配电网中谐波源定位方法综述

配电网中谐波源定位方法综述
配电网中谐波源定位方法综述

建筑节能检测方法综述

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的27.5%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架空地板)的

电力系统谐波的基本特性和测量,配网中的谐波源

电力系统谐波的基本特性和测量 谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。理论上看,非线性负荷是配电网谐波的主要产生因素。非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。 非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。 要治理谐波改善供电品质,需要了解谐波类型。谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。兼顾数理统计和数据压缩的需要,标准对测量时段以及通过测量值计算谐波值提出了建议。 国标GB/T 14549-1993采用观察期3s有效测量的各次谐波均方根值的95%概率作为评价谐波的标准。为简便实用,将实测值按由大到小的方式排序,在舍去前5%个大值后剩余的最大值,近似作为95%的概率值。 实际工作中,通常采用谐波测试仪来监测和分析谐波。一般来说,将用户接入公用电网的公共连接点作为谐波监测点,测量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波测量资

料。 相对单点的谐波测量而言,从区域或整个电网角度来看,谐波源的定位和确定谐波模型进而分析它是一个相对复杂的过程。谐波源定位,一般采用功率方向法和瞬时负荷参数分割法。而谐波模型分析的方法一般有三种:非线性时域仿真、非线性和线性频率分析。三种方法的相同点是对电网作适当的线性化处理,只是在处理非线性设备时采取了不同的模拟方式。 配网中的谐波源 严格意义上讲,电力网络的每个环节,包括发电、输电、配电、用电都可能产生谐波,其中产生谐波最多位于用电环节上。 发电机是由三相绕组组成的,理论上讲,发电机三相绕组必须完全对称,发电机内的铁心也必须完全均匀一致,才不致造成谐波的产生,但受工艺、环境以及制作技术等方面的限制,发电机总会产生少量的谐波。 输电和配电系统中存在大量的电力变压器。因变压器内铁心饱和,磁化曲线的非线特性以及额定工作磁密位于磁化曲线近饱和段上等诸多因素,致使磁化电流呈尖顶形,内含大量奇次谐波。变压器铁心饱和度越高,其工作点偏离线性就越远,产生的谐波电流就越大,严重时三次谐波电流可达额定电流的5%。 用电环节谐波源更多,晶闸管式整流设备、变频装置、充气电光源以及家用电器,都能产生一定量的谐波。

