二叉树操作设计和实现

二叉树操作设计和实现
二叉树操作设计和实现

二叉树的基本 操作

//二叉树的基本操作 #include typedef struct node //定义结点 { char data; struct node *lchild, *rchild; } BinTNode; typedef BinTNode *BinTree; //定义二叉树 void CreateBinTree(BinTree &T); //先序创建二叉树 void PreOrder(BinTree T); //先序遍历二叉树 void InOrder(BinTree T); //中序遍历二叉树 void PostOrder(BinTree T); //后序遍历二叉树 int onechild(BinTree T); //求度为1的结点的个数int leafs(BinTree T); //求叶子结点的个数 int twochild(BinTree T); //度为2的结点的个数void translevel(BinTree b); //层序遍历二叉树 void main() { int n; BinTree T; char ch1,ch2; cout<<"欢迎进入二叉树测试程序的基本操作"<

实验三 二叉树的基本操作实现及其应用

二叉树的基本操作实现及其应用 一、实验目的 1.熟悉二叉树结点的结构和对二叉树的基本操作。 2.掌握对二叉树每一种操作的具体实现。 3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 4.会用二叉树解决简单的实际问题。 二、实验内容 设计程序实现二叉树结点的类型定义和对二叉树的基本操作。该程序包括二叉树结构类型以及每一种操作的具体的函数定义和主函数。 1 按先序次序建立一个二叉树, 2按(A:先序 B:中序 C:后序)遍历输出二叉树的所有结点 以上比做,以下选做 3求二叉树中所有结点数 4求二叉树的深度 三、实验步骤 ㈠、数据结构与核心算法的设计描述 /* 定义DataType为char类型 */ typedef char DataType; /* 二叉树的结点类型 */ typedef struct BitNode { DataType data; struct BitNode *lchild,*rchild; }*BitTree; 相关函数声明: 1、/* 初始化二叉树,即把树根指针置空 */ void BinTreeInit(BitTree *BT) { BT=(BitTree)malloc(sizeof(BitNode)); BT->data=NULL; cout<<"二叉树初始化成功!"<>ch; if(ch=='#') BT=NULL; else { if(!(BT=(BitTree)malloc(sizeof(BitNode)))) exit(0);

数据结构——二叉树的操作(遍历及树形输出)

/*实验三:二叉树遍历操作验证*/ #include #include #include #include #include #include #include using namespace std; #define OK 1 #define ERROR 0 #define OVERFLOW -2 int LeafNum;//叶子结点个数 //定义结构体 typedef struct BiTNode{ char data; //存放值 struct BiTNode *lchild,*rchild; //左右孩子 }BiTNode,*BiTree; //先序输入二叉树结点的值,空格表示空树 void createBiTree(BiTree &T) { char ch; //输入结点时用 scanf("%c",&ch); if(ch==' ') //若输入空格,该值为空,且没有左右孩子 { T=NULL; }else{ T=(BiTNode *)malloc(sizeof(BiTNode)); //分配结点空间 if(!T) //分配失败 { exit(OVERFLOW); } T->data=ch; //生成根结点 createBiTree(T->lchild); //构造左子树 createBiTree(T->rchild); //构造右子树 } } //递归方法先序遍历二叉树 void preOrderTraverse(BiTree T) {

if(T) //若非空 { if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); } } //递归方法中序遍历二叉树 void inOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->rchild); } } //递归方法后序遍历二叉树 void postOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); if(T->data) { //输出 printf("%c",T->data); } } } //层序遍历二叉树 void LevelTraverse(BiTree T) { queue q;//建队 q.push(T);//根节点入队

实验三二叉树的基本操作

实验三二叉树的基本运算 一、实验目的 1、使学生熟练掌握二叉树的逻辑结构和存储结构。 2、熟练掌握二叉树的各种遍历算法。 二、实验内容 题目一:二叉树的基本操作实现(必做题) [问题描述] 建立一棵二叉树,试编程实现二叉树的如下基本操作: 1. 按先序序列构造一棵二叉链表表示的二叉树T; 2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列; 3. 求二叉树的深度/结点数目/叶结点数目;(选做) 4. 将二叉树每个结点的左右子树交换位置。(选做) [基本要求] 从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立), [测试数据] 如输入:ABCффDEфGффFффф(其中ф表示空格字符) 则输出结果为 先序:ABCDEGF 中序:CBEGDFA 后序:CGEFDBA 层序:ABCDEFG [选作内容]

