模糊推理神经网络诊断模型案例

模糊推理神经网络诊断模型案例
模糊推理神经网络诊断模型案例

模糊推理神经网络诊断模型案例

[摘要]本文基于通用神经网络的自适应性和诊断的建模方法,建立了一种新的故障诊断模型一模糊神经网络诊断模型,并对它的智能诊断机理和突出特点进行了深入分析。最后,将该诊断模型应用于某大型汽轮发电机组故障诊断中,分析得出它具有明显的提高诊断精确度的优越性。

[关键词]神经网络故障诊断智能诊断

1模糊推理神经网络诊断模型建立

1.1通用网络模型自适应动态特性

比较两类典型的神经网络一前向BP网络与反馈Hopfied网络,可以发现其核心是单层神经网络,则两类网络可以用一个通用神经网络模型来描述。根据点集拓扑理论和人工神经网络空间概念,对这个通用神经网络模型的特征进行分析得出以下两个结论,证明从略。

定理1神经网络空间在紧集上的连续函数空间C上以及按L2范数在平方可积函数空间I上都是稠密的。

推论1由通用神经网络模型所生成的任何开集可以一致逼近紧集上的连续映射函数f∈C(Rn。Rm)。

由推论1表明,通用网络模型所概括的任何开集(如BP网络、Hopfied网络、BAM网络)通过自学习都能一致逼近紧集上的连续映射函数f∈(Rn,Rm),因而具有良好的自学习、自适应动态特性。

1.2诊断建模方法

设xjn(j=1,2,...,k)对应反映设备运行状态第n个观测样本的k个特征参数,yin,(i=1,2,...l)对应第n个样本的1种故障模式,共有N个样本xjn∈RN,yin∈RN,[n=1,2,...,N),则故障模式向量Y={yin,i=1,2,...,l}与特征参数向量x={xin,i=1,2,...,k}间的内在关系用函数P表示,有:X=P(Y)。当N→∞时,函数P的逆函数存在,以函数S表示,有:Y=S(X)

诊断问题建模的实质就是根据有限的样本集,确定函数S(X)的一等价映射关系SS(X),使得对于任意的ε>0,满足:

模糊推理神经网络诊断模型案例

模糊推理神经网络诊断模型案例 [摘要]本文基于通用神经网络的自适应性和诊断的建模方法,建立了一种新的故障诊断模型一模糊神经网络诊断模型,并对它的智能诊断机理和突出特点进行了深入分析。最后,将该诊断模型应用于某大型汽轮发电机组故障诊断中,分析得出它具有明显的提高诊断精确度的优越性。 [关键词]神经网络故障诊断智能诊断 1模糊推理神经网络诊断模型建立 1.1通用网络模型自适应动态特性 比较两类典型的神经网络一前向BP网络与反馈Hopfied网络,可以发现其核心是单层神经网络,则两类网络可以用一个通用神经网络模型来描述。根据点集拓扑理论和人工神经网络空间概念,对这个通用神经网络模型的特征进行分析得出以下两个结论,证明从略。 定理1神经网络空间在紧集上的连续函数空间C上以及按L2范数在平方可积函数空间I上都是稠密的。 推论1由通用神经网络模型所生成的任何开集可以一致逼近紧集上的连续映射函数f∈C(Rn。Rm)。 由推论1表明,通用网络模型所概括的任何开集(如BP网络、Hopfied网络、BAM网络)通过自学习都能一致逼近紧集上的连续映射函数f∈(Rn,Rm),因而具有良好的自学习、自适应动态特性。 1.2诊断建模方法 设xjn(j=1,2,...,k)对应反映设备运行状态第n个观测样本的k个特征参数,yin,(i=1,2,...l)对应第n个样本的1种故障模式,共有N个样本xjn∈RN,yin∈RN,[n=1,2,...,N),则故障模式向量Y={yin,i=1,2,...,l}与特征参数向量x={xin,i=1,2,...,k}间的内在关系用函数P表示,有:X=P(Y)。当N→∞时,函数P的逆函数存在,以函数S表示,有:Y=S(X) 诊断问题建模的实质就是根据有限的样本集,确定函数S(X)的一等价映射关系SS(X),使得对于任意的ε>0,满足:

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

自适应神经网络模糊推理系统最优参数的研究

第22卷 第8期计 算 机 仿 真2005年8月 文章编号:1006-9348(2005)08-0140-04 自适应神经网络模糊推理系统最优参数的研究 翁玉麟,邓长虹 (武汉大学电气工程学院,湖北武汉,430072) 摘要:模糊规则的提取和隶属度函数的学习是模糊系统设计中重要而困难的问题。自适应神经网络模糊推理系统(ANF IS) 能基于数据建模,无须专家经验,自动产生模糊规则和调整隶属度函数。在建立一个初始系统进行训练时,其隶属度函数的 类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,它们的确定方法有待研 究。该文应用自适应神经网络模糊推理系统的方法对一个典型系统进行建模仿真,并阐述这三个参数的寻优方法。 关键词:自适应神经网络;模糊系统;隶属度函数 中图分类号:TP3 文献标识码:A Research on Best Param eters i n Adaptive Neura l-Fuzzy I nference System W EN G Yu-lin,D EN G Chang-hong (Electrical Engineering School,W uhan University,W uhan Hubei430072,China) ABSTRACT:Extraction of fuzzy rules and learning of parameters of membership functions are vital but difficult when designing a fuzzy system.App lying Adap tive Neural-Fuzzy Inference System(ANF IS)can p roduce fuzzy rules and adjust membership functions automatically based on data w ithout experience of experts.W hen setting up an initialized system to train,the type of membership functions,the number of membership functions and the ti m e of training are all variables,and the choice of these parameters w ill directly affect the result of modeling, but the method for ensuring these parameters still needs research.This paper gives the si mulation examp le for modeling a typ ical system w ith Adap tive Neural-Fuzzy Inference System and expatiates the method for choosing these three parameters. KEYWO RD S:Adap tive neural net work;Fuzzy system;M embership functions 1 引言 自从M amdani和A ssilian利用模糊控制理论为一简单动力过程构造模糊控制器以来,模糊控制在实际问题中的应用日益广泛。但是,模糊理论在实际应用中也存在一些问题,如隶属度函数的确立目前还没有一套成熟有效的方法,在很难或无法获得专家经验的情况下,隶属度函数的确定是十分困难的[1]。自适应神经网络模糊推理系统(ANF IS)能基于数据建模,自动产生模糊规则和隶属度函数,而不是基于经验或直觉给定。这对于那些特性还不被人们所完全了解或者特性非常复杂的系统是十分有效的。许多学者在应用自适应神经网络模糊推理系统建模方面已经进行了探索并获得很多有益的成果,但在建立一个初始系统进行训练时,其隶属度函数的类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,可是选择怎样的参数可以使建立的模型最佳,至今没有学者进行深入的研究。本文应用ANF IS的方法对一个典型系统进行建模仿真,并阐述这三个参数的选择方法。 2 自适应神经网络模糊系统 学者Roger Jang提出了与一阶Sugeno模型模糊推理系统功能相同的自适应神经模糊推理系统(Adap tive Net work-based Fuzzy Inference System,ANF IS)[2][3],它是模糊逻辑和神经网络的结合产物。ANF IS结构的构造见图1,其同一层的每个节点具有相似的功能(这里用O 1,i 表示第一层的第i个节点的输出)。 第一层:该层每个节点i是以节点函数表示的方形节点(该层参数是可变的): 收稿日期:2004-03-17

模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 1.1人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 1.2人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学

BP神经网络模型推导

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron. To teach the neural network we need training data set. The training data set

consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input x m and neuron n in input layer. Symbols y n represents output signal of neuron n.

神经网络与模糊控制考试题与答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是 、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1) ; (2) 。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、和。判断性规则控制性规则数据

自适应神经模糊推理系统及其仿真应用

自适应神经模糊推理系统及其仿真应用 刘雨刚,耿立明,杨威 辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛(125105) 摘 要:本文介绍了自适应神经模糊推理系统的结构,以及如何用MATLAB 模糊工具箱提供的ANFIS 应用工具仿真,完成训练模糊神经网络。 关键词:自适应神经模糊推理系统,MATLAB ,模糊神经网络 0 引言 由Jyh-Shing R.Jang 提出的自适应神经模糊推理系统[1],是一种基于Takagi -Sugeno 模型的模糊推理系统(简称ANFIS )。研究表明,当输入模糊集采用非梯形/非三角形的隶属函数时,Sugeno 型模糊系统需要的模糊规则及输入的模糊集的个数较少。 1 基于Takagi -Sugeno 模型的自适应神经模糊推理系统 所考虑的模糊推理系统有两输入和,单输出f 。 1x 2x 对于零阶T-S 模糊模型,模糊规则的第i 条规则有如下形式: ⑴ 后件为恒值:Ri : ),...,2,1( , 221121n i f y Then A x A x If i i i ==是和是 ⑵ 后件为一阶线性方程:Ri : 0,1,2)(j ),( ,...,2,1 ),( , 221102*********是常数是和是=++===ij i i i i i i i a x a x a a x x f n i x x f y Then A x A x If 式中,Ri 表示第i 条规则,Ai 表示模糊子集,即{NL ,NM ,NS ,ZO ,PS ,PM ,PL}={“负 大”,“负中”,“负小”,“零”,“正小”,“正中”,“正大”}。 在T-S 模型中,每条规则的结论部分是个线性方程,表示系统局部的线性输入/输出关系,而系统的总输入是所有线性子系统输出的加权平均,可以表示全局的非线性输入输出关系,所以,T-S 模型是一种对非线性系统局部线性化的描述方法,它具有非常重要的研究意义和广泛的应用范围[2]。 典型的单交叉路口东、南、西、北四个方向,每个方向均有右行、直行和左行三股车流。依据各个车道的车流信息,以路口流通能力最大或排队候车的时间最短为目标,通过设计自适应神经模糊推理系统,对交叉路口交通信号进行控制,实时确定各个相位的配时,具体地 说每一相交通信号的配时e i (i=1,2,3,4) 由该相位的主队列w1、后继相的主队列w2两者确定,当前相的主队列起决定作用,后继相的主队列起调节作用。所谓主队列是一个相位两个方向中车辆等待数较大的等待队列。 2 ANFIS 的结构 根据给出的模糊系统模型,输入为w1和w2,模糊标记取{负大,负中,负小,零,正小,正中,正大},由此可构造出一个具有模糊功能的神经网络,如图1所示的ANFIS 结构