配电网故障定位现状及方法综述

配电网故障定位现状及方法综述 发表时间:2019-12-06T17:15:09.787Z 来源:《科技新时代》2019年10期作者:李家成何沁鸿 [导读] 配电网故障定位可大幅度减少故障排查的工作强度,从长远角度看,能有效提高配电网供电稳定性。 (国网湖北省电力有限公司钟祥市供电公司湖北钟祥 431900) 摘要:随着人们对配电网供电安全稳定性的不断提升,尽早发现配电网故障点就显得越来越重要。而电力系统配电网的故障精准定位问题一直没有得到很好地解决,对该问题的研究能够减少经济损失,保障人们的正常生活。因此,本文分析了现阶段常用的故障定位方法的优点和缺点以及各自的适用范围。 关键词:故障定位;优缺点;适用范围 引言:近年来,我国电网规模的不断扩大,配电网的线路结构也日益复杂,人们的生活越来越离不开电能的同时,用户对供电安全稳定的要求也不断提高。要提高供电稳定性首先要尽可能减少故障的发生情况;另一方面,在故障发生后要能迅速解决故障并重新供电。配电网故障定位可大幅度减少故障排查的工作强度,从长远角度看,能有效提高配电网供电稳定性。 常用的配电网故障定位方法及其优缺点 当前配电网故障定位方法主要有阻抗法、故障行波法、故障指示器法等。 1.阻抗法 阻抗法是根据发生故障的时间点所测得的对应电压和电流得出故障回路阻抗的方法,又因理想条件下,回路阻抗与距离大致呈正相关,由阻抗数值可定位故障发生点。阻抗法原理十分简单,但配电网线路很复杂,且受负荷影响较大。因此,故阻抗法不能直接的用于测距计算,在实际应用中常常用作估计大致故障点。 2.行波法 行波法一般可分为单端法、双端法。 (1)单端行波法 单端行波法是利用故障产生的暂态行波进行单端定位的方法。在线路发生故障时,故障点产生的暂态行波在故障点与母线之间来回反复,根据行波在测量点与故障点之间往返一次的时间和行波的波速即可求得故障点的距离。 单端行波法计算公式如下所示: l=(t1-t0)v/2 式中l为故障距离;L为线路全长;t0、t1分别为故障波头和反射波到达计算端母线的时间点;t2为另一边母线的反射波到达的时间点;v为行波的速度。该方法原理同样简单,但在实际工程中,由于故障点反射波、母线反射波难以识别,因此,单端行波法一般用作双端行波法的补充。 (2)双端行波法 双端行波法是利用在线路产生故障时,初始行波向线路两端的两个测量点发射到达的时间差计算故障点到两边分别的距离。计算公式如下: l1=L(t2-t1)v/2l2=L(t1-t2)v/2 式中:l1、l2分别为故障点到两端的距离;t1、t2分别为行波各自到达线路两端的时间,L为线路全长。双端行波测距由于是利用第一个行波波头,而不是故障点反射波、母线反射波,较易识别。因此,在实际应用中主要采用双端行波法测故障点的距离。(3)多端行波法 在双端行波故障定位原理的基础上,进一步提出了多端行波定位法。在现有的研究中,该方法主要有2种具体做法:一是将多个检测点处所采集的故障行波信息进行融合,以确定具体的线路分支在某一采集装置出现故障的时间,可以准确判断到故障分支,并且比较准确。但是在精准的同时该做法需对目标线路区段进行逐一排查,涉及过程复杂,消耗成本高,不能快速排查配电网故障。另一种是利用最先采集到故障行波信息的3个采集装置进行故障定位,然后将分支点位置同定位结果相比较,从而将伪故障点去除,该做法计算较小,实用性和快速性较高。但是,多端定位算法需要将行波采集装置安装在配电网每一个末端,因此在对复杂多分支的配电网进行故障定位时,需要巨额的投资和维护费用。 3.故障指示器法 整体而言,故障指示器在技术上已经较为成熟,结构简单,在国内电力系统已经获得广泛应用,便于大规模的推广应用。不过需要指出的是,与FTU类似,故障指示器的定位精度与配置密度相关,若为保证定位的精度,需要沿线逐点布设故障指示器,构建故障定位系统的成本仍然较高,因此,故障指示器适合于城市电网,不适合于长距离的农村电网故障定位。从实际运行经验看,故障指示器用于短路时定位效果较好,但用于单相接地故障时效果尚不理想。 4.结语: 本文介绍了国内外实际应用中常用的的配电网故障定位技术,有上述不难看出,不同的定位技术都有各自的优缺点及适用范围,为了缩短故障定位时间和容错性,可以尝试将多种算法共同运用到配电网故障定位中,作为检验。实际应用中应结合当地配电网的结构和已有条件综合多项指标选择最契合的定位方案。 参考文献: [1]刘健,毕鹏翔,杨文宇等.配电网理论及应用[M].北京:中国水利水电出版社,2007. [2]万家震,钱丹丹,金莉.配电网中重合器预分段器、熔断器的合理配置[J].吉林电力,2001(3):28~32 [3]孙波,孙同景,薛永端,等.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,32(3):52-55. [4]卢继平,黎颖,李健,等.行波法与阻抗法结合的综合单端故障测距新方法[J].电力系统自动化,2007,31(23):65-69. [5]杜红卫,孙雅明,刘弘靖等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,24(5):52-55.

