火性。 涂层材——耐候性,防污性,加工性,耐水性,耐品,透光性。 二、建筑物的构造组成 基础 墙或柱 楼地层 六大基本组成 楼梯 屋顶 门窗 特有构配件:阳台、坡道、雨篷、女儿墙、台阶、花池等 基础 是墙和柱子下面的放大部分,它直接与土层相接触, 承受建筑物的全部荷载,并将这些荷载连同本身的重量 一起传给地基。 基础是建筑物的主要承重构件,处在建筑物地面以 下,属于隐蔽工程。基础质量的好坏,关系着建筑物的 安全问题。建筑设计中合理地选择基础极为重要。

膜结构在建筑中的运用

膜结构建筑及其造型分析 摘要:膜结构是一种优良的结构形式,在世界各地受到广泛应用。从结构上可 以分为:骨架式膜结构,张拉式膜结构,充气式膜结构3种形式。膜结构还拥有轻质、透光性、柔性、雕塑感、安全性、功能性、极具表现力等特性,有广阔的应用前景。 关键词:膜结构;分类;特性;发展方向 正文: 一、前言 膜结构是用高强度柔性薄膜材料经受其它材料的拉压作用而形成的稳定曲面,能承受一定外荷载的空间结构形式。其造型自由、轻巧、柔美,充满力量感,阻燃、制作简易、安装快捷、节能、易于、使用安全等优点,因而使它在世界各地受到广泛应用。 二、膜结构建筑形式的分类 从结构上分可分为:骨架式膜结构,张拉式膜结构,充气式膜结构3种形式。(一)骨架式膜结构(Frame Supported Structure) 以钢构或是集成材构成的屋顶骨架,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。 (二)张拉式膜结构(Tension Suspension Structure) 以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式. 近年来,大型跨距空间也多采用以钢索与压缩材构成钢索网来支撑上部膜材的形式。因施工精度要求]高,结构性能强,且具丰富的表现力,所以造价略高于骨架式膜结构。 (三)充气式膜结构(Pneumatic Structure) 充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因利用气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可得更大的空间,施工快捷,经济效益高,但需维持进行24小时送风机运转,在持续运行及机器维护费用的成本上较高。 三、结构的特性 膜结构作为一种建筑体系所具有的特性主要取决于其独特的形态及膜材本身的性能。恰由于此,用膜结构可以创造出传统建筑体系无法实现的设计方案。(一)轻质: 张力结构自重小的原因在于它依靠预应力形态而非材料来保持结构的稳定性。从而使其自重比传统建筑结构的小得多,但却具有良好的稳定性。建筑师可以利用其轻质大跨的特点设计和组织结构细部构件,将其轻盈和稳定的结构特性有机地统一起来。

充气膜结构的受力分析

充气膜结构的受力分析 膜结构车棚采用的充气膜结构技术,其受力分析为解决气枕式充气膜结构在荷载作用下的变形问题,采用非线性有限元方法对气枕式充气膜结构进行形态分析的基本方法。 气忱式充气膜结构的形态分析分为找形分析和找态分析两个阶段,由此可得到满足相应要求的几何模型与应力状态. 假设密封气枕内质量一定的气体满足理想气体状态方程,在荷载作用下,内压随着体积的变化而变化。给出在一定压力作用下半球状气枕的验证算例并与材料力学中给出的理论解进行比较;基于该方法,另对气枕式充气膜结构在不同外荷载作用下的受力状态进行分析并给出相应的算例,计算结果表明采用理想气体状态方程可以模拟在外部荷载作用下气枕的变形、应力状态以及内压变化情况,且是合理有效并具有较高的准确性。 张拉膜结构的找形采用动力松弛法,对膜结构找形分析时,为了防止节点的聚集以获得更精确的膜曲面,提出了一种新的控制网格变形的找形技术。 膜单元采用平面三角形单元描述,在单元每两节点间引入了与单元边长变化速率成正比的阻尼项,通过阻尼项产生的节点力来控制网格在找形过程中的变形,对悬链面找形时发现,当黏性系数不大于0.7时,动力松弛法收敛,网格节点分布较无阻尼时均匀。 对Scherk-1ike曲面找形时发现,能够控制网格变形且满足收敛性的黏性系数的上限为1.5。此方法能够有效地解决膜结构找形分析中网格的大变形问题,保证了单元密度,尤其是克服了曲率较小处网格过于稀疏的缺陷。 文章来源:https://www.360docs.net/doc/8018973007.html,/news_show_1629.html https://www.360docs.net/doc/8018973007.html,/employ.asp

