多波束声纳及声学原理1

(完整版)多波束测深与测扫声呐的比较

多波束测深与测扫声呐的比较: (1)侧扫声纳是目前常用的海底目标(如沉船、水雷、管线等)探测工具,在测深领域,多波束以全覆盖和高效率证明了它的优越性。由于多波束具有很高的分辨率,目前在工程上已经开始应用多波束进行海底目标物的探测。 (2)多波束的最大优点在于定位精度高,但其适用范围不如侧扫声纳广泛,尤其受到水深和波束角的限制,多波束和侧扫声纳在探测海底目标时具有很好的互补性,同时应用可以提高目标解译的准确性。 (3)侧扫声纳能直观地提供海底形态的声成像,但这种声像只能由目标影子长度等参数估计目标的高度,所以对数据解译人员的要求很高。多波束测深系统主要用于进行水下地形测量。 (4)探测目标机制的差异:多波束是一种测深工具而并非成像系统,无法直接在记录纸上进行打印,必须先构建数字地形模型(digital terrainmode,l DTM),再根据DTM构建地貌影像图,从而能够反映细微的地形起伏所导致的坡度和坡向变化;此外,多波束的中央波束探测效好,边缘波束效果差;多波束采用三维可视化的方法进行目标判断,在3D GIS系统中可以直接提取目标物的平面位置和高度,还能够从不同的角度进行观察,便于掌握目标物的形状特征。但是,除非我们在进行测深的同时采集反向散射强度信息,否则我们无法得到与目标物的底质类型相关的信息,因此,多波束比较适合于沉船或者管线等容易根据形状进行判断的目标。 现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi -beamSonarSystem) ,后一种是测深侧扫声纳。总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。 侧扫声纳通常安装在拖体上,其到海底面的距离是可以调节的,而多波束换能器大多数固定安装在船体上,随着水深的增大,换能器至海底的距离增加,导致波束与海底面的接触面即脚印 变大,所以多波束垂直于航行方向的分辨率降低。此外,水深增大也导致换能器单位时间内能够接收到的有效声信号数目(即采样更新率)减少,因此沿着航行方向的分辨率同样降低。 侧扫声纳不存在波束角的问题,而Seabat8101的波束角为115b,每个声波波束与海底面的接触面被视为一个水深点,因此波束角的影响与水深是正相关的。 在同样的海况条件下,多波束数据的信噪比常常比侧扫声纳图像要高,这是因为多波束的旁瓣波束被有效压制,因而没有假回波。 多波束的定位精度比侧扫声纳要高2~5m。这是因为,一方面多波束的平面位置误差传递方程比侧扫声纳系统要简单;另一方面多波束系统中的电罗经和船资测量传感器具有很高的精度,可以精确地测定船体的姿态和船首向;此外,多波束系统的校正比超短基线要容易,各种系统 误差的消除也更为彻底。因此,对于多波束靠近中央波束所探测到的海底目标,可以认为其定位精度近似地等于GPS本身所能提供的精度。

多波束形成技术研究

多波束形成技术研究 陈晓萍 (中国西南电子技术研究所,四川成都610036) 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空