电力系统谐波源定位方法述评

第25卷第3期 2006年7月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.25,No.3July 2006 收稿日期:2005 11 28 作者简介:徐志向(1980 ),男,浙江籍,硕士生,主攻电力系统谐波状态估计以及谐波源定位; 候世英(1962 ),女,重庆籍,副教授,主要从事谐波分析与仿真的研究;吕厚余(1947 ),男,重庆籍,教授,主要从事电能质量以及谐波监测的研究。 电力系统谐波源定位方法述评 徐志向1,2 ,侯世英1,2 ,吕厚余1,2 ,张 柯 1,2 (1 重庆大学电气工程学院,重庆400044; 2 重庆大学高电压与电工新技术教育部重点实验室,重庆400044) 摘要:研究谐波源的定位问题对于规模大、负荷复杂的实际电网有重要的意义。本文对现有的谐波源定位方法进行了分析和评述,并对谐波源定位研究的发展提出了看法。关键词:电力系统;谐波源定位;等效模型;谐波状态估计 中图分类号:TM711 文献标识码:A 文章编号:1003 3076(2006)03 0064 04 1 引言 随着电网中非线性负荷的不断增多,电力系统中的谐波污染问题变得日益严重,给电网的经济运行及用户的安全用电造成了极大的影响[1] 。为了及时解决电网中谐波治理课题,达到准确分清谐波责任,简单有效的治理目的,必须先明确电力系统中的谐波分布或谐波状态 [2] 。 分析谐波状态,首先要了解谐波源的位置。如果谐波源的位置已知,那么电网中的谐波分布就成为谐波的传播与扩散问题,也就是谐波潮流问题。以往的大多数文章集中在已知谐波源的情形下对谐波分布或补偿的研究 [3,4] 。但随着电网规模的增大, 实际系统中谐波源的位置存在不确定性,仍然用潮流方法来分析谐波的扩散与渗透,就会失去分析的主体。所以,在谐波源的位置未知的情况下,要对谐波影响进行分析,就需要对谐波源进行定位。 2 谐波源定位方法 谐波源定位可以分为两种情况 [5,6] 来解释,一种 是在PCC 点处把系统等效为两个部分,即供电侧U (utility)和用户侧C (customer),然后根据相应的等效电路模型,确定出是主谐波源的一侧,称之为基于等效电路模型的定位法[5] 。另一种就是对整个系统网络用谐波状态估计的方法,计算出系统各个节点的谐波电压以及支路的谐波电流,从而判断哪条支 路上含有谐波源[6] 。 多年来,对于基于等效电路模型定位法,基本结构都是单相模型,假设条件是系统运行在三相平衡的状态下;对于基于谐波状态估计的定位法来说,基本结构是单相模型;单频率非同步模型,量测量为有功功率P 、无功功率Q 、谐波电压V,假设条件是所有的电压、电流的频率固定,波形是理想正弦波;系统运行在三相平衡状态,系统网络是只有正序的三相对称系统 [7] 。 3 基于等效电路模型的定位法 [5] 系统的Norton(诺顿)等效电路模型如图1所示: 图1 Norton 等效电路Fig.1 Norton equivalent circuit 通过等效变换得到的Thevenin(戴维南)等效电 路模型如图2所示。 图中所示的PCC 点是公共电气耦合点。根据不同的定位依据[8] ,又可以分为功率定位法,阻抗定位法,灵敏度定位法。3 1 功率定位法( )有功功率定位法 有功功率定位法是工程上最常用的定位方法。

船舶电力系统中的谐波检测方法综述

船舶电力系统中的谐波检测方法综述 船舶电力系统是一个独立的、小型的完整电力系统,由于整流型,冲击性等非线性负荷的存在,所以对比陆地大电网,船舶电力系统有着更加严重的电能质量问题,而其中最主要的问题就是谐波,谐波会使船舶电网供电质量指标严重下降,同时使得电网各个部件运行情况恶化。所以如何更快速更准确的测量出系统中的谐波与简谐波,成为了全世界的焦点。文章主要介绍了目前流行的谐波检测方法,并详细论述了各种检测方法上的优势与不足,以便在检测过程中选择更加恰当的方法。 标签:船舶电力系统;谐波;检测方法 1 概述 船舶電力系统是一个独立的系统,随着电力技术的飞速发展以及科技的进步,船舶电力系统已经从早期的单一照明供电,逐渐发展成现代的船舶电力。然而,正是由于大量半导变流器的普遍投入使用,以及电力技术的应用,这使得船舶电力系统中的谐波污染日益严重[1]。 谐波会造成电动机的电机和变压器的附加损耗,并且产生噪声、过热现象、谐波过电压以及机械振动,甚至会损坏变压器与电机。同时谐波会引起,电流变化率电压变化率过高或产生过热效应,控制系统误差,会给换流装置带来影响、并且引起晶闸管故障[2]。高次谐波也会对线路以及通讯设备带来干扰,从而产生电力测量仪表中的误差。 而谐波问题涉及面很广,其中包括畸变波形、谐波抑制的分析方法、谐波潮流计算、电网谐波潮流计算、谐波测量、谐波源分析以及谐波限制标准等[2]。谐波检测是谐波问题的一个重要分支,也是研究谐波问题的基础与出发点。 2 基于傅里叶变换的谐波检测算法 虽然加窗插值法能够减小一定的误差,但为了检测出信号中所有的间谐波和谐波分量,窗宽在大多数情况下可能会高达几十个信号周期,并且容易受噪声干扰,这对实时检测是不利的。 3 基于小波变换的谐波检测方法 小波变换是将信号与一个时域和频域均具有局部化性质的平移伸缩小波基函数进行卷积,将信号分解成位于不同频带时段上的各个成分。小波变换是在工程应用中最重要的是最优小波选择,目前主要是通过小波分析处理信号的结果与结论的误差来判定小波的好坏,并由此选择小波基。 特殊地,取a0=2,b0=1,可以得到二进小波(Dyadic Wavelet),相应的变