采用非递归算法实现二叉树遍历。 三、算法设计 1、主要思想:根据二叉树的图形结构创建出二叉树的数据结构,然后 用指针对树进行操作,重点掌握二叉树的结构和性质。 2、本程序包含四个模块: (1)结构体定义 (2)创建二叉树 (3)对树的几个操作 (4)主函数 四、调试分析 这是一个比较简单程序,调试过程中并没有出现什么问题,思路比较清晰 五、实验结果 六、总结 此次上机实验对二叉树进行了以一次实际操作,让我对二叉树有了更深的了解,对二叉树的特性有了更熟悉的认知,让我知

道了二叉树的重要性和便利性,这对以后的编程有更好的帮助。 七、源程序 #include #include using namespace std; #define TElemType char #define Status int #define OK 1 #define ERROR 0 typedef struct BiTNode{ TElemType data; struct BiTNode * lchild, *rchild; }BiTNode,* BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; cin >> ch; if (ch == '#') T = NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树的基本操作及实现.cpp

二叉树的基本操作及实现 二叉树的基本操作及实现的代码如下: #include #define MAXNODE 100 typedef char DataType; typedef struct BiTNode{ DataType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void Visit(DataType bt){ //输出二叉树结点值 cout<lchild=NULL;bt->rchild=NULL; return bt; } BiTree Create_BiTree(DataType x,BiTree lbt,BiTree rbt){ //建立二叉树:以结点值为x的结点为头结点,并以lbt和rbt为左右子树BiTree p; p=new BiTNode; if(!p){ cout<<"无法完成二叉树的建立!"<data=x; p->lchild=lbt;p->rchild=rbt; return p; } BiTree InsertL(BiTree bt,DataType x,BiTree parent){ //在某结点之后插入左结点BiTree p; if(parent==NULL){ cout<<"要插入结点的父节点不存在!"<

数据结构——二叉树基本操作源代码

数据结构二叉树基本操作 (1). // 对二叉树的基本操作的类模板封装 //------------------------------------------------------------------------------------------------------------------------ #include using namespace std; //------------------------------------------------------------------------------------------------------------------------ //定义二叉树的结点类型BTNode,其中包含数据域、左孩子,右孩子结点。template struct BTNode { T data ; //数据域 BTNode* lchild; //指向左子树的指针 BTNode* rchild; //指向右子树的指针 }; //------------------------------------------------------------------------------------------------------------------------ //CBinary的类模板 template class BinaryTree { BTNode* BT; public: BinaryTree(){BT=NULL;} // 构造函数,将根结点置空 ~BinaryTree(){clear(BT);} // 调用Clear()函数将二叉树销毁 void ClearBiTree(){clear(BT);BT=NULL;}; // 销毁一棵二叉树 void CreateBiTree(T end); // 创建一棵二叉树,end为空指针域标志 bool IsEmpty(); // 判断二叉树是否为空 int BiTreeDepth(); // 计算二叉树的深度 bool RootValue(T &e); // 若二叉树不为空用e返回根结点的值,函数返回true,否则函数返回false BTNode*GetRoot(); // 二叉树不为空获取根结点指针,否则返回NULL bool Assign(T e,T value); // 找到二叉树中值为e的结点,并将其值修改为value。

二叉树及其操作的实现

班级:数媒1101 学号:0305110125 课程名称:数据结构实验 实验名称:二叉树及其操作的实现 实验内容和目的: 内容:1. 创建二叉树; 2. 用递归方法实现二叉树的各种遍历。 目的:1.掌握二叉树的定义和存储表示,学会建立一棵特定二叉树的方法; 2.掌握二叉树的遍历算法(先序、中序、后序遍历算法)的思想,并学会遍 历算法的递归实现和非递归实现。 实验步骤: 1.首先定义二叉树的存储形式; 2.用CreateBiTree( )构造二叉链表表示的二叉树T; 3. 用PreOrder ( bitree *t )、InOrder ( bitree *t)、PostOrder ( bitree * t )这三个函数 对二叉树依次进行先序、中序、后序遍历,并输出遍历序列。 实验代码/文件描述: #include "stdio.h" #include "stdlib.h" #define maxsize 64 #define null 0 typedef char datatype; typedef struct node { datatype data; struct node * lchild, * rchild; } bitree; bitree * bitr; bitree *Q[maxsize];