多波束数据

Processing of High-Frequency Multibeam Echo Sounder Data for Seafloor Characterization Laurent Hellequin,Jean-Marc Boucher ,Member,IEEE ,and Xavier Lurton Abstract—Processing simultaneous bathymetry and backscatter data,multibeam echosounders (MBESs)show promising abilities for remote seafloor characterization.High-frequency MBESs pro-vide a good horizontal resolution,making it possible to distinguish fine details at the water–seafloor interface.However,in order to accurately measure the seafloor influence on the backscattered en-ergy,the recorded sonar data must first be processed and cleared of various artifacts generated by the sonar system itself.Such a preprocessing correction procedure along with the assessment of its validity limits is presented here and applied to a 95-kHz MBES (Simrad EM1000)data set.Beam pattern effects,uneven array sen-sitivities,and inaccurate normalization of the ensonified area are removed to make possible further quantitative analysis of the cor-rected backscatter images.Unlike low-frequency data where the average backscattered energy proves to be the only relevant fea-ture for discriminating the nature of the seafloor,high-frequency MBES backscatter images exhibit visible texture patterns.This ad-ditional information involves different statistical distributions of the backscattered amplitudes obtained from various seafloor types.Non-Rayleigh statistics such as -distributions are shown to fit correctly the skewed distributions of experimental high-frequency data.Apart from the effect of the seafloor micro-roughness,a sta-tistical model makes clear a correlation between the amplitude sta-tistical distributions and the signal incidence angle made available by MBES bathymetric abilities.Moreover,the model enhances the effect of the first derivative of the seafloor backscattering strength upon statistical distributions near the nadir and at high incidence angles.The whole correction and analysis process is finally applied to a Simrad EM 1000data set. Index Terms—Backscatter model,-distribution,multibeam echo sounder (MBES),seafloor classification. I.I NTRODUCTION M ANY marine activities (marine geology,commercial fishing,offshore oil prospecting and drilling,cable and pipeline laying and maintenance,and underwater warfare)need tools and methods to remotely characterize the seafloor.Modern swath-mapping sonars are well designed for this task;they have quickly evolved upwards over the last 40years and nowadays are beginning to meet most of the requirements needed to reliably characterize the seafloor.Among the ex-isting acoustical mapping systems,multibeam echo sounders (MBESs)are currently the main focus of attention because of their ability to provide both a bathymetric map and a backscatter image of the surveyed area. Manuscript received February 5,2001;revised June 11,2002. L.Hellequin and X.Lurton are with IFREMER,TMSI/AS,Technop?le Iroise,BP 70,29280Plouzané,France. J.-M.Boucher is with ENST Bretagne,BP 832,29285Brest Cedex,France.Digital Object Identifier 10.1109/JOE.2002.808205 Usually installed under a ship’s hull,an MBES transmits a sound pulse inside a wide across-track and narrow along-track angular sector;then a beamforming process simultaneously cre-ates numerous receiving beams steered at different across-track directions.This spatial filtering allows us to pick up echoes coming from adjacent seafloor portions independently.One sounding is accurately computed inside each beam by simulta-neously measuring the beam steering angle and the echo travel time,according to various estimation methods based on either amplitude or phase.A high density of sounding points is thus generated along the survey swath,and new “pings”are trans-mitted as the ship proceeds on her way.Taking into account the ship’s navigation and attitude,the data from successive pings are finally gridded together in order to create an accurately georeferenced digital terrain model (DTM). In addition to measuring the echo travel times and angles for bathymetry,an MBES also records the echo amplitudes con-taining information about the nature and geoacoustical proper-ties of the seafloor.The echo amplitude is typically remapped to a color or gray scale and forms a coregistered backscatter image.The short pulse length provides the high resolution needed for imaging seafloor backscatter with a sufficient amount of details.For low-resolution MBESs (working in deep water at lower frequencies,typically 12kHz [1]),it seems that the mean backscattering strength (BS),recorded as a function of the incident angle,is the only measured parameter usable to characterize the interface acoustical properties [2].However,for MBESs with better resolution (designed for shallow depths with higher frequencies,typically 100kHz [3]),more infor-mation is available from the backscattered signals for a better seafloor characterization. A typical example of a BS image with a good resolution (Fig.1)shows various textures and spatial organizations of pixels that are clearly related to variations in the nature of the seafloor.In addition to its average level,the BS variability within subareas makes it possible to improve seafloor character-ization using statistical techniques [4],[5].Better classification results are expected when the MBES characteristics (frequency,beamwidth,and incidence angle)and an appropriate BS model are used to refine the analyses. Analyzing a backscatter image in detail reveals several arti-facts that degrade the image and corrupt BS measurements.The strong specular echo,causing a high-level line under the ship’s track,is linked to the backscattering physics and is not to be considered,properly speaking,as an artifact;however,it is a pe-nalizing feature,quite difficult to erase from sonar images.The main artifact comes from the directivity patterns of arrays used for the signal transmission and reception,that are usually not 0364-9059/03$17.00?2003IEEE