故障定位文献综述-0606

铁路配电网络单相接地故障定位诊断研究 一、前言 当今,电气化铁路以其高速、重载、环保的优势受到世界各国的青睐。我国预计到2020年,铁路营业里程将达到12万km以上,其中电气化铁路比重将达到60%。可想而知,对电气化铁路的稳定可靠供电是多么重要,其中铁路配电网作为铁路电力系统的重要环节,负责对铁路车站及区间的信号、通信和其他重要负荷供电,其供电的可靠性直接关系列车的安全运营,对铁路系统至关重要。现如今高速度的电气化铁路机车功率高、行车密度大,给担负其供电任务的沿线电网带来了更高的要求,对应的配电网可靠性给出了更高的要求,于是以往电气化铁路配电网故障的人工定位更加跟不上发展的需求,快捷、智能、可靠的故障定位实现迫在眉睫。 二、铁路配电网络单相接地故障定位研究现状 铁路供电系统分为两部分:1.为提供铁路行车提供电源牵引供电系统;2.承担牵引供电以外的所有铁路负荷的供电任务,包括信号系统、生产、车站、供水系统以及生活等铁路用电负荷。我们把后一部分叫做铁路配电网,随着社会的进步、科技的腾飞,铁路技术进步以及铁路安全运输的需求,对高效、智能、可靠的铁路配电自动化呼声越来越高。而铁路配电网故障定位作为其中重要保证的一部分,势必提出了较地方配电网更高的要求。 针对于一般地方配电网络(6-35kV),即小电流接地系统,单相接地故障占主要部分[1],许多学者对其故障定位问题做了大量研究 ,主要可以概括为三类:一类是以在线路端点处测量故障距离为目的的故障测距法;一类是故障发生后通过向系统注入信号实现寻迹的信号注入法[2];还有一类是利用户外故障探测器检测的故障点前后故障信息的不同确定故障区段的户外故障点探测法;也有学者提出了基于地理信息系(GIS)的故障定位方法,其大多是针对单相接地故障的定位方法。[10-12]现在就原理及其对应的优缺点罗列如下: 1.阻抗法,其具有投资少的优点 ,但受路径阻抗、线路负荷和电源参数的影响较大,对于带有多分支的配电线路,阻抗法无法排除伪故障点,它只适合于结构比较简单的线路。 2.行波法,其由于配电网结构复杂,混合线路接头处,线路分支处和负荷处均为波阻抗不连续点,行波在波阻抗不连续点的折射和反射造成线路一端测得的行波波形将特别复杂,很难正确识别出故障点的反射波,使测距实现困难。 3.S注入法[3],其最大的优点在于其适合于线路上只安装2相电流互感器的系统。其缺点在于:注入信号的强度受 PT容量限制;接地电阻较大时线路上分布电容会对注入的信号分流,给选线和定点带来干扰;如果接地点存在间歇性电弧现象,注入的信

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生

物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。因此,水体中动植物油含量较高的,采用该方法较适合,可以得到比较准确的结果;工业废水、石油开采及炼制行业中含油量较高,此方