膜结构的三种分类

常州泽拉膜结构厂-常州景观棚,常州停车棚,膜结构雨棚,常州膜结构 膜结构的三种分类 膜结构建筑是21世纪最具代表性与充满前途的建筑形式。它打破了纯直线建筑风格的模式,以其独有的优美曲面造型,简洁、明快、刚与柔、力与美的完美组合,呈现给人以耳目一新的感觉,同时给建筑设计师提供了更大的想象和创造空间。膜结构的分类有很多,下面小编就为大家介绍一下。 第一种:骨架式膜结构 骨架式膜结构是以钢构或是集成材构成的屋顶骨架,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因为屋顶造型比较单纯,开口部不容易受限制,而且经济效益高,所以它广泛的适用于任何大,小规模的空间。 第二种:张拉式膜结构 张拉式膜结构以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达到安定的效果。除了可以实践而且还具有创意,除了具有创新且美观的造型外,也是最能展现膜结构精神的构造形式。大型跨距空间也多采用了以钢索与压缩材构成钢索网来支撑上部膜材的形式。因此施工精度要求高,结构性能强,而且具有丰富的表现力,所以造价略高于骨架式膜结构。 第三种:充气式膜结构 充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因为利用了气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可以得到更大的空间,施工快捷,经济效益高,但是需要维持进行24小时送风机运转,在持续运行以及机器维护费用的成本上都是比较高。 我国虽然是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。这是我国空间膜结构领域面临的巨大机遇。

充气膜结构体育馆应用及优势

充气膜结构体育馆应用及优势 ”气承式“充气膜结构是现代建筑结构形式中的一种,”气承式“是指用空气支撑的建筑。将设计、制作成型的建筑膜体,固定在基础梁的周边,自动化供风系统向室内充气至200pa左右正压。靠压力差使膜结构体稳定以抵抗外界风、雨、雪荷载,因无需任何梁、柱支撑,故可获得最大的使用空间。白天用自然光可不用照明。充气体育馆的三层膜结构保温技术,相当于传统三七墙的保温K值,制冷和供暖的能耗只用传统建筑的三分之一。因此,充气膜结构建筑已成为世界上最节能的建筑形式。自动供风系统采用调频技术,根据室外风压自动调节供风量,保障以最经济的方式运行。充气体育馆室内压力为自动化控制,略高于室外。因此,空气密度大、相对含氧量高。所以,欧美国家将充气体育馆普遍应用于学校和居民社区体育馆。

充气膜结构体育馆具有以下十大优势: 优势一:节能 充气膜结构建筑是北美和欧洲公认的节能建筑,可实现以极少的资源消耗而获得极大的建筑空间。良好的保温技术,使维护结构和穹顶均达到了传统建筑三七墙的保温系数,达到了以最节能的方式实现了室内运动场馆的舒适环境。借助充气膜结构的自动供风系统解决空调送风,即减少了室内空调设备的投资,也节省了日常设备的能耗。因此,充气膜结构建筑具备了卓越的节能效果。只需用传统结构体育馆的近20%至25%的空调能耗,就可达到相同面积体育馆的制冷和供暖效果。充气体育馆以最节能的方式创造了舒适的室内运动环境。 优势二:环保 建筑用膜材料是采用精细化工、纺织和复合工艺技术生产。所有原材料符合北美及欧洲标准,对人身体无任何负作用。为提高建筑膜材的化学结合力和结构稳定性,用PVDF氟涂层做膜材表面处理,确保不会与大气中的污染因素起反应。因而,使膜材形成良好的表面封闭。膜材阻燃防火、延长使用寿命抗老化、耐紫外线、耐酸碱、耐磨损和具有自动清洁等性能。充气建筑的全自动化供风系统,可有效转换新风。此外膜结构有优越的隔音效果。可以营造安静的馆内境。 优势三:安全 在北美和欧洲等发达国家,充气膜结构建筑已被安全应用了近半个世纪。整体外形的曲面结构的设计,是风阻最小的建筑。在北美为抗飓风,采用钢绳网与基础连接有效提高了膜结构建筑的抗风能力。