多波束勘测系统工作基础学习知识原理及其结构

第二章多波束勘测系统工作原理及结构 多波束系统是70年代兴起、80年代中、末期又得到飞速发展的一项全新的海底地形精密勘测技术。它是当前兴趣的焦点,因为它既有条带测深数据,又同时可获取反映底质属性的回波强度数据(Laurent Hellequin et al.,2003)。该技术采取广角度定向发射和多通道信息接收,获得水下高密度具有上百个波束的条幅式海底地形数据,彻底改变了传统测深技术概念,使测深原理、勘测方法、外围设备和数据处理技术诸方面都发生了巨大变化,大大提高了海底地形勘测的精度、分辨率和工作效率,实现了测深技术史上的一次革命性突破(李家彪等,2000)。多波束系统的工作原理与传统的单波束回声测深仪工作原理类似,都是根据声波在水下往返传播的时间与声速的乘积得到距离,从而得到水深。不同的是单波束测深仪一般采用较宽的发射波束(8°左右)向船底垂直发射,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。除换能器天底波束外,外缘波束随着入射角的增加,波束在倾斜穿过水层时会发生折射,同时由于多波束沿航迹方向采用较窄的波束角而在垂直航迹方向采用较宽的覆盖角,要获得整个测幅上精确的水深和位置,必须要精确地知道测量区域水柱的声速剖面和波束在发射和接收时船的姿态和船艏向。因此,多波束测深在系统组成和测量时比单波束测深仪要复杂得多(周兴华等,1999)。 §2.1 多波束勘测系统的工作原理 2.1.1 单波束的形成 2.1.1.1 发射阵和波束的形成 一个单波束在水中发射后,是球形等幅度传播,所以方向上的声能相等。这种均匀传播称为各向同性传播(isotropic expansion),发射阵也叫各向同性源(isotropic source)。例如,一个小石头扔进池塘时就是这种情况,如图2.7所示。

声学基础及其原理

2 声学基础及其原理[13] 在我们的生活环境中会遇到声强从弱到强范围很宽的各种声音[5]。如此广阔范围的能量变化直接使用声功率和声压的数值很不方便,而用对数标度以突出其数量级的变化则相对明了些;另一方面人耳对声音的接收,并不是正比与强度的变化值,而更近于正比与其对数值,由于这两个原因,在声学中普遍使用对数标度来度量声压、声强、声功率,分别称为声压级、声强级和声功率级,单位用分贝(dB )来表示[1]。 2.1声压级 将待测声压的有效值P e 与参考声压P o 的比值取以10为底数的常用对数,再乘以20。即: L p =20lg o e P P (dB ) (2.1) 在空气中,参考声压P 0规定为2?10-5帕,这个数值是正常人耳对1000Hz 声音刚能够觉察到的最低声压值。式(2.1)也可以写为: L p =20lgp+94 (dB ) (2.2) 式中p 是指声压的有效值P e ,由于声学中所指的声压一般都是指其有效值,所以都用p 来表示声压有效值P e 。 人耳的感觉特性,从可听域的2?10-5帕的声压到痛域的20帕,两者相差100万倍,而用声压级表示则变化为0-120分贝的范围,使声音的量度大为简明。 2.2 声强级: 为待测声强I 与参考声强I 0的比值取以常用对数再乘以10,即: L I =10lg 0 I I (dB ) (2.3) 在空气中,参考声强I 0取以10-12W/m 2这样公式可以写为:

L I =10lg I+120 (dB ) (2.4) 2.3声功率 可以用“级”来表示,即声功率L W ,为: L W =10lg 0 W W (dB ) (2.5) 这里W 是指声功率的平均值W ,对于空气媒质参考声功率W 0=10-12W ,这样式子可以写为: L W =10lg W +120 (dB ) (2.6) 由声强与声功率的关系I=W/S ,S 为垂直声传播方向的面积,以及空气中 声强级近似的等于声压级,可得: L p =L I =10lg ???????01I S W =10lg ?? ??????S I W W W 1000 (2.7) 将W 0=10-12W ,I 0=10-12W/m 2代入,可得: S L L L W I p lg 10-== (dB ) (2.8) 这就是空气中声强级、声压级与声功率级之间的关系,但应用条件必须是自由声场,即除了有源发声外,其它声源的声音和反射声的影响均可以忽略。在自由场和半自由场测量机器噪声声功率的方法的原理就是如此。 声压级、声强级、声功率级的定义中,在后两者对数前面都好似乘以常数10,而声压级对数前面乘以常数为20,这是因为声能量正比于声强和声功率的一次方,而对声压是平方的关系。如声压增加一倍,声压级和声强级增加6分贝,而声强增加一倍,声压级和声强级增加3分贝[5]。 对于一定的声源,其声功率级是不变的,而声压级和声强级都是随着测点的不同而变化的。 专门的研究表明,人耳对于不同频率的声音的主观感觉是不一样的,人耳对于声的响应不单纯是物理上的问题了。为了使人耳对频率的响应与客观声压级联系起来,采用响度级来定量的描述这种关系,它是以1000Hz 纯音作为基准,对听觉正常的人进行大量比较试听的方法来定出声音的响度级的,