谐波源定位方法研究

谐波源定位方法研究 刘愈倬1,杨超颖1,王金浩1,李蒙赞1,任毅华2 (1.山西电力科学研究院,山西 30001;2.华北电力大学电气与电子工程学院,北京 102206)Research on Methods of Harmonic Sources Localization LIU Yu-zhuo1, Y ANG Chao-ying1, WANG Jin-hao1, LI Meng-zan1, REN Yi-hua2 (1.Shanxi Electric Power Research Institute, Shanxi 30001, China; 2.College of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China) Abstract: Methods of harmonic sources localization are summarized. Starting with the distribution of harmonic sources in distribution network, the existing methods of harmonic sources localization are divided into measures based on power direction and measures based on harmonic impedance. The former mainly includes active power direction method, reactive power direction method and the critical impedance method. The latter mainly consists of differential equations method and ratio method. The above methods are analyzed and reviewed and their respective advantages,shortcomings as well as applicability are also pointed out. Key words:power direction; harmonic impedance; harmonic sources localization; PCC (Point of Common Coupling) 摘要:对谐波源定位方法进行了总结。从实际配电网的谐波源分布情况入手,将现有的谐波源定位方法分为基于功率方向的方法和基于谐波阻抗的方法两大类。前者主要包括有功功率方向法、无功功率方向法和临界阻抗法等方法;后者主要包括微分方程法、比率法等方法。分析和评述了以上各种方法,并指出它们各自的优点、不足以及适用性。 关键词:功率方向;谐波阻抗;谐波源定位;公共连接点 0引言 随着整流装置、电弧炉、变频装置、电气化铁路等非线性负荷的大量接入,系统中电压、电流波形畸变造成的谐波污染问题日益严重,这给配电网的经济运行及用户的安全用电造成了极大的影响[1]。为了及时解决配电网中的谐波污染问题,达到分清谐波责任,简单有效的治理目的,正确识别综合负荷中的主要谐波源是至关重要的。 谐波源定位是通过测量某些点(如公共连接点)的电压、电流或功率值,在所测数据的基础上,采用相应的算法判定系统侧和用户侧谁是主要谐波源。若系统侧为主要谐波源,则对电压、电流畸变负主要责任;反之,则用户侧应承担主要责任。基于功率方向的方法简单直观、易于实现。然而,有功功率方向法[2]易受PCC两侧电压相角差δ的影响,不能正确判断主谐波源位置。无功功率方向法[3]和临界阻抗法[4]等方法易受谐波阻抗估计值的影响;基于谐波阻抗的方法[6-11]原理简单、清晰。然而,它的前提难以实现,因为谐波阻抗是在扰动情况下测量的,实际中的扰动具有随机性,很不稳定。本文对以上方法进行分析总结,希望能为促进谐波治理的快速发展提供参考。 1基于功率方向的方法 图1 谐波源等值模型 Fig.1 Equivalent model of harmonic source 1.1有功与无功功率方向法 有功功率方向法是传统的谐波源定位方法之一,若将系统侧到用户侧定义为正方向,由图1可得,公共连接点(PCC)的有功功率、无功功率分别为: c s c c s cos sin sin s h h h h c s c s E E Z Z P V I I I Z Z Z Z δδδ === ++ (1) (cos) s h s c c s E Q E E Z Z δ =- + (2) 其中, h P是h次谐波的有功功率, h Q是h次谐 波的无功功率, s E是系统侧等值谐波电压源, c E 是用户侧等值谐波电压源, h δ是h次谐波电压、谐波电流的相角差,δ是PCC两侧等值谐波电压源的相角差。 由式(1)可得:当0 > h P时,系统侧发出较多的谐波功率,则认为系统侧为主要谐波源;当0 < h P时,用户侧发出较多的谐波功率,则认为用户侧是主要谐波源。这种方法比较直观,曾为大家所普遍接受。然而文献[2]已证明了该方法的不合

配电网故障定位的方法

配电网故障定位的方法 快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。 配电网故障定位 快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。那么,如何对配电网进行快速,准确的故障定位呢? 一、配电网故障处理特点 配电网络馈线上一旦发生单相、相间、三相等短路时,设备上的F1U及时将故障信息卜传至主站系统。即变电站SCADAS系统,若变电站运行人员处理不了,再次将信息上传至上一级调度,经调度SCADAS系统分析进行定位、隔离、恢复。一般来说,配电网故障处理有以下几个特点: (1)配电网不仪有集中在变电站内的设备,而且还有分布于馈线沿线的设备,如柱上变压器、分段开关、联络开关等。信号的传输距离较远,采集相对比较困难,而且信号具有畸变的可能性,如继电器节点松动。开关检修过程中的试分/合操作及兀’U本身的误判断等都会干扰甚至淹没有用信号,导致采集到的信号产生畸变。 (2)配电网设备的操作频度及故障频度较高,因此运行方式具有多变性,相应的网络拓扑也具有自身的多变性。 (3)配电网的拓扑结构和开关设备性能的不同。对故障切除的方式也不同。如多分段干线式结构多采用不具有故障电流开段开关和联络线开关,故障由变电站的断路器统一切断,这种切除方式导致了停电范围的扩大。 配电网故障定化是配电网故障隔离、故障恢复的前提,它对于提高配电网的运行效率、改善供电质量、减小停电范围有着重要作用。 二、配电网故障定位的方法 1、短路故障定位技术方法 配电网系统中短路故障是指由于某种原因,引起系统中电流急剧增大、电压大幅下降等不利运行工况,同时该故障发生后会进一步引发配电网系统中变配电电气设备损坏的相与相、相对地间的大电流短接故障。按照短路发生部位,可以分为三相短路、两相短路、两相对地短路、以及单相对地短路故障。由于配电网发生短路故障后,其电流、电压等特征故障参量较为明显,故障定位技术方法的实现相对较为简单,工程中最常用的是“过电流法”。