前馈神经网络(FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究

FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究 [印度]P. D. Sreekanth,P. D. Sreedevi,Shakeel Ahmed,N. Geethanjali 田芳译;冯翠娥、段琦校译 当水均衡呈持续负值时,水位预测成为地下水规划和管理的一项重要任务。在位于安德拉邦Ranga Reddy区的Maheshwaram流域,地 下水过量开采,管理地下水资源需要完全了解地下水流动态特征。然 而,地下水流动态特征由于人类和气候影响不断发生变化,且地下水 系统十分复杂,包括多种非线性和不确定因素。人工神经网络模型作 为一个有力的、灵活的统计建模技术被引入到地下水科学中以处理复 杂的模式认识问题。本次研究给出了两种模型的对比,即基于 Levenberg-Marquardt(LM)算法的前馈神经网络(FFNN)与模糊逻 辑自适应模糊推理系统(ANFIS)模型在评价Maheshwaram流域的地 下水位中的准确性的对比。用于分析的统计指标包括均方根误差 (RMSE),回归系数(R2)和误差变异(EV)。结果显示,FFNN-LM 和ANFIS模型对于评价上述地区的地下水位均具有较好的准确性 (RMSE分别为4.45和4.94,R2都为93%)。 1 引言 地下水是半干旱地区尤其是基岩地区一切生物不可缺少的资源。在很多地区,地表水资源匮乏,部分地区甚至没有地表水。近三十年来,为了满足农业和工业部门的需求,地下水过量开采。大范围的开凿深井导致印度部分地区尤其是基岩地区地下水位显著下降。本次研究的目的是应用两种适当的模拟方法评价现有含水层系统的地下水动态,并进行对比。 近期,软计算工具,例如人工神经网络(ANNs)和模糊逻辑被广泛应用于各种科技领域进行预测研究(Gail等,2002)。ANN是具有有限变量的通用模型,作为通用的函数近似解(Hornik等,1989)。与传统方法相比,它能够预测一些非线性时间序列事件(Guan等,2004;Hill等,1996;Tang和Fishwick,1993;Zhang,2003;French等,1992)。软计算技术是基于生物系统的信息处理原理。复杂的生物信息处理系统使得人类能够完成诸如认识周围环境,做出预测,并相应地计划和行动等而得以生存。人类信息处理的类型包括逻辑和直觉两种。 传统的计算机系统的逻辑性很好,但是它们的直觉却远不及人类。对于一个具有类似人类信息处理能力的计算系统,它应该足够灵活地支持以下三个特点:

模糊神经网络讲义

模糊神经网络(备课笔记) 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌等,现在简化改成一个综合评价:好、坏、一般等,都是根据个人爱好或者个人经验等模糊概念进行判断的。 在科学发展的今天,尤其在工程研究和设计领域中,这些模糊性问题就无法回避了,要求对数据进行定量分析,那如何对其进行定量分析呢? 1965年,Zadeh教授发表一篇论文“模糊集合”(Fuzzy sets),所谓模糊集合就是指边界不清的集合。提出用“隶属函数”(menbership function)这一概念来描述现象差异中的中间过渡,突破了德国人Cantor创立的古典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。Zadeh认为应该重新把模糊性和精确性统一在一起,因为在现实生活中复杂事物要绝对精确是不可能的,实际上只是把所谓的不准确程度降低到了无关重要的程度。他这篇论文第一次引人注目地提出了模糊性问题,给出了模糊概念的定量表示法,标志着模糊数学的诞生。模糊数学是使模糊现象定量化的应用数学分支学科。由于它突破了传统数学绝不允许模棱两可的约束,使那些与数学毫不相关的学科都可能用定量化和数学化加以描述和处理,从而显示其强大的生命力。 在模糊评价中,最基本和使用最多的是隶属度和隶属函数。隶属度表示元素u属于模糊集合U的程度;也就是对模糊集合的判断是用元素对此集合的从属程度大小来表达的。 模糊系统 模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。 模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。所以,它不需要知道系统的精确数学模型。对不确定的非线性的系统来说是一种有效的控制途径。但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集。这样会使控制规则搜索范围的扩大、搜索时间增加、降低了决策的速度,则影响了动态过程的品质。因此,隶属函数和控制规则的优化是提高品质的关键,在本质上,是对模糊控制中的知识进行正确性校正。