EM950多波束系统简介

Simrad EM950多波束测深系统及其相关设备的简介 刘胜旋 (广州海洋地质调查局第二海洋地质调查大队510760) 摘要本文主要介绍挪威Simrad公司的EM950型多波束测深系统,对系统的各个关键部件如换能器、底部检测单元、操作单元等进行了较为详细地介绍,同时还对系统参数测试的步骤进行了详细的描述,最后是与系统相配套使用的其它相关设备。 关键词Ping(声脉冲),陶瓷感应棒(ceramic stave),Pitch,Roll,Swath(条幅),OPU,DPU 一引言 多波束测深(Multibeam Echo Sounding)系统的出现,为研究海底地形地貌、寻找沉没于水中的飞机船舰、进行水下考古、铺设海底管线、航道岸提测量、工程疏浚的土方计算等一系列工作提供了可靠的手段。为了顺利完成“我国专属经济区和大陆架勘测”专项(简称“126”专项),我国多家从事海洋地质研究的单位于1998年从挪威Simrad 公司分别引进了多套EM系列多波束测深系统。其中国土资源部(原地矿部)广州海洋地质调查局引进了一套EM950型及一套EM3000型的多波束测深系统。现结合一年来的使用经验系统地介绍一下EM950型多波束测深系统的技术指标、工作性能、各种参数的校正及相关设备等内容。 二Simrad EM950多波束测深系统 (一)基本技术指标 Simrad EM950 是一种高分辨率海底地形测深系统。它的主要技术指标为:发射频率:95kHz 脉冲宽度:0.2ms 测深范围:探头以下3-400米 波束宽度: 2.3°×3.3° 覆盖宽度:最高可达7.4倍水深 波束数:120个(每个脉冲60个) 测深精度:15cm或0.25%水深 EM950采用95 kHz的发射频率,这个频率兼顾了在海水和淡水中的工作能力。其在海水中的吸收系数大约为30dB/km,当所测水深大于140m时,可以得到1000m的水平覆盖宽度。在淡水的吸收系数大约为2—3dB/km。当在河口或河口附近等含有大量泥沙的水域中工作时,因其发射频率的特殊性,它的测程并不会因吸收衰减而受到太大的影响,但会因

手机声学原理介绍

Learning report on principles of acoustics of the cellphone ZHOU Yang-fang Once in the Sunlite Electronic (Shen Zhen ) co.,ltd, Shen Zhen 518000, China Abstract: These days , through the chect of kinds of material ,I have a general idea of the mobile phone acoustics and make a relavant arrangement ,making mainly a summary report in here . The sound system of the phone have the three basic function devices that include the speaker ,the receiver ,and the microphone .The speaker is to realize the hand-free cellphone conversation and the speech broadcasting ,the receiver’s purpose is that the voice messenger is received by the phone ,and the microphone’s function is that the acoustic information is passed from people to phone .They realize the fundamental function of the phone and perfectly deduce the phone’s roles in the daily life so that we cannot do without it . Keywords: Acoustics of the cellphone ,acoustics devices ,sound wave , the working principle ,short circuiting effect Content: 1.The basic knowledge of the electroacoustics 1.1Sound propagation mode 1.2Speed of sound 1.3Frequency domain 1.4Sound pressure level 1.5V oice three elements 2.Acoustics devices of the phone’s structure 3.Working principle of SPK.&RCV. 3.1The basic principle of application 3.2Workong principle 3.3Difference of SPK.&RCV. 3.4The basic parameters of SPK.&RCV. 4.The acoustic short circuiting effect

