均值不等式的具体应用

均值不等式的具体应用
均值不等式的具体应用

均值不等式的具体应用

————————————————————————————————作者:————————————————————————————————日期:

?

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

浅谈均值不等式在求函数最值中的应用_刘建中

03/2011 浅谈均值不等式在求函数最值中的应用 ◇刘建中 (辽宁省抚顺一中) 均值不等式是高中数学中的重要知识点之一,应用均值不等式求最值是历年高考考查的重要知识点之一。本文简要探讨了均值 不等式在求函数最值中的应用。 均值不等式函数最值应用 均值不等式是高中数学不等式中的重要内容,均值不等式在求函数最值、解决一些取值范围问题时运用非常广泛,是历年高考考查的重要知识点之一。在实际应用时,我们应因题而宜地进行变换,并注意等号成立的条件,达到解题的目的,变换题目所给函数的形式,利用熟悉知识求解是常用的解题技巧,熟练运用该技巧,对于提高思维的灵活性和严密性大有益处。 一、运用均值不等式时应注意事项 在解决这一类型的题时需要特别注意的是等号成立的条件,特别是遇到一些函数本身就有取值限制范围时,需要根据函数合理存在的限制取值范围再求函数的最值。 二、把所给函数巧妙转化成均值不等式后求最值 这是一种比较难掌握的方法,因此运用此法需要具有扎实的基础知识,敏锐的观察力。下面举两个例子对此法加以介绍。 欲灵活应用此法,需要多练习,并在解题的过程中体会总结规律,达到孰能生巧,总之,遇到此类型的题,最重要的是需配出相应的形式。 三、结语 以上通过几个实例简单介绍了利用均值不等式求最值问题需要注意的一些事项,但对于具体题目,有时可能有多种解题方法,究竟如何求出函数合理的最值,还需要我们在教和学的实践中不断探索和总结。 参考文献: [1]王影.求函数值域的几种常用方法.解题技巧与方法,2010.[2]孙瑜蔓,孙锰.妙用均值不等式求多元函数的最值.高中数学教与 学,2010,(4). [3]魏福军.用均值不等式求最值须注意的几点.中学生数学,2003, (1). [4]徐丽聘.利用均值不等式求最值.求实篇———学习方法总结,2009, (9). [5]刘新良,李庆社.十二种求函数值域的常用方法.高中生,2006, (18). [6]高飞,朱传桥.巧用均值不等式球最值.高中数学教与学,2007, (5). [7]沈红霞.用均值不等式求最值,便不可能为可能.数学教学,2005, (10). (上接第46页) 参考文献: [1]数学课程标准.北京师范大学出版社,2002. [2]李兴贵.新课程数学阅读教学新论.四川大学出版社,2006.[3]义务教育课程标准试验教科书.二年级(上册),2008. [4]王希.小学数学阅读能力的培养.教学月刊(小学版),2007,(4).[5]张南楠.新课程视野下的“数学阅读”.河北教育,2007,(1).[6]李星云.数学阅读———开启数学宝库的金钥匙.云南教育.小学教 师,2007. [7]钱言午.培养数学阅读习惯提高数学教学效率.教育艺术在线, 2008,(1). 47 中国校外教育中旬刊课堂教学

均值不等式的4种变形及应用yqh

均值不等式的四种变形及其应用 定理:如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如 一 第一种变式为2 2 2 2()()a b a b +≥+ 它是怎样用定理“如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号),”推导 出来的呢?只要在么222a b ab +≥的两边同时加上22 a b +可推出为2 2 2 2()() a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。 例1设0,0a b >>,1a b +=≤ 证明:2 2(2121)22(1)8a b a b ≤+++=?++= ≤ 例2设x,y 均为正数,10=- y x 且,求证:x-2y 200 ≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2 2 2 b a b a +≤+ y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=- 移项得x-2y 200≤. 例3 若a,b,c + ∈R 且a+b+c=1,求证:21141414≤++++ +c b a . 证明:用三元均值不等式的变形公式)(3)(2 2 2 2 c b a c b a ++≤++ .21)141414(3)141414(2=+++++≤+++++c b a c b a 两边开方得出21141414≤++++ +c b a 例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++ +d c b a 证明: 用四个变量均值不等式的变形公式)(4)(2 2 2 2 2 d c b a d c b a +++≤+++ 32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a . 两边开方得出所要证的结果.