第8章 模糊神经网络方法

第八章 模糊神经网络算法 火灾火情决策是一个复杂的过程,它包括接收输入信号,与已知信息和经验进行比较,对输入信号作出判决,并给出正常、火警或故障信号。通常火灾自动报警系统的决策系统是很简单,它根据单个传感器送来信息作出是否发生火灾的判决。例如,当感烟探测器探测到的粒子数达到预定阈值,就发出火警信号。这些粒子可能是烟雾粒子,也可能是水雾或灰尘等非火灾产生的粒子,普通感烟探测器无法区分烟雾粒子,还是水雾和灰尘粒子,这就导致误报的发生。 经过长期的研究发现,火灾的发生具有双重性,既有它的随机性一面,又有它的确定性一面。人们并不能确切的知道何时发生火灾,但是当具备了发生火灾的条件,就会发生火灾,出现表征火灾的火灾参量。如果同时测量这些火灾参量,对信号进行综合分析处理,那么,火灾的误报率便大大降低。然而火灾的复杂性还在于相同的材料在不同的环境下,具有不同的着火温度,相同的环境不同的材料,着火条件也不一样,人类的活动以及环境的变化事先也无法确定,所以实际的火灾参量是随着空间和时间的变化而变化,很难用建立一种或几种数学模型进行精确描述。因此,火灾探测信号检测是一种十分困难的信号检测,它要求信号处理算法能够适应各种环境条件的变化,自动调整参数以达到既能快速探测火灾,又有很低的误报率。 而神经网络与模糊系统都属于一种数值化的和非数学模型的函数估计和动力学系统。它们都能以一种不精确的方式处理不精确的信息。因而它在火灾探测领域具有美好的应用前景。 第一节 模糊逻辑与模糊计算 一、模糊集合及其运算规则 (一) 模糊集合与隶属度 人们往往把讨论的议题限制在某个相关的范围内,例如讨论火灾问题,不会去谈论如何打乒乓球,讨论的范围称为“论域”。用大写字母U 、V 、X 、Y 表示。论域中的每个对象称为“元素”,用小写字母u 、v 、x 、y 表示。具有某些特定属性的元素的全体称为U 上的一个“集合”,常用大写字母A 、B……表示。 普通集合概念是论域中的任一元素,要么属于某个集合,要么不属于该集合,不允许有含混不清的说法,例如乒乓开关不是接通,就是断开。但是在现实生活中,却充满了模糊事物和模糊概念,例如“瘦子”集合,“少年”集合,“温度低”集合等等,其边界都是不明确的。将这类边界不明确的集合称为模糊集合,这里用A 表示一个模糊集合。 给定论域U 上的一个模糊集合A ,是指对于任意x U ∈都确定一个数A (x)μ , 0≤ A (x)μ ≤1,它表示x 对~ A 的隶属程度。 A A=((x)|x) , x U μ?∈ A (x )[0,1] μ∈

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

模糊神经网络综述

1.模糊神经网络的提出 模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的,而不是竞争的。在协作体中,各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。 2.模糊神经网络的研究进展 模糊神经网络的发展经历了一个漫长的过程。MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。此后,人们对模糊神经网络研究得很少。直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。 (1)引入模糊运算的神经网络———狭义模糊神经网络 狭义模糊神经网络通过调整参数进行学习。其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。(2)用模糊逻辑增强网络功能的神经网络 这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。 (3)基于神经网络的模糊系统—神经模糊系统 于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。这类模糊神经网络按照模糊逻辑的运算步骤分层构造,不改变模糊系统的基本功能(如模糊化、模糊推理和解模糊化)。 3.糊神经网络的应用 在基于模糊神经网络的控制器方面,Berenji和Khedker(1992)采用增强式学习方法提出了GARIC控制器结构,该系统通过三个神经网络完成了控制的功能:ASN进行普通模糊控制,AEN评价控制效果,SAM随机综合ASN和AEN的过程,然后产生控制信号;Lin和Lee(1994)提出了一种自动构造模糊系统的方法,该方

相关文档
最新文档