多波束系统操作流程

R2Sonic 20XX 多波束操作流程 一、参照如下配置清单: 二、连接示意图如下: 1 表面声速探头 2024 换能器

三、操作流程 1.前期准备 了解测区概况,包括测区的水文、潮汐和地质情况,测区中央子午线、投影及坐标转换参数等内容。 2. 设备安装 如上图所示,将多波束和表面声速探头安装到导流罩上,并通过安装杆固定到船上,要保证船在航行的过程中,多波束安装杆不能抖动,否则无法保证数据的准确性。

3. 系统接线 安装GPS及光纤罗经Octans,按照连接示意图,完成多波束及辅助设备的连接。 4. 系统供电 PC开机,GPS、Octans和SIM(多波束声纳接口单元)通电。 5. 声速剖面测量 测量船开到测区,停船。参照说明书《MinosX用户使用手册》,测量声速剖面。 6. 运行R2Sonic.exe多波束控制软件,参照说明书《Sonic 2024 使用指南》。 如果SIM盒上没有外接表面声速探头,则在Settings->Ocean settings…,勾选Sound velocity,输入探头所在深度的声速值,SVP的指示灯显示为黄色。 如果SIM盒上没有外接姿态数据(TSS1格式,100hz),且Settings->Sensor settings…,Motion的Interface选择Off,那么,MRU显示为灰色。 一定要保证GPS、PPS的指示灯为绿色,时间显示为格林威治时间,否则,表明时间没有同步,不能进行下一步操作。 调整Power,Gain等参数,保证水深条带数据的质量。Sonic control 2000软件在测量的过程中一直开着,并观察数据质量。

多波束安装步骤

一、系统配置 1、多波束声纳传感器 2、电源线、网线(用于多波束与电脑之间数据传输)、电缆线(连接GPS与RPH至电脑)、USB转串口线2根 3、RPH传感器 4、GPS及天线 5、高配置电脑(100M以上网卡、双核或四核以上、WinXP系统、处理器2.8GHz以上) 6、导航船与安装支架 7、直流电源24V (I max=2A) 二、具体要求 1、连接电源线与网线到多波束装置,用24V直流电源,将网线插到多波束网口里,另一端连至笔记本; 2、将USB转换器插到电脑上获取串口号; 3、将USB转换器与RPH传感器和GPS连在一起; 4、连接RPH电源与GPS电源; 5、第一次运行软件时需配置笔记本的系统配置; 5.1、安装USB转串口驱动 5.2、禁用杀毒软件及无线网络 5.3、禁用省电模式 5.4、配置本地IP:192.168.1.188,子网掩码:255.255.255.0 5.5、配置网络适配器速度为“自动侦测” (设备管理器--网络适配器--属性--高级--连接速度和双工模式--自动侦测) 5.6、使用“msconfig”程序时禁启后台所有任务 (Microsoft System Configuration,系统配置实用程序,“开始”--“运行”--键入“msconfig”--选择要禁用的程序) 5.7、安装好多波束测量软件 6、安装要求 6.1、GPS、RPH、多波束装置竖直方向在一条杆上,三者的三维坐标方向一致,GPS 坐标(Xg,Yg,Zg),换能器坐标(Xt,Yt,Zt),船坐标(X,Y,Z),O为船重心坐标原点; 6.2、Xt=Xg为GPS所在杆与船重心的X向垂直距离;Yt=Yg=0为GPS所在杆与船重心的Y向垂直距离;Zt>0为换能器入水深;Zg<0为GPS到换能器Z向垂直距离;Zc<0表示船重心在水面以上; 7、校准 7.1、对RPH的角误差进行校准 用Patch Test获取或预设一估值; 7.2、对GPS位置进行校准 GPS天线位置相对于换能器位置的偏离值;GPS延时是GPS记录的延时;