bitree *CREATREE( ) { char ch ; int front , rear ; bitree *root , *s ; root = null ; front = 1 ; rear = 0 ; ch = getchar( ) ; while ( ch != '#' ) { s = null ; if ( ch != '@' ) { s =(bitree*) malloc(sizeof(bitree)); s->data = ch ; s->lchild = null ;s->rchild =null; } rear ++; Q[rear] = s ; if (rear == 1 ) root = s ; else { if ( s && Q[front] ) if (rear%2==0 ) Q[front]->lchild = s ; else Q[front]->rchild = s ; if ( rear%2==1 ) front ++; } ch = getchar ( ) ; } return root ; } void PreOrder ( bitree *t ) { if ( t != null ) { printf("\t%c\n",t->data); PreOrder ( t->lchild ); PreOrder ( t->rchild ); } } void InOrder ( bitree *t) { if ( t != NULL ) { InOrder ( t->lchild ); printf("\t%c\n", t->data); InOrder ( t->rchild ); } }

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

实验10 二叉树的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十二叉树的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期 一.实验目的和要求 1、掌握二叉树的链式存储结构。 2、掌握在二叉链表上的二叉树操作的实现原理与方法。 3、进一步掌握递归算法的设计方法。 二.实验内容 1、按照下面二叉树二叉链表的存储表示,编写头文件binary_tree.h,实现二叉链表的定义与基本操作实现函数;编写主函数文件test10.cpp,验证头文件中各个操作。 二叉树二叉链表存储表示如下: typedef struct BiTNode { TElemType data ; struct BiTNode *lchild , *rchild ; }BiTNode,*BiTree ; 基本操作如下: ①void InitBiTree(BiTree &T ) //初始化二叉树T ②void CreateBiTree(BiTree &T) //按先序遍历序列建立二叉链表T ③bool BiTreeEmpty (BiTree T); //检查二叉树T是否为空,空返回1,否则返回0 ④int BiTreeDepth(BiTree T); //求二叉树T的深度并返回该值 ⑤void PreOrderTraverse (BiTree T); //先序遍历二叉树T ⑥void InOrderTraverse (BiTree T); //中序遍历二叉树T ⑦void PostOrderTraverse (BiTree T); //后序遍历二叉树T ⑧void DestroyBiTree(BiTree &T) //销毁二叉树T

实验四-二叉树操作实现

实验四-二叉树操作实现

实验四二叉树操作实现 实验日期:2017 年 4 月20 日 实验目的及要求 1. 熟练掌握树的基本概念、二叉树的基本操作及在链式存储结构上的实现; 2. 重点掌握二叉树的创建、遍历及求深度等算法; 3. 掌握运用递归方式描述算法及编写递归C程序的方法,提高算法分析和程序设计能力。 实验内容 键盘输入一个字符串,利用二叉树前序遍历的结果建成一棵二叉树,并用三种遍历方法打印,比较是否与自己预先想象的相一致。再求树的深度、1度结点数、2度节点数,交换二叉树的左右子树并输出交换后的中序遍历结果验证交换的正确性。找到二叉树中序遍历最后一个结点并输出结点值。 二叉树结点类型定义: typedef char datatype; typedef struct tnode{ datatype data; struct tnode *lchild,*rchild; } BiTNode,*BiTree; 任务 1.题目要求 创建一个程序文件sy4.cpp,自定义相应函数完成以下操作:

(1)void visit(BiTree p) /*输出p指针指向的结点*/ (2)void Preorder(BiTree T) /*前序遍历*/ (3)void Inorder(BiTree T) /*中序遍历*/ (4)void Postorder(BiTree T) /*后序遍历*/ (5)BiTree CreateTree( ) /*以前序遍历的顺序建立二叉树*/ (6)int deep(BiTree T) /*求二叉树深度*/ (7)int leaf(BiTree T) /*求叶子结点数*/ (8)int OneChild(BiTree T) /*求1度结点数*/ (9)int TwoChild(BiTree T) /*求2度结点数*/ (10)void Exchange(BiTree T) /*二叉树左右子树交换*/ (11)BiTree InorderLastNode(BiTree T); /*找二叉树中序遍历最后一个结点*/ 2.请回答下列问题 (1)在n个结点二叉树的二叉链表存储中,其指针域的总数为2n 个,其中n-1 个用于链接孩子结点,n+1 个空闲着。 (2)在二叉链表存储中,数据域值为data,左右子树的指针分别为left和right,则判断: 指针p所指结点为0度结点的条件是p->left==NULL&&p->right==NULL ;指针p所指结点为1度结点的条件是(p->left==NULL&&p->right!=NULL)||(p->left!=NULL&&p->right==NULL) ; 指针p所指结点为2度结点的条件是p->left!=NULL&&p->right!=NULL 。(3)T为二叉树的根的地址,该树是空二叉树满足条件:T==NULL 。 3.sy14.cpp源程序清单(含必要的注释) #include #include typedef char datatype; typedef struct tnode { datatype data; struct tnode *lchild, *rchild; } BiTNode, *BiTree; void visit(BiTree p); /*输出p指针指向的结点*/ void Preorder(BiTree T); /*前序遍历*/ void Inorder(BiTree T); /*中序遍历*/ void Postorder(BiTree T); /*后序遍历*/ BiTree CreateTree(); /*以前序遍历的顺序建立二叉树*/

二叉树基本操作经典实例

本程序由SOGOF完成 该完整程序主要是递归函数的使用及模板的使用,完成了对二叉树基本的链表操作,主要有二叉树的建立,前序、中序、后序遍历,求树的高度,每层结点数(包含树的最大宽度),左右结点对换,二叉树的内存释放,求解树的叶子数。 #include using namespace std; #define FLAG'#' typedef char Record; template struct Binary_Node { Entry data; Binary_Node*left; Binary_Node*right; Binary_Node(); Binary_Node(const Entry& x); }; template Binary_Node::Binary_Node() { left=NULL; right=NULL; } template Binary_Node::Binary_Node(const Entry &x) { data=x; left=NULL; right=NULL; } template class Binary_tree { public: bool empty()const; Binary_tree(); Binary_tree(Binary_tree&org); void create_tree(Binary_Node*&tree);//建立二叉树 void recursive_copy(Binary_Node*&tree,Binary_Node*&cur); void pre_traverse(Binary_Node *tree);//前序 void mid_traverse(Binary_Node *tree);//中序 void post_traverse(Binary_Node *tree);//后序遍历

二叉树的基本 操作

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* //二叉树的基本操作 #include typedef struct node //定义结点 { char data; struct node *lchild, *rchild; } BinTNode; typedef BinTNode *BinTree; //定义二叉树 void CreateBinTree(BinTree &T); //先序创建二叉树 void PreOrder(BinTree T); //先序遍历二叉树 void InOrder(BinTree T); //中序遍历二叉树 void PostOrder(BinTree T); //后序遍历二叉树 int onechild(BinTree T); //求度为1的结点的个数int leafs(BinTree T); //求叶子结点的个数 int twochild(BinTree T); //度为2的结点的个数void translevel(BinTree b); //层序遍历二叉树 void main() { int n; BinTree T; char ch1,ch2; cout<<"欢迎进入二叉树测试程序的基本操作"<

cout<<"--------------请选择------------"<>ch2; switch(ch2) { case '1': cout<<"请输入按先序建立二叉树的结点序列:\n"; CreateBinTree(T); cout<

数据结构程序报告(平衡二叉树的操作)

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertA VL(BSTree &T,int e,bool &taller);

//插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); void RightBalance_div(BSTree &p,int &shorter);