均值不等式应用(技巧)

均值不等式应用(技巧) Wekede 整理 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2 b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。

数学:均值不等式定理的实际应用必修

均值不等式定理的实际应用 1.用一段长为lm 的篱笆围成一个一边靠墙的矩形菜园。问这个矩形的长、宽各为多少时,菜园的面积最大,最大值是多少? 【解】依题意设矩形的两边长分别为,(2)xm l x m -,(其中2 l x < )则矩形的面积为2(2)x l x m -,由均值不等式定理可知:222(2)1(2)(2)[]2228 x l x x l x l x l x -+--=≤= 当且仅当22x l x =-即4l x =时,矩形面积取得最大值28l 。 2.已知直角三角形的周长为l (定值),求它的面积的最大值。 【解】设直角三角形的两直角边为,a b ,则l a b =++ ,即 22≤=,当且仅当a b = 时等号成立。21324S ab -∴=≤ 此时该三角形为等腰直角三角形。故当a b = 时,2max 34S -= 3.一批救灾物资随26辆汽车从某市以/vkm h 的速度直达灾区,已知两地公路长为400km ,为了安全起见,两辆汽车的间距不得小于2( )20v km ,那么这批物资全部运到灾区,至少需要多少时间?并指出此时汽车的速度。 【解】设两车之间的间距为2(())20 v d d ≤其中,最后一辆车到达灾区所用时间为t ,则 225()40025400400201016v d v t v v v ++=≥=+≥= 当且仅当40080/16v v km h v ==即时,min 10t h = 4.南海中学为了解决教师住房问题,计划征用一块土地盖一幢总建筑面积为2am 的宿舍楼。已知土地的征用费为2388元2/m ,且每层的建筑面积相同,土地的征用面积为第一层的2.5倍,经工程技术人员核算,第一、二层的建筑费用相同,费用为455元2/m ,以后每增高一层,其建筑费用就增加30元2/m 。试设计这幢宿舍楼的楼高层

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

2021人教版新教材高一数学配套提升训练《专题17 均值不等式及其应用》(原卷版)

2021人教版新教材配套提升训练 提升训练2.7 均值不等式及其应用 一、选择题 1.已知x >0,函数9 y x x =+的最小值是( ) A .2 B .4 C .6 D .8 2.已知1(0,)4 x ∈,则(14)x x -取最大值时x 的值是( ) A . 14 B . 16 C . 18 D . 110 3.()2 301x x y x x ++=>+的最小值是( ) A .23 B .231- C .231+ D .232- 4.已知a ,b 都为正实数,21a b ,则ab 的最大值是( ) A . 29 B . 18 C . 14 D . 12 5.已知正实数a 、b 满足a+b=ab ,则ab 的最小值为( ) A .1 B . C .2 D .4 6.若0,0,31x y x y >>+=,则11 3x y +的最小值为( ) A .2 B .12 x x C .4 D .23 7.若正数,m n 满足21m n +=,则11 m n +的最小值为 A .322+ B .32+ C .222+ D .3 8.若两个正实数x ,y 满足21 1x y +=,则2x+y 的最小值为( ) A .9 B .7 C .5 D .3 9.若正实数 满足 ,则( )

A .有最大值 B .有最小值 C .有最小值 D . 有最大值 10.已知关于、的方程组:(其中、)无解,则必有( ) A . B . C . D . 11.若正数a ,b 满足111a b +=,则1911 a b +--的最小值为( ) A .6 B .9 C .12 D .15 12.设,,均为正实数,则三个数,, ( ) A .都大于2 B .都小于2 C .至少有一个不大于2 D .至少有一个不小于2 二、填空题 13.若0a >,0b >,25a b +=,则ab 的最大值为__________. 14.若a b >,则()8 2a b a b -+-的最小值为______. 15.若矩形的长和宽分别为,其对角线的长为5,则该矩形的周长的最大值为______________. 16.若,且 ,则 的最小值为_______. 三、解答题 17.已知正实数a ,b 满足 ,求 的最小值. 18.设,x y 都是正数,且12 3x y +=,求2x y +的最小值. 19.已知 ,求证: . 20.某单位建造一间背面靠墙的房屋,地面面积为302m ,房屋正面每平方米造价为1500元,房屋侧面每平方米造价为900元,屋顶造价为5800元,墙高为3米,且不计算背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少? 21.已知 , . (1)求的最小值;