形容音色的声学原理

形容音色的声学原理 声音是物体振动在介质中传播形成的物理现象,研究这种物理现象的学科叫做声学。声音所产生的振动属于机械振动,这种振动在空气中传播的过程在声学的眼中属于绝热运动(adiabatic)。况且不能产生热,又怎么能产生光呢?所以,所谓明亮与暗淡等这种形容“视觉感受”的词所指代的特性,和声音没有任何关系,与声学也扯不上亲戚。同样地,所谓干和湿,这些属于触觉感受,与声学也没有关系。 这个再明显不过了——声音不产生光,所以我们不可能从声音中直接接收到光学信号;声音虽然是一种振动,但我们浑身上下除了耳膜之外就没有任何一个其他地方可以有效地接受声音信号。所以声音并不能产生触觉感受,更别说干湿了。 那么,声音为什么能给人类似视觉和触觉的感受? 上面说了,声音是空气的振动。这种振动在经过耳道整理后,成为一个一维的振动,因为我们的耳膜只有一个自由度。耳膜的往复振动被三根小听骨的杠杆作用放大之后传递到耳蜗,耳蜗将这种脉冲转化为电信号,电信号被传递到听觉系统后,神经元网络将其解读为有用的信息,而忽略无用的信息。 而关于神经元网络如何解读这些时间域上海量的一维脉冲信号,人和人之间是有横向差异的。我们把这个过程称为听觉认知,听觉认知大体上可以分为三个层面: 底层low-level:这是基础的层面。从耳朵到听觉中枢,声音信号的基本的物理特性——振幅和频率被首先感知。这里的振幅不仅仅是声音的

大小,同时还有对“波形”的感知;而这里的频率也不仅仅是音高,更有音色的感知。关于较底层的认知,人和人之间的差异相对比较小。 中层mid-level:有了底层认知收集的基本的材料,我们可以对声音进行进一步的解读和理解。在中层认知的范围里,我们可以将不同的振幅和频率解读为语音、乐器、节奏等符号化的内容。我们常说的“视唱练耳”,练的其实就是中层认知能力。所以,在中层的认知,人和人之间的差异就大起来了,因为这通常和训练以及经验有关。 高层high-level:中层认知提供了声音内容的解读。那么接下来这些内容就要触发一些应激反应了。典型的应激反应就是情绪。比如听到了舒缓的音乐,你也会感觉到血压降低;听到了领导的夸奖,你会开心得热泪盈眶。关于高层的认知,人和人之间的差异进一步拉大。 声音让一个人听起来感觉到明亮,或者感觉到干或湿,可以这样解释:明亮还是暗淡:显然,这种感受发生在中高层认知范围内。一方面,虽然某些不同和弦之间在声学上确实存在能量大小的区别(比如通常所说的大三和弦比小三和弦要响一些);但是用力弹的小三和弦和轻轻弹的大三和弦听起来依然是后者明亮一些。所以这并不是一个底层感知能解释的现象。对于和弦的听感,很大程度上由经验所决定。你的音乐老师每次给你弹这两个和弦的时候就用明亮暗淡这种词;每次你看电影或者电视的时候,明亮的画面往往搭配“明亮”的和弦,等等……这些生活经验教会了你如何判别明亮的和暗淡的和弦(或者音色),在你头脑中形成了刻板印象stereotype。