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级 13007102,姓名 庞文正,学号 1300710226 实验完成的时间 3:00 ****************************** 一、 实验目的 1, 掌握二叉树链表的结构和二叉树的建立过程。 2, 掌握队列的先进先出的运算原则在解决实际问题中的应用。 3, 进一步掌握指针变量、指针数组、动态变量的含义。 4, 掌握递归程序设计的特点和编程方法。 二、 实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。 (所谓层次遍历,是 指从二叉树的根结点开始从上到下逐层遍历二叉树, 在同一层次中从左到右依次访问各个节 点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加 深对算法的理解。 三、 算法设计与编码 1. 本实验用到的理论知识 总结本实验用到的理论知识, 实现理论与实践相结合。 总结尽量简明扼要, 并与本次实验密 切相关,最好能加上自己的解释。 本算法要采用一个循环队列 que,先将二叉树根结点入队列,然后退队列,输出该 结点;若它 有左子树,便将左子树根结点入队列; 若它有右子树,便将右子树根结点入队列, 直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。 2. 算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; // 数据域 struct node *lchild,*rchild; }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素 int front=0, rear=0; 〃初始化循环列队 bitree *creat() 〃建立二叉树的递归算法 {bitree *t; int x; scanf("%d”,&x); if(x==0) t=NULL; 〃以 else {t=malloc(sizeof(bitree)); t->data=x; t->lchild=creat(); t->rchild=creat(); //左孩子右孩子链 x=0表示输入结束 bitree 指针类型 〃动态生成节点t,分别给节点t 的数据域, //左右孩子域赋值,给左右孩子赋值时用到 // 了递归思想

C++二叉树的创建与遍历实验报告

二叉树的创建与遍历 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归和非递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归和非递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历。 四、实验步骤 源程序代码1 #include #include using namespace std; template struct BinTreeNode //二叉树结点类定义 { T data; //数据域 BinTreeNode *leftChild,*rightChild; //左子女、右子女域 BinTreeNode(T x=T(),BinTreeNode* l =NULL,BinTreeNode* r = NULL ) :data(x),leftChild(l),rightChild(r){} //可选择参数的默认构造函数 }; //------------------------------------------------------------------------- template void PreOrder_2(BinTreeNode *p) //非递归前序遍历 { stack * > S;

数据结构课程设计-二叉树的基本操作

二叉树的基本操作 摘要: 本次课程设计通过对二叉树的一系列操作主要练习了二叉树的建立、四种遍历方式:先序遍历、中序遍历、后序遍历和层序遍历以及节点数和深度的统计等算法。增加了对二叉树这一数据结构的理解,掌握了使用c语言对二叉树进行一些基本的操作。 关键字:递归、二叉树、层序遍历、子树交换 一、程序简介 本程序名为“二叉树基本操作的实现”,其主要为练习二叉树的基本操作而开发,其中包含了建立、遍历、统计叶子结点和深度等一系列操作。其中定义二叉链表来表示二叉树,用一个字符类型的数据来表示每一个节点中存储的数据。由于没有进行图形界面的设计,用户可以通过程序中的遍历二叉树一功能来查看操作的二叉树。 二、功能模块 2.1功能模块图 2.2功能模块详解 2.2.1建立二叉树

输入要建立的二叉树的扩展二叉树的先序遍历序列,来建立二叉树,建立成功会给出提示。 2.2.2遍历二叉树 执行操作之后会有四个选项可供选择:先序遍历、中序遍历、后序遍历、层序遍历。 输入对应的序号即可调动相关函数输出相应的遍历序列。 2.2.3统计叶子节点树 执行之后输出叶子结点的个数。 2.2.4求二叉树深度 执行之后输出二叉树的深度。 2.2.5子树交换 交换成功则会给出提示,用户可通过遍历二叉树来观察子树交换之后的二叉树。 三、数据结构和算法设计 3.1二叉链表的设计 1.typedef struct BiNode { 2.char data; 3.struct BiNode* lchild; //左孩子 4.struct BiNode* rchild; //右孩子 5.}BiTree; 用一个字符型保存节点数据,分别定义两个struct BiNode类型的指针来指向左孩子和右孩子。在BiTree.h中实现相关的功能。 3.2队列的实现 1.typedef struct { 2. ElemType* data; 3.int head;//队头指针 4.int tail;//队尾指针 5.} SqQueue; 队列主要用于二叉树遍历过程中的层序遍历,从根节点开始分别将左右孩子放入队列,然后从对头开始输出。队列的相关操作封装在SqQueue.h中,包括入队、出队、判断队列是否为空等操作。

