均值不等式的4种变形及其应用yqh

均值不等式的4种变形及其应用yqh
均值不等式的4种变形及其应用yqh

均值不等式的四种变形及其应用

定理:如果,a b R ∈,那么22

2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如

一 第一种变式为2

2

2

2()()a b a b +≥+

它是怎样用定理“如果,a b R ∈,那么22

2a b ab +≥(当且仅当a b =取等号),”推导

出来的呢?只要在么222a b ab +≥的两边同时加上22

a b +可推出为2

2

2

2()()

a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。

例1设0,0a b >>,1a b +=≤

证明:2

2(2121)22(1)8a b a b ≤+++=?++=

≤ 例2设x,y 均为正数,10=-

y x 且,求证:x-2y 200

≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2

2

2

b a b a +≤+

y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=-Θ

移项得x-2y 200≤.

例3 若a,b,c +

∈R 且a+b+c=1,求证:21141414≤++++

+c b a .

证明:用三元均值不等式的变形公式)(3)(2

2

2

2

c b a c b a ++≤++

.21)141414(3)141414(2=+++++≤+++++c b a c b a

两边开方得出21141414≤++++

+c b a

例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++

+d c b a

证明: 用四个变量均值不等式的变形公式)(4)(2

2

2

2

2

d c b a d c b a +++≤+++

32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a .

两边开方得出所要证的结果.

二 笫二种变形2

2a a b b

≥-。 这个变形公式是如何证明的?用中文的数学语言如何表达?何时用这一变形公式? 只要在定理2

2

2a b ab +≥(当且仅当a b =取等号)的两边同除以b 再移项即可得

形2

2a a b b

≥-。叙述“成一个数的平方除以第二个数不小于第一个数的二倍减去第二个数”,证明分当式且分子是平方形式时,用此不等式来证明。

例1 若a,b 为正实数,求证b a a

b b a +≥+2

2. 证

1

2

2a a b b

≥-;又因为

2

2b b a a

≥-两式相加得

22

222()()a b a b a b a b a b a b b a

+≥+--=+-+=+ 柯西不等式 设),,3,2,1(,,n i R b a i i Λ=∈则有不等式∑∑∑===≤n

i i n i i

i n i i b a b a 1

21

22

1

))(()(成

立;当且仅当),,2,1(,n i ka b i i Λ==时等号成立.(证明从略)

证明2: (用柯西不等式)构造两组数:

.,;,

a b a b b

a 代入柯西不等式之中

[(

22222][

])()][()(

)a a

b b b

a a

b a

b b

a +

≥++两边同除以a b +推出

b a a

b b a +≥+2

2。 例2 :a,b,c 为正数,求证:.2

22c b a a

c c b b a ++≥++ 证明1:2222,

2,2a b c a b b c c a b c a ≥-≥-≥-以上三式相加得证:.222c b a a

c c b b a ++≥++ 证明2:用柯西不等式证明是很容易的.先构造两组数

a c

b a

c c

b b

a ,,;,

,

代入柯西不

等式之中222222)()]()()][()(

)(

)[(

c b a a c b a

c c

b b

a ++≥++++.

不等式之两边同除以(a+b+c)推出:.2

22c b a a

c c b b a ++≥++ 例6若i x 均为正数,n i ,,3,2,1Λ=求证:n n n n x x x x x x x x x x x +++≥++++-ΛΛ211

22132

2

22

1(1984

年省市自治区联合数学竞赛题)

证明1:222

12

12231231

2;2;;2n n x x x x x x x x x x x x ≥-≥-≥-L 以上n 个不等式边边相加得出

证:n n n n x x x x x x x x x x x +++≥++++-ΛΛ211

221

32

222

1。

证明2:(用柯西不等式法)构造两组数.,,,,;,

,,

1321

3

22

1x x x x x x x x x x n n ΛΛ代入

西

21

2

2

22

12

1

2

3

22

2

1)(])()()][()(

)(

)[(

∑=≥++++++n

i i n n x x x x x x x x x x ΛΛ

两边同除以∑=n

i i x 1

推出:n n x x x x x x x x x +++≥+++ΛΛ211232

2

221

用笫三种变形a b +≥

这个变形公式适用于“积定和最小” 的类型。公式如何证明?注意如何中文数学语言

叙述?何时用这一公式? 例7若正数,x y 满足21,x y +=求

11

x y

+的最小值? 解:

11x y +

= 222333x y x y y x x y x y +++=++≥+=+ 例8已知,x y R +

∈且280x y xy +-=求x y +的最小值? 解

280

x y xy +-=推导

(8)2y x x

-=,220,080,,88

x x

x y x y u x y x x x >>∴->=

=+=+--Q 2(216)1616(8)888

x x x x x x x x -+=+=+=-+

---

16(8)1010188x x -+

+≥=-。

例7' 已知5/4x <求函数1

4245

y x x =-+

-的最大值。 解:因为5/4x <所以450,540x x -<->数1

4245

y x x =-+

-= 1(54)323154x x --+

+≤-+=-当且仅当1

54154x x x

-=?=-时,上式等号成立 故当max 1,1x y ==。 例8求证:

)(21

22

2R x x x ∈≥++

分析: 把22

+x 拆成21

111

11112

22

22

≥++

+=+++?

++x x x x x ,当且仅当

1

1122+=

+x x 时等号成立, 此时0112

=?=+x x 取等号.

例8'求证:

24

52

2≥++x x (x R ∈)

分析: 把

5

2+x 拆

1

42++x 便于使用均值不等

式,

24

144

142

22

2≥++

+=+++x x x x 当且仅当

4

142

2+=

+x x 时, 即

31422-=?=+x x 时取等号,X R ∈是不可能的. 这是“误等”的一个陷井, 只有寻求

其它途径, 才能彻底激活这种类型的数学题.

从以上两例进行比较, 发现一个矛盾: 例8用均值不等式所得答案是正确的, 而例8'用均值不等式所得答案是错误的.

所谓比较数学就是将两道形式一样, 解题方法也类似的数学题进行比较而发现异同的数学. 比较数学在教学中应该有它的认识论, 激活论的重要作用.。 例8'的正确解法又怎样呢?

证法1:(利用函数的 递增性来证明)设

t x =+42

则t ≥2,y=t

t 1

2+取0)1)((1122

121121212221212>--=+-+=-?≥>t t t t t t t t t t y y t t 可见y=t t 1

2+在(),2(∞是增函数, 故当x=2时,y 有最小值5/2, 即y=

4

52

2++x x 的最小值是5/2.

证法2: 因为y=

4

144

52222++

+=++x x x x 又

242≥+x 可设

α

ααπ

αα2sin 2

tan 1tan )2

2(arctan ,,tan 42=

+

=?<

≤=+y x 因为 π

απ

<≤<22arctan 22

)

2arctan 2sin(2sin 0≤≤α即

0

5

22++x x 的最小值是5/2. 与证法1得出的是殊途

同归的结论.

例8''已知x>0,求证x

x 16

32-

-的最大值是238- 解法1:(均值不等式法)38)163(383162163,0-≤+-?=?≥+∴>x

x x x x x x Θ., 所以382)163(2-≤+

-x x ,即x

x 16

32--的最大值是382-,什么时候取最大值呢? 3x=

33431616==?x x 时, x

x 16

32--的最大值是238-。 例9求函数y=22

21

3x

x +

的最小值. 解:(用均值不等式)6232)21)(3(22132

2

22

==≥+

x x x x Θ当且仅当

4

226

1

213=?=

x x x 时,y 取得最小值6.