浅水多波束声纳性能解读

浅水多波束声呐在现代水文测量系统中的表现 介绍 根据与美国国家大气和海洋管理局(NOAA)的分支机构——海岸调查办公室的合同,科学应用国际公司(SAIC)在1995年四月至九月期间进行了一次水文调查活动,这是首次采用多波束侧扫声呐。调查活动使用了SAIC的综合水文调查系统(IHSS),该系统集成了一个Reson SeaBat多波束声呐和一个Klein侧扫声呐。 调查活动在Long Island Sound和Martha’s Vineyard附近水深5.5米至60米区域进行。合同的要求包括实现100%多波束覆盖和200%侧扫覆盖;在450侧扫角度,试验测得数据要符合IHO(国际海道测量组织)标准,在更大的可用角度,数据要符合2倍的IHO标准;非交叉轨迹的多波束“脚印”要大于3米;波束间隙不大于m m3 3 ;20m以内水深,空间分辨率小于1m,20-30m水深空间分辨率小于2m,超过30米水深,分辨率下降1%每米。 本文讨论了多波束声呐以及相关传感器和IHSS的选取、配置和校准,使测量满足IHO标准。为了将多波束声呐应用到水文测量,许多事情(波束精度、覆盖、校准器的应用、数据量和吞吐量)都需要讨论。一些实时处理工具被用来修改SAIC的IHSS,文章描述了第一次的调查活动。 多波束声呐的选择 SAIC开发了误差模型和覆盖模型来决定误差容限和描述声呐性能。误差模型是建立在Pohner[1]的工作基础之上的,该模型分析了绘图系统各部分误差以及估计了它们对系统总误差的贡献值。输入到模型的单个传感器误差包括它的位置、姿态、朝向、声速、时间同步、延时。该模型的价值在于能够让个人明白怎样提高单个传感器的精度,从而提高整个系统的性能。覆盖模型控制波形尺寸、波束宽度、船速,以及根据SAIC的调查计划软件制定调查计划。 根据合同要求以及误差模型和覆盖模型的结论,具有双换能器的SeaBat9002多波束声呐被选取。这个选择基于SeaBat的更新速率和测量精度。双换能器的配置允许的最大测量角度1500.此外Reson系统的波束模式是1.50的交叉轨迹,同时可附带1.50、2.40、100的沿迹调查,这使得波束覆盖适合各种深度。在这些调查深度,使用了两个宽带的发射波。波束发射频率1.5Hz--7.5Hz,使得沿迹波束覆盖不会影响调查速度。

多波束测深数据的误差分析与处理(精)

第23卷第1期1998年3月武汉测绘科技大学学报JournalofWuhanTechnicalUniversityofSurveyingandMapping.23No.1Vol March1998 多波束测深数据的误差分析与处理 朱庆李德仁 (武汉测绘科技大学地理信息系统研究中心,武汉市珞喻路129号,430079) 摘要在系统分析多波束测深数据的误差来源与性质的基础上,介绍了条带式多波束测深仪所采用的误差处理的理论模型。针对海洋测量的特点,特别强调了基于趋势面分析的粗差探测与剔除和相邻条带数据的整体拼接以及对航向误差的改正等关键问题。本文介绍的误差处理模型对保证多波束测深系统必要的精度和数据质量有着重要的实际意义。 关键词多波束测深仪;误差处理;粗差;条带拼接;航向改正分类号P207;P22911 近年来,要,量设备,效率,(又称高精)作为高效率、高精度和高分辨率的一种船载海底地形测绘设备受到了普遍的重视[1]。多波束条带测深系统在向海底发射一次声波的过程中,能获得两侧一个条带上许多点的海深数据,一般测得的水深数据为沿航向、宽是深度3倍左右的一个条带,并且相邻条带之间有一定的重叠,即获得海区全覆盖海底地形。利用条带测深设备获得的深度数据以及相关的船舶定位和姿态等信息,便可以绘出高分辨率高精度的海底地形图。 多波束条带测深系统最终给出的是以海平面为参考,以海深为参数的海底地形图。由于船舶的运动,加上海平面经常受到潮汐和气象条件的影响而时涨时落,还有鱼和水草等反回的假回声等复杂原因,最后所得海区地形资料的精度不仅依赖于各种先进的硬件设备,还依赖于完备的辅助数据和先进的数据处理技术。 海底地形测量不同于一般地面测量。在海上,测量工作必须在不断运动着的海面上进行,因此就某点而言,无法进行重复观测,而其连续观测的结果总是对应着与原观测点接近但又不同点的观测数据,所以不存在平差问题。要提高海底地形测绘的精度,只有分析各种因素,对水深观测结果进行改正。由于影响测深数据质量和精度的主要因素是仪器误差和外界环境因素,而仪器误差一般收稿日期:1996211225. ,所以测绘精度的关键主要取决于对诸如由于鱼和水草等反回的假回声(即粗差)和由于舰船偏航及各项系统误差改正的残差造成的条带扭曲等误差的处理。对于粗差,传统方法需在野外或在测深记录的解释中增加额外的工作以消除其影响或者打印出受大于一定输入阈值滤波影响的断面点来探测粗差,或者直接绘出等深线图形再通过目视检查凭经验确定[2,5]。这种方法显然不适宜于大规模快速测量数据的自动化处理。为了得到覆盖全海区的海深数据,须将相邻条带之间的数据拼接起来。通过条带拼接也可

相关文档
最新文档