膜结构

一、膜结构概述 膜结构是用多种高强薄膜材料( PVC 或Teflon) 及加强构件(钢架、钢柱或钢索)通过一定的方式使其内部产生一定的预应力以形成某种空间结构形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式。 膜结构有如下特点:造型活泼优美, 富有时代气息; 自重轻,适合大跨度的建筑; 可充分利用自然光,减少能源消耗;造价相对低廉,施工速度快;结构抗震性能好, 使用范围广。 膜结构可分为张拉膜结构和充气膜结构两大类。张拉膜结构又可分为边界直接张拉成型和通过支撑、悬挂等成型两种;充气膜结构可分室内充气式和充气构件式两种。 张拉膜结构具有造型优美柔和、使用维护方便等特点,它适用于中小跨度的结构中,支撑、悬挂式也能用于大跨度结构中, 充气式膜结构适用于大中型跨度的建筑,但使用期间维护较为麻烦。 二、充气式膜结构 早在1917 年,英国威廉·兰切斯特(Willian Lanchester)首次提出气承式( air - supported)帐篷,用于野战医院,并申请了专利,但由于当时的技术条件原因没有成为现实。直到1946 年,美国沃尔特·勃德(Walter Bird)才首次造成了一座直径15m 的充气穹顶。之后,德国的F. 奥托( F. Ot to) 把皂膜原理应用到膜结构设计中, 取得了不少经验。1967年第一届国际充气结构会议在德国斯图加特( Stuttgart )召开。这无疑给充气结构的发展注射了兴奋剂。 随后,各式各样的膜结构建筑出现在1970 年大阪世界博览会上,其中最具代表性的是D.盖格( David Geiger)设计的美国馆( T he U. S. Pavilion) , 其平面是140m×80m 椭圆形的室内充气结构,其次是川口卫( Mamoru Kaw aguchi) 设计的充气香肠构件式的富士馆( 图1)。 后来人们认为: 70 年大阪博览会是把膜屋顶系统地、商业性地向外界介绍的开始, 尤其是川口卫在这一领域内的研究成果,引起了国际的关注,是劲性结构向柔性结构转变的开始, 是建筑业的一个转折, 一次革命,尤如1851 年伦敦博览会上水晶宫( The Crystal Palace) 的建成,向人们展示了工业化建筑技术和幕墙施工技术; 1889 年巴黎博览会上埃菲尔铁塔( T he Eiffel Tow er )展示了摩天技术的能力和可能性一样, 1970 年大阪博览会展示了人们可以用膜结构建造永久性建筑。这时,盖格-勃格公司( Geiger- Berger Associates)在多方支援下开发出了具有适合美国永久建筑规范的特氟隆( Teflon) 膜材料,为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。之后,用特氟隆覆盖玻璃纤维材料做成的充气膜结构建筑相继出现在大中型体育场馆中。 其中典型的有: 1973 年美国加利福尼亚州圣克拉勒大学活动中心( Activities Center at Santa Clara College in California)建成, 平面为91m×59m 椭圆型。1975 年密歇根州庞蒂亚克“银色穹顶”( Silverdome) , 平面为220m×159m 椭圆型。到1984 年,美国共建成8 个大中型充气式体育馆,其中有4 个平面尺寸在40 万平方英尺(约合37249m2)以上。1988年日本建成东京体育馆( Tokyo Dome) ,室内面积46756m2。 在十几年的应用中,充气膜结构虽然实现了大型体育场馆的室内化,但也存在着不少问题,特别是融雪热气系统和空压自动控制系统性能不稳定, 寿命也有限,而且随着时间的推移这个问题更为突出, 几乎所有的充气场馆在使用中都出现过问题, 有的还不止一次。尤其是1985 年冬,密歇根州遇到一次大风雪, 庞蒂亚克“银色穹顶”差点没有全部倒塌,使得人们对这种结构越来越没有兴趣,似乎这种体系在大型体育场馆中再加应用已没有可能,人们因而把目光转向索穹顶( cable dome)膜结构中来。尽管如此, 人们还为自己的城市拥有这样代表先进设计技术的建筑而骄傲。 三、张拉式膜结构 张拉式膜结构的前身是索网结构。第一个索网结构是1951 年美国F. 赛沃特( Fred Sev erud)设计的雷利活动中心( T he Raleigh Arena) ,索网为双曲抛物面。最大的是1972 年德