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

均值不等式应用(技巧)

均值不等式应用(技巧) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或(当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最 小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2 ·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项

均值不等式的总结与应用

均值不等式总结及应用 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 22b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若 * ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则 2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则 2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22 b a b a +≤ +(当且仅当b a =时取“=”) 说明: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 【解题技巧】 技巧一:凑项 例 已知5 4x <,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

正弦余弦均值不等式及其应用

正余弦均值不等式及其应用 石嘴山市一中 刘 先看个例子: 在 △ABC 中,分别判断满足下列条件的三角形形状 ? ⑴ sin A + sin B + sin C = 332 ⑵ sin A·sin B·sin C = 338 ⑶ cos A + cos B + cos C = 32 ⑷ cos A·cos B·cos C = 18 ⑸ sin A 2+ sin B 2+ sin C 2 = 32 ⑹2sin A +2sin B +2sin C = 94 ⑺2cos A + 2cos B + 2cos C = 32 答案:以上各题的三角形均仅为正三角! 对于这样的题目,往往首先想到用三角恒等变形或正余弦定理直接导出 A = B = C 或 a = b = c 。实践证明,这种方法根本行不通! 这些题目一般思路是灵活借用判别式法、不等式法、数形结合法等进行所谓“巧妙变换”来解之。其“巧妙”程度因题而异,没有固定模式,不易掌握。实际上,这些题目属于同一类问题,应有统一解法,本文就此问题进行探讨。 定理1:对于任意角α、β,令 γ = 2αβ + ,则 │sinα+ sinβ│≤ 2│sinγ│ ① sinα·sinβ ≤ 2sin γ ② │cosα+ cosβ│≤ 2│cosγ│ ③ cosα·cosβ ≤ 2cos γ ④ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。

定理1 仅是本文的特例,我们可以称: ① 为 正弦和中值最大不等式; ② 为 正弦积中值最大不等式; ③ 为 余弦和中值最大不等式; ④ 为 余弦积中值最大不等式, 也可把它们统称为 正余弦中值定理 或 正余弦中值不等式。 证明:① ∵│sinα+ sinβ│=│2 sin 2αβ +·cos 2αβ -│≤│2 sin 2αβ +│ ∴│sinα+ sinβ│≤ 2│sinγ│ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ② ∵ sinα·sinβ= 12 [cos(α-β) - cos(α+β)] = 12[cos(α-β) - 1 + 2·sin 2(2αβ+)]≤ sin 2(2αβ+) ∴ sinα·sinβ ≤ sin2γ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ③、④ 同理可证。 注意:②、④ 没有绝对值符号,比如:α=2π,β=2π -,得 sinα·sinβ<sin2γ,但│sinα·sinβ│>│sin2γ│。 定理2:对于任意角 α、β、γ ∈[0, 2 π],令δ= 3αβγ++,则 sinα+ sinβ+ sinγ ≤ 3 sinδ sinα·sinβ·sinγ ≤ sin 3δ cosα+ cosβ+ cosγ ≤ 3 cosδ cosα·cosβ·cosγ ≤ cos 3δ 当且仅当 α=β=γ 时,取“=”号。 定理3:对于任意角α1 、α2 、… 、αn ∈[0, 2π],令δ=12 n n ααα+++, ( n ≥ 2 ,且 n ∈N ),则 sinα1 + sinα2 + + sinαn ≤ n sinδ sinα1 ·sinα2 · ·sinαn ≤ sin n δ