关于“积定和最小” 的类型, 我们出示3道习题让学生练习:①0x >求2

1

y x x =+的最小值(2

1)22x x y x x x =+

=++;②0x >求2

1y x x

=+的最小值;(2

2111)22y x x x x x

=+=++上两题关键在于拆项的技巧)③0,0a b >>求

22

2

2sin cos a b y x x

=+的

22

2222222222

csc sec (tan 1)(cot 1)sin cos a b y a x b x a x b x x x

=+=+=+++) 四 笫四种变形2

(

)2

a b ab +≤ 这个变形公式适用于“和定积最大” 的类型 例9求2

sin cos ,(0,

)2

y x x x π

=∈的最大值。

分析:231sin cos cos (1cos )(22cos ),(0,)

22

1cos 1cos 22cos 1()232

y x x x x x x x x x y π

==+-∈+++-≤=

虽然这种拆项能保证

“和”一定的条件,但是却出现了“误等”的错误,事实上cos 1cos 22cos x x x =+=- 同

时成立是不可能的。可见“误拆”与“误等”是一对“孪生兄弟”, 用“和定积最大” 的方法是如下的正确解法。

解:2242221

(0,),sin 0,cos 0,cos sin (2cos sin sin )22

x x x y x x x x x π

∈∴>>==Q 2242223314

cos sin (2cos sin sin )/3227

y x x x x x =≤++=

Q ,

推出22max 2cos sin tan 2y y x x x x ≤

==?=?=。 例9' 已知02x <<,求2

6(4)x x -的最值。

分析:若用下列方法作是错的,2

6(4)6(2)(2)3(2)(42)y x x x x x x x x =-=-+=+-.

3

(2)(42)3(2)(42)3(

)243

x x x x x x +++-+-≤=,为什么错呢? 这是“误等”的错误.

为了既不陷于“误等”的错误; 又不陷于“误正”的错误可用平方法. 解: 2

2

2

22

2

22

02,044,36(4)182((4)x x y x x x x <<∴<-<=-=?-Q 推出

2222

332(4)(4)82024

18[]18()333

x x x y +-+-≤==当且仅当

222

max max 102424(0,2),3x x x y y =-?=

==以上两题形式不同思想方法同 例10 已知0,0,x y >>且3412x y +=,求lg lg x y +的最大值及相应的,x y 的值。 解

0,0,3412

x y x y >>+=推出

2

1134(3)(4)()3lg lg lg lg312122

x y xy x y x y xy +=

≤=?+=≤,当且仅当 3462,3/2x y x y ==?==时等号成立,所以lg lg x y +取最大值为lg 3。

最后指出定理:如果,a b R ∈,那么2

2

2a b ab +≥(当且仅当a b =取等号)的应用 例11(2005年重庆理科5)若,x y 是正数,则2211

()()22x y y x

+

++的最小值是()

79

()3;();()4;().22

A B C D

解:2211()()22x y y x +

++2222222211114444x y x y x y x y y y x x x y x y

=+++++=+++++

又x y =

=2222111;1;244y x x y x y x y +≥=+≥=+≥当且仅当2

222

1414x y y x y x x y ?=??

?

=??

?=??

成立,即

2x y ==

时,,则2211

()()22x y y x

+

++的最小值是为4。 综上所述,用均值不等式求最值要有三个条件:“一正;二定;三相等” 即各项或各

因式非负;和或积为定值;当且仅当各项(或各因式)都能取相等值时,等号成立。与之相反的是存在三个陷井:“误正”、“误定”、“误等”。 除此之外还有两个陷井:“误拆”( 即错误的拆项)和“误传”( 即二次以上使用均值不等式时,错误地使等号传递)故使用均值不等式求最值时,首先分清是“积定和最小” 还是“和定积最大”? 其次再决定用哪一个变形公式;是三元还是二元的均值不等式,才能得出准确结果。

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

均值不等式的4种变形及应用yqh

均值不等式的四种变形及其应用 定理:如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如 一 第一种变式为2 2 2 2()()a b a b +≥+ 它是怎样用定理“如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号),”推导 出来的呢?只要在么222a b ab +≥的两边同时加上22 a b +可推出为2 2 2 2()() a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。 例1设0,0a b >>,1a b +=≤ 证明:2 2(2121)22(1)8a b a b ≤+++=?++= ≤ 例2设x,y 均为正数,10=- y x 且,求证:x-2y 200 ≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2 2 2 b a b a +≤+ y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=- 移项得x-2y 200≤. 例3 若a,b,c + ∈R 且a+b+c=1,求证:21141414≤++++ +c b a . 证明:用三元均值不等式的变形公式)(3)(2 2 2 2 c b a c b a ++≤++ .21)141414(3)141414(2=+++++≤+++++c b a c b a 两边开方得出21141414≤++++ +c b a 例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++ +d c b a 证明: 用四个变量均值不等式的变形公式)(4)(2 2 2 2 2 d c b a d c b a +++≤+++ 32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a . 两边开方得出所要证的结果.