二叉树操作的实现

二叉树操作的实现 实验目的与要求: 1.基础知识:掌握数据结构中二叉树的相关知识;掌握C或VC++语言中程序设计的方法. 2.参考教材相关算法,完成以下程序功能: (1) 能够采用二叉链存储,并实现二叉树的建立; (2)完成已建立的二叉树的三种遍历; (3)完成二叉树中特定结点的统计,如0元素结点或叶子结点统计; (4)程序中有友好的操作设计. 实验性质:验证性(2学时) 说明:程序包含主要函数:主函数、操作界面、建树、独立的三种遍历、特定结点统计、相关注释,注意在主函数流程中体现先建树后遍历和特定结点统计的条件 #include #include struct node { char data; struct node *lchild,*rchild; } ;

int j=0; int *g=&j; void shuru(node*&t,char sn[50]) { char ch; ch=sn[j++]; if(ch=='@') printf("输入的二叉树有误建树失败\n"); else if(ch=='#')t=NULL; else { t=(node*)malloc(sizeof(node)); t->data=ch; shuru(t->lchild,sn); shuru(t->rchild,sn); }} void xianxu(node*&t) {

if(t!=NULL) { printf("%c",t->data); xianxu(t->lchild); xianxu(t->rchild); }} void zhongxu(node*&t) { if(t!=NULL) { zhongxu(t->lchild); printf("%c",t->data); zhongxu(t->rchild); }} void houxu(node *&t) { if(t!=NULL)

二叉树的基本操作实验报告

二叉树的基本操作实验报告 学号姓名实验日期 2012-12-26 实验室计算机软件技术实验指导教师设备编号 401 实验内容二叉树的基本操作 一实验题目 实现二叉树的基本操作的代码实现 二实验目的 1、掌握二叉树的基本特性 2、掌握二叉树的先序、中序、后序的递归遍历算法 3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求 (1)认真阅读书上给出的算法 (2)编写程序并独立调试 四、给出二叉树的抽象数据类型 ADT BinaryTree{ //数据对象D:D是具有相同特性的数据元素的集合。 //数据关系R: // 若D=Φ,则R=Φ,称BinaryTree为空二叉树; // 若D?Φ,则R={H},H是如下二元关系; // (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,?H,且存在上的关系 Hr ?H;H={,,H1,Hr};

// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。 //基本操作: CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。 // 操作结果:按definiton构造二叉树T。 BiTreeDepth( T ) // 初始条件:二叉树T存在。 // 操作结果:返回T的深度。 PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 InOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 PostOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 LeafNodes(p) // 初始条件:二叉树T存在。 // 操作结果:返回T的叶子结点数。

二叉树的基本操作完整版,包含二叉树的所有操作,凡是你想要的都在里面

#include "stdio.h" #include "stdlib.h" #include "string.h" #include "math.h" typedef char TElemType; //定义结点数据为字符型 typedef int Status; //定义函数类型为 int 型 #define ERROR 0 #define OK 1 }BiTNode, *BiTree; Status NumJudge(char ch[20]){ //限制输入数据必须为大于零的整形 char ch1[20]; int num; while(1){ scanf("%s",ch); num=atoi(ch); // 将字符串转换为整型 itoa(num,ch1,10); //将整型转换为字符串型 if(strcmp(ch,ch1)==0&&num>0)break; else{printf(" 请输入一个大于零的整数 : ");} } return num; }//NumJudge Status InitBiTree(BiTree &T){ //构造空二叉树 T if(!(T=(BiTree)malloc(sizeof(BiTNode))))exit(ERROR); T->next=NULL; printf("\n\t 空二叉树构建成功 !\n\n"); return OK; }//InitBiTree Status DestroyTree(BiTree &T,BiTree t){ //销毁二叉树 if(T){ free(T);T=NULL; printf ("\t 二叉树销毁成功 !\n"); } if(t){ DestroyTree(T,t->lchild); DestroyTree(T,t->rchild); free(t); } return OK; }//DestroyTree Status ClearBiTree(BiTree &T,int sum,int &i){ //清空二叉树 if(T){ typedef struct BiTNode{ //定义结构 体 TElemType data; // 结点数值 struct BiTNode *lchild; // 左孩子指针 struct BiTNode *rchild; // 右孩子指针 struct BiTNode *next; //下一结点指针 //若申请空间失败则退出

相关文档
最新文档