充气膜结构建筑的特点以及特性有哪些

充气膜结构建筑的特点以及特性有哪些? 近年来,环保逐渐被重视,新型建筑气膜的优势也被得到了认识,在各个领域收到了广泛的应用,比如在煤电厂,火力发电厂,气膜物流仓储,体育场馆,作业车间,展览馆等行业,充气膜建筑是用特殊的建筑膜材做外壳,配备一套智能化的机电设备在气膜建筑内部提供空气的正压把气膜建筑主体支撑起来的一种建筑结构系统。下面就为大家介绍一下充气膜结构建筑的特点以及特性有哪些? 气承式膜结构采用高强度、高柔性的薄膜材料为主要材料,利用密封空间内的空气压力支撑原理,将膜材的外沿固定在地面基础上或者屋面结构周力上,利用充气系统将大量空气送入气膜内部空间,当气膜内压力大外气膜外压力时,就产生一定的气压差,气膜内气体就能将膜材支撑起来覆盖在地面或者屋面上,形成无梁无柱的空间结构。使得其内部拥有大空间。内部空间结构宽广,可实现180米跨度。 建造周期超短:与其它建筑相比,充气膜结构建筑减少了支承结构和构件的制作及安装工序,仅需制作完整的充气膜结构即可,这样可以大大减少建设周期,一般气膜从土建基础到完成装置整个过程一般在2-3个月左右。 环保节能:充气膜建筑虽然结构相对简单,但是膜结构材料构本身拥有自重轻、抗风、防腐蚀等特点,所以能做到节能环保,而且气膜内的空气净化体系,可将雾霾和污染空气挡在馆外,让馆内实现恒湿恒温的效果。

气膜建筑在我国还属于临时性建筑,都是按照临时建筑报建,不需要按照传统建筑那样办理正规报价手续。所以气膜建筑易于报建,审批手续简单。气膜建筑在施工之前无需办理建设工程规划许可手续,设计安装单位也不需要具备相应资质,项目验收由施工单位和业主自行负责。