电力系统谐波检测方法综述

综述 2019年第9期 1电力系统谐波检测方法综述 陈和洋1,3 吴文宣2 郑文迪1 晁武杰3 唐志军3 (1. 福州大学电气工程与自动化学院,福州 350108; 2. 国网福建省电力有限公司,福州 350003; 3. 国网福建省电力有限公司电力科学研究院,福州 350007) 摘要 电力系统谐波检测为谐波治理提供了方向,同时也是谐波监测系统的核心。本文首先 阐述了电力系统谐波的诸多危害;其次对一些传统检测方法和近期新方法展开讨论和分析,比如瞬时无功功率法、快速傅里叶变换法、小波变换法、希尔伯特-黄变换法等;最后阐述了将来谐波检测领域的发展趋势。 关键词:谐波检测;瞬时无功功率;快速傅里叶变换;小波变换;希尔伯特-黄变换;人工神 经网络;复合检测 Reviews of power system harmonic measurement methods Chen Heyang 1,3 Wu Wenxuan 2 Zheng Wendi 1 Chao Wujie 3 Tang Zhijun 3 (1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. State Grid Fujian Electric Power Co., Ltd, Fuzhou 350003; 3. Electric Power Reserch Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350007) Abstract Power system harmonic detection provides the direction for harmonic control and is also the core of the harmonic monitoring system. This paper first expounds the many hazards of power system harmonics, and then discusses and analyzes some traditional detection methods and recent new methods, such as: instantaneous reactive power method, fast Fourier transform method, wavelet transform method, Hilbert-Hang transformation method, etc., finally pointed out the future development trend and personal outlook in the field of harmonic detection. Keywords :harmonic detection; instantaneous reactive power; fast Fourier transform (FFT); wavelet transform; Hilbert-Huang transform (HHT); artificial neural network (ANN); composite detection 100多年来,随着电力系统的不断发展,以非化石能源为主的新一代电力系统格局已经产生,将来清洁能源和可再生能源将占有很大的比重。在此背景下,电力电子元器件的大量使用导致电力系统不可避免地受到谐波的污染。电力系统中的谐波分量过大将造成诸多危害:①使电能利用率降低,电力系统设备产生附加能耗,同时增加了电气应力,影响设备安全稳定运行[1];②大量分布式电源在公共连接点(point of common coupling, PCC )集中被 接入,可能放大电网的谐波振荡;③在柔性直流输 电运行过程中,直流场持续的谐波扰动可能引发一 系列不稳定现象,从而影响系统的安全稳定运行; ④谐波还可能使得保护误动作,测量装置产生误差,甚至可能会对通信线路产生干扰,影响通信效果。 针对谐波产生的种种危害,我国在20世纪90年代就已经开展了谐波治理的相关研究,并制定了《电能质量:公用电网谐波》(GB/T 14549—93)国家标准对公共电网谐波允许值进行了限制。此后对电力系统进行谐波治理,改善电能质量成为一项持续而长久的工作。有源电力滤波器(active power filter, APF )是一种能够动态抑制谐波、全面改善电能质量的电力电子装置,谐波电流的精确、实时检测直接影响其动态抑制的效果。 对谐波信号进行高精度、实时地检测是谐波治 福建省自然基金项目(2017J01480) 国网福建省电力有限公司科技项目(52130416001P )

电力系统故障定位原理综述概要

电力系统故障定位原理综述 郭俊宏1 , 谭伟璞1 , 杨以涵1 , 郭芳霞2 , 任杰 3 (1. 华北电力大学电气工程学院, 北京102206; 2. 山西运城供电公司生产技术部, 山西运城044000; 3. 聊城供电公司, 山东聊城252000 摘要:在电力系统中, 由于输配电网络结构不同, 在现有研究的基础上, , 并且对各种原理下的不同算法作出总结。。关键词:行波; 故障定位; 中图分类号:T A 文章编号:100324897(2006 0320076206 0引言 在电力系统运行中, 输配电线路担负着电能输 送分配的重任, 很容易发生故障, 而用人工查找故障点又非常困难。故障定位技术可以根据线路故障时的故障特征迅速准确地进行故障定位, 不仅有利于线路及时修复, 保证可靠供电, 大大减轻人工巡线的艰辛劳动, 而且对电力系统的安全稳定和经济运行都有十分重要的作用。由于高压输电线路和中低压配电网本身线路网络结构的不同, 所以, 适应于各自的故障定位方法也有所区别。本文分别就高压输电线路和中低压配电网的各种故障定位方法研究现状作出总结概括。