均值不等式应用(技巧)

均值不等式应用(技巧) Wekede 整理 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2 b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

《基本不等式及其变形》导学案

第9课时基本不等式及其变形 1.熟悉基本不等式的变形;并会用基本不等式及其变形来解题. 2了解基本不等式的推广,并会应用. 上一课时我们共同学习了基本不等式的基本概念以及利用基本不等式求最值,并了解了一正二定三相等四最值这些过程.基本不等式是一种重要的数学工具,是集合、函数、不等式、三角函数、数列等知识的综合交汇点,地位重要,这一讲我们将共同探究基本不等式及其变形的应用. 问题1:常见的基本不等式的变形 (1)x+≥2(x>0),x+≤-2(x<0); (2)+≥2(a,b同号),+≤-2(a,b异号); (3)a+b≥2,()2ab; (4)ab≤,()2≤,当且仅当a=b时取等号. 问题2:基本不等式的推广 已知a,b是正数,则有 (调和平均数)≤(几何平均数)≤(算术平均数)≤(平方平均数),当且仅当a=b时取等号. 问题3:基本不等式的推广的推导 ∵a,b是正数,∴≤=, 而≤,又a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2,∴≤. 故≤≤≤.

问题4:若a,b,c∈R+,则≥,当且仅当a=b=c时等号成立,则关于n个正数a1,a2,a3,…,a n的基本不等式为:≥,当且仅当a1=a2=a3=…=a n时等号成立,其中叫作这n个数的,叫作这n个数的. 1.四个不相等的正数a,b,c,d成等差数列,则(). A.> B.< C.= D.≤ 2.已知a>1,b>1,且lg a+lg b=6,则lg a·lg b的最大值为(). A.6 B.9 C.12 D.18 3.已知a,b为正实数,如果ab=36,那么a+b的最小值为;如果a+b=18,那么ab的最大值为. 4.已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca. 利用基本不等式判断不等关系 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3;⑤+≥2. 基本不等式在证明题中的应用 已知a,b,c都是正数,求证:++≥a+b+c.

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R+,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R,那么a 2+b 2 ≥ (当且仅当a=b时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则 可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。 二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R ,那么a 2+b 2≥ (当且仅当a=b 时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。

二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y 1212211 )1(=-+≥-+++ +=a a a x a x a 当1 )1(+= +x a x a 即x=0时等号成立,1min =∴y 2、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用已知条件进行代换,变形之后再利用均值不等式进行求最值。 例:已知19 1,0,0=+>>b a b a 且 ,求b a +的最小值。 解法一:169210991=+≥+++=+b a a b b a 思路二:由19 1=+b a 变形可得,9,1,9)9)(1(>>∴=-- b a b a 然后将b a +变形。 解法二:16109210)9)(1(210)9()1(=+=+--≥+-+-=+b a b a b a 可以验证:两种解法的等号成立的条件均为12,4==b a 。 此类题型可扩展为: 设321a a a 、、均为正数,且m a a a =++321,求3 21111a a a S ++= 的最小值。 )111)((13 21321a a a a a a m S ++++= )]()()(3[1 3 22331132112a a a a a a a a a a a a m ++++++= m m 9 )2223(1=+++≥ ,等号成立的条件是321a a a ==。

均值不等式的总结与应用

均值不等式总结及应用 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 22b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若 * ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则 2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则 2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22 b a b a +≤ +(当且仅当b a =时取“=”) 说明: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 【解题技巧】 技巧一:凑项 例 已知5 4x <,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

相关文档
最新文档