膜结构知识介绍

膜结构知识介绍 膜结构是一种建筑与结构完美结合的结构体系。它是用高强度柔性薄膜材料与支撑体系相结合形成具有一定刚度的稳定曲面,能承受一定外荷载的空间结构形式。其造型自由轻巧、阻燃、制作简易、安装快捷、节能、安全等优点,因而使它在世界各地受到广泛应用。这种结构形式特别适用于大型体育场馆、入口廊道、小品、公众休闲娱乐广场、展览会场、购物中心等领域。一、膜结构的分类从结构方式上大致可分为骨架式、张拉式、充气式膜结构3种形式海口海洋世界入口膜结构 1.骨架式膜结构(Frame Supported Structure)以钢构或是集成材构成的屋顶骨架后,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。青岛音乐广场 2.张拉式膜结构(Tension Suspension Structure)以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达到安定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结构精神的构造形式. 近年来,大型跨距空间也多采用以钢索与压缩材料构成钢索网来支撑上部膜材的形式。因施工精度要求高,结构性能强,且具丰富的表现力,所以造价略高于骨架式膜结构。3.充气式膜结构(Pneumatic Structure)充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因利用气压来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可得到更大的空间,施工快捷,经济效益高,但需维持进行24小时送风机运转,在持续运行及机器维护费用的成本上较高。二、膜材料用于膜结构建筑中的膜材是一种具有强度,柔韧性好的薄膜材料,是由纤维编织成织物基材,在其基材两面以树脂为涂层材所加工固定而成的材料,中心的织物基材分为聚酯纤维及玻璃纤维,而作为涂层材使用的树脂有聚氯乙烯树脂(PVC),硅酮(silicon)及聚四氟乙烯树脂(PTFE),在力学上织物基材及涂层材分别具有影响下列的功能性质。织物基材——抗拉强度,抗撕裂强度,耐热性,耐久性,防火性。涂层材——耐候性,防污性,加工性,耐水性,透光性。三、膜材的正确选定用于建筑膜结构的膜材,依涂层材不同大致可分为PVC膜与PTEF膜,膜材的正确选定应考虑其建筑的规模大小、用途、形式,使用年限及预算等综合因素后决定。PVC膜(PVC-Coated Polyester)PVC膜材在材料及加工上都比PTFE膜便宜,且具有材质柔软,易施工的优点。但在强度、耐用年限、防火性等性能上较PTFE膜差。PVC膜材是由聚脂纤维织物加上PVC涂层(聚氯乙烯)而成,一般建筑用的膜材,是在PVC 涂层材的表面处理上,涂以数micron厚的压克力树脂(acrylic),以改善防污性。但是,经过数年之后就会变色、污损、劣化。一般PVC膜的耐用年限,依使用环境不同在5~8年。为了改善PVC膜材的耐侯性,近年来已研发出以氟素系树脂于PVC涂层材的表面处理上做涂层,以改善其耐侯性及防污性的膜材。PVDF 膜PVDF是二氟化树脂(Polyvinylidene Fluoride)的略称,在PVC膜表面处理上加以PVDF树脂涂层的材料称为PVDF膜。PVDF膜与一般的PVC膜比较,耐用年限改善至7~10年左右。PVF膜PVF是一氟化树脂(Polyvinyl Fluoride)的略称。PVF膜材是在PVC膜的表面处理上以PVF树脂做薄膜状薄片(laminate)加工,比PVDF膜的耐久性更佳,更具有防沾污的优点。但因为加工性、施工性与防火性都不佳,所以使用用途受到限制。PTFE膜(PTFE Coated Fiberglass)PTFE膜是在超细玻璃纤维织物上,涂以聚四氟乙烯树脂而成的材料。PTFE膜最大的特微就是耐久性、防火性与防污性高。但PTFE膜与PVC膜比较,材料费与加工费高,且柔软性低,在施工上为避免玻璃纤维被折断,须有专用工具与施工技术。耐久性:涂层材的PTFE对酸、硷等化学物质及紫外线非常安定,不易发生变色或破裂。玻璃纤维在经长期使用后,不会引起强度劣化或张力减低。膜材颜色一般为白色、透光率高,耐久性在25年以上。防污性:因涂层材为聚四氟乙烯树脂,表面摩擦系数低,所以不易污染,可藉由雨水洗净。防火性:PTFE膜符合近所有国家的防火材料试验合格的特性,可替代其它的屋顶材料做同等的使用用途。四、工程应用体育设施—体育场馆、健身中心等交通设施—机场、火车站、公交车站、高速公路收费站、加油站等文化设施—展览/会议中心、剧场、博物馆、动物园、水族馆等观景设施—建筑入口、泳池小品、小区长廊、户外广场、

相关文档
最新文档