1高压输电线故障定位 高压输电线故障定位早有研究, 尤其是随着计算机技术的应用, 微机保护和故障录波装置的开发 及大量投运, 更加速了故障测距的实用化进程。基于微机或微处理装置的故障测距方法研究也早已成为国内外的热门课题之一。 输电线路故障定位按其工作原理分为阻抗法、行波法两种。1. 1阻抗法 阻抗法基本原理如下(图1 :在离母线M 处L 公里的F 点发生接地故障, 故障点的接地电阻为R f , 在母线M 处测得的电流和电压之间的关系为: U m =Z 1I m +R f I f (1 两侧故障电流之和: I f =I m +I n (2 M 端测量阻抗为

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/315841580.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

智能配电网故障定位研究

智能配电网故障定位研究摘要:我国电力行业快速发展,智能配电网因其具有互动性、可靠性以及优质性等多种优势,成为现代电网发展的主要方向,需要与时俱进研究有效的智能配电网故障定位与故障恢复方法。我国配电网主要采用的是小电流接地系统,本文针对其发生率最高的单相接地故障进行研究,提出故障检测定位方法。 关键词:智能配电网;故障定位;遗传算法 前言 如今,世界各国都在大力发展高效、环保的能源,分布式能源因此被大量接入到配电网中。另外,随着科技进步,用户的互动、需求侧管理等技术得到传播推广。智能配电网是智能电网重要部分,直接关系着智能电网的发展,在分布式能源大量接入和用户互动、需求侧管理技术的冲击下,对配电网结构、技术的更新发展提出新的要求,更是影响着整个智能电网的技术发展。为了应对时代的挑战,推动我国电力技术革命性地发展以及实现绿色能源经济的建设,必须深入研究发展智能配电网技术。近年来,我国电力用户平均停电时间与发达国家相比仍有较大差距,例如在2014年我国高达350分钟,而发达国家不到100分钟,而发生电力用户停电的主要原因是配电线路故障。由于配电网多存在与人口密集区域的原因,配电线路故障是严重的安全隐患,甚至导致死亡。为了保证社会生产和居民人身财产安全、避免损失,必须及时发现及处理配电线路故障。因此,思考研究配电网

故障实现快速定位的技术,具有深远的、重要的意义。随着科学技术的不断发展,智能电网中运用人工智能算法进行配电网故障定位,极大提高了定位效率。目前,应用较多有遗传算法、模糊理论、神经网络等等,每种算法都具有各自的优缺点。本文结合现有的智能算法经验,提出基于改进遗传算法的智能配电网故障定位算法,并通过仿真对其进行验证。 一、遗传算法概述 遗传算法是一种模拟生物进化过程搜索最优解的全局优化概率搜索计算模型,从代表问题参数的染色体开始,根据问题域中个体适应度来选择,最后借助遗传算子来组合交叉及变异,最终生成代表问题最优解的优化后染色体。遗传算法广泛应用在机器学习、模式识别等领域用。遗传算法具体的运算步骤如图1所示。 图1 遗传算法运算步骤 随着广泛应用中暴露的一些问题,以及对遗传算法研究的发展,