均值不等式及其应用

基本不等式及其应用 一、选择题 1.下列不等式一定成立的是( ) A.lg ? ???? x 2+14>lg x (x >0) B.sin x +1 sin x ≥2(x ≠k π,k ∈Z ) C.x 2 +1≥2|x |(x ∈R ) D.1x 2+1 <1(x ∈R ) 解析 当x >0时,x 2 +14≥2·x ·1 2=x ,所以lg ? ????x 2+14≥lg x (x > 0),故选项A 不正确;运用基本不等式时需保证“一正”“二定”“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1 x 2+1=1,故 选项D 不正确. 答案 C 2.若2x +2y =1,则x +y 的取值范围是( ) A.[0,2] B.[-2,0] C.[-2,+∞) D.(-∞,-2] 解析 22x +y ≤2x +2y =1,所以2x +y ≤1 4 ,即2x +y ≤2-2,所以x +y ≤-2. 答案 D 3.(优质试题·合肥二模)若a ,b 都是正数,则? ????1+b a ·? ???? 1+4a b 的最 小值为( ) A.7 B.8 C.9 D.10

解析 ∵a ,b 都是正数,∴? ????1+b a ? ????1+4a b =5+b a +4a b ≥5+ 2 b a ·4a b =9,当且仅当b =2a >0时取等号.故选C. 答案 C 4.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1 ab ≤14 B.1a +1b ≤1 C.ab ≥2 D.a 2+b 2≥8 解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C 不成立;1a +1b =a +b ab =4 ab ≥1,选项B 不 成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D 成立. 答案 D 5.(优质试题·湖南卷)若实数a ,b 满足1a +2 b =ab ,则ab 的最小 值为( ) A. 2 B.2 C.2 2 D.4 解析 依题意知a >0,b >0,则1a +2 b ≥2 2ab =22ab ,当且仅当1 a = 2 b ,即b =2a 时,“=”成立. 因为1a +2b =ab ,所以ab ≥22ab ,即ab ≥22, 所以ab 的最小值为22,故选C. 答案 C 6.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )

均值不等式的应用(新版教材)

均值不等式的应用 类型 用均值不等式证明不等式 ┃┃典例剖析__■ 1.无附加条件的不等式的证明 典例1 已知a ,b ,c >0,求证:a 2b +b 2c +c 2 a ≥a +b +c . 思路探究:由条件中a ,b ,c >0及待证不等式的结构特征知,先用均值不等式证a 2 b +b ≥2a , b 2 c +c ≥2b ,c 2 a +a ≥2c ,再进行证明即可. 解析:∵a ,b ,c >0,∴利用均值不等式可得a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,∴a 2b +b 2c + c 2a +a +b +c ≥2a +2b +2c ,故a 2b +b 2c +c 2 a ≥a + b + c , 当且仅当a =b =c 时,等号成立. 归纳提升:利用均值不等式证明不等式的注意点: (1)多次使用均值不等式时,要注意等号能否成立. (2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用. (3)对不能直接使用均值不等式的证明可重新组合,达到使用均值不等式的条件. 2.有附加条件的不等式的证明 典例2 已知a >0,b >0,a +b =1,求证:(1+1a )(1+1 b )≥9. 思路探究:本题的关键是把分子的“1”换成a +b ,由均值不等式即可证明. 解析:方法一:因为a >0,b >0,a +b =1, 所以1+1a =1+a +b a =2+b a . 同理1+1b =2+a b . 故(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +a b )≥5+4=9. 所以(1+1a )(1+1b )≥9,当且仅当a =b =1 2 时取等号. 方法二:(1+1a )(1+1b )=1+1a +1b +1ab =1+a +b ab +1ab =1+2 ab , 因为a ,b 为正数,所以ab ≤(a +b 2)2=1 4 ,

均值不等式公式总结与应用

均值不等式应用 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若0>ab ,则 2≥+a b b a (当且仅当b a =时取“=” ) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所 谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知54x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求 (82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到 2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时, (82)y x x = -的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< < x ,求函数)23(4x x y -=的最大值。 解:∵230<-x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

均值不等式应用(技巧)

均值不等式应用(技巧) 一.均值不等式 1、(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2、 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3、若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或(当且仅当b a =时取“=”) 3、若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 4、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的与的最小值,当两个正数的与为定植时,可以求它们的积的最小值, 正所谓“积定与最小,与定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不就是常数,所以对42x -要进行拆、凑项,

相关文档
最新文档