主动配电网运行方式及控制策略分析

主动配电网运行方式及控制策略分析 发表时间:2019-11-08T14:49:47.740Z 来源:《电力设备》2019年第13期作者:韩晓曦[导读] 摘要:分布式能源与新型负荷的逐步推广,深刻改变了电网的组成形式与运行方式,传统的配电网运行控制理论与技术不再完全适用。 (身份证号码:12010219850221XXXX 天津 300000) 摘要:分布式能源与新型负荷的逐步推广,深刻改变了电网的组成形式与运行方式,传统的配电网运行控制理论与技术不再完全适用。为适应新形势的发展,主动配电网加强了对电源侧、负荷侧和配电网的控制,强调对各种灵活性资源从被动处理到主动引导与主动利用。关键词:配电网;控制;分析本文从主动配电网的组成特点出发,结合主动配电网的运行方式分析和控制方式选择,梳理主动配电网的控制方法和手段,提出源网荷互动全局控制中心的功能设计,提出针对配电网运行数据、营销数据及电网外部数据的的数据中心支撑方案,从而支持多种形式能源接入的监视控制与双向互动,支持海量数据的处理与分析决策能力。全局控制中心主要包含全局协调优化、区域协调优化、分布式控制等内容,强调对配网运行的主动控制。通过运维支持服务、协同优 化控制、综合服务等实现全局协调优化功能,通过用能能量管理、电动汽车充电管理、储能管理、分布式能源管理等实现区域协调优化,通过储能、电动汽车、分布式能源等灵活性资源实现分布式就地控制。 1 主动配电网运行控制框架 1.1 主动配电网形态主动配电网重点关注能源生产的配给和综合利用,将其基础框架按照能源生产与消费层、能源传输层、能源管理大数据平台和能源管理应用层四个层面进行考虑。(1)能源生产与消费层为充电汽车、分布式发电、储能设备和“冷、热、电”联产构成的主动配电网能量流层,该层中的用户可是能源的生产者,也是能源的消费者,负荷具备柔性的调节能力。(2)能源传输层为主动配电系统的配电网络,具有拓扑结构灵活,潮流可控、设备利用率高等特点。(3)大数据平台使适应主动配电网特点的服务平台层,包括云平台、大数据处理技术和智能电网服务总线,支持能源生产、传输、消费等全过程的数据存储、分析、挖掘和管理。(4)能源管理应用层要求实现主动配电网各种运行与控制功能,主要有电网运行态势感知、全电压等级无功电压控制、自适应综合能源优化、分布式发电预测、馈线负荷预报、故障诊断隔离与恢复、合环冲击电流在线评估与调控、风险评估与状态检修等,同时是为能源全寿命周期提供优化控制决策和服务的集成调控—运检—营销于一体的智能决策支持系统。 1.2 控制方式选择系统控制方式对系统控制资源有着重要的影响,对系统运行的水平和可靠性起着决定性的作用。主动配电网目前的主要控制方式包括集中式、分散式、分层式等类型。其中,集中式控制利用传感器将网络潮流信息或设备状态数据上传至能源管理系统,能源管理系统利用分层分布协调控单元对分布式电源、开关等设备发布控制指令、管理电网运行。分散式控制通过分层分布式控制单元和本地协调控制器进行协调控制,其中分层分布式控制单元负责区域协调控制,本地协调控制器对本地设备状态信息进行采集,并及时给出控制命令。分层式控制融合了前述两种控制思想,通过部署顶层能源管理系统、中间层分层分布式控制单元和底层本地协调控制器等多层次控制器,进行协同工作,提高配电网管控效率。 1.3 运行控制架构 1.3.1 传统配电网运行控制架构传统配电网是电力系统向用户供电的最后一个环节,一般指从输电网接受电能,再分配给终端用户的电网。配电网一般由配电线路、配电变压器、断路器、负荷开关等配电设备,以及相关辅助设备组成。传统配电网供能模式简单,直接从高压输电网或降压后将电能送到用户。传统配电网中能源生产环节为集中式发电模式,能源传输环节为发输配的能量单向流动,能源消费环节为电网至用户的单向供需关系。 传统配电网运行控制完成变电、配电到用电过程的监视、控制和管理,一般包括应用功能、支撑平台、终端设备三个部分。应用功能一般包含运行控制自动化和用电管理自动化两块内容,实现对配电网的实时和准实时的运行监视与控制。支撑平台为各种配电网自动化及保护控制应用提供统一的支撑。终端设备采集、监测配电网各种实时、准实时信息,对配电一次设备进行调节控制,是配电网运行控制的基本执行单元。应用功能通过运行控制自动化和用电管理自动化完成配电网的运营管理。运行控制自动化主要包括配电SCADA、设备保护、停电管理、电网分析计算、负荷预测、电网控制、电能质量管理、网络重构、生产管理等功能。用电管理自动化监视用户电力负荷情况,涉及用电分析、用电监测、用电管理等环节。支持平台完成包括配电量测、用电量测、图形管理等功能数据的采集、分析、存储等,为系统运行提供数据支撑。终端应用包括电网侧和用户侧两个方面。在电网侧,通过包括RTU、传感测量设备、故障检测装置、馈线控制器等在内的二次设备对并联电抗器、开关/断路器等一次设备进行监察、测量、控制、保护和调节。在用户侧,通过电表等传感测量设备对用户的进行用电计量。 1.3.2 主动配电网运行控制架构与传统配电网运行控制相比,主动配电网运行控制形态考虑全局的优化控制目标,预先分析目标偏离的可能性,并拟定和采取预防性措施实现目标,同时通过互动服务满足用户用能的多样化需求。应用功能方面,通过互动控制模式实现配网系统的统筹优化控制,同时通过互动服务满足用户的多样化用能需求。数据平台方面,构建全网统一模型对所采集全网的各类数据进行数据整合、存储、计算、分析,服务,满足按需调用服务、公共计算服务要求。终端设备方面,充分利用就地控制响应速度快的优势,对配电节点的分布式能源和可控负载协调控制。结束语:

相关文档
最新文档