导管架平台动力性能及安全性分析

导管架平台动力性能及安全性分析
导管架平台动力性能及安全性分析

导管架平台动力性能及安全性分析

作为常见的海上结构,导管架平台在完成钻井、采油、储油等作业的同时,由于长期暴露在海洋环境当中,会受到恶劣的天气环境以及其他诸多复杂因素的影响,有时还会受到爆炸、撞击等偶然载荷的作用,因此平台倒塌事故时有发生,这不仅造成了严重的环境污染,同时也带来了巨大的经济损失。为保证结构在恶劣环境下的抗倒塌能力,延长结构的服役期,有必要从整体结构层面出发,研究平台结构的整体安全性能。

目前导管架平台的整体安全水平研究主要围绕在静力载荷作用分析的阶段,由动力载荷造成的整体倒塌以及所体现的安全储备方面研究较少。同时,对于导管架的倒塌过程,很少进行结构内部杆件的屈服过程与塑性发展特性相关探讨。

本文针对以上几个问题展开了相关研究:探究了非线性方法在有限元分析中的实施手段。对于常见的倒塌分析,一般要求考虑材料、几何非线性,从而能够模拟更为反映实际情况的倒塌过程,因此有必要深入了解非线性在结构分析中的实施过程与分析手段。

将推导二维梁单元的几何、材料非线性有限元模型,结合Newton-Raphson

方法编制程序,研究非线性在结构分析中对计算结果产生的影响。研究了导管架平台的静力倒塌安全性。

采用某冰工况下的环境要素,以及基于提高重现期的载荷增量方法,对平台进行了Pushover分析,得到了不同方向的结构承载力与杆件塑性发展过程,进而根据其储备强度(RSR)探讨了结构整体安全性能;编制了逐步回归响应面程序,该方法不需提前给出功能函数,且计算效率较高。然后,计算了结构的整体可靠度,并通过给定拟合方程的JC法验证了程序的可靠性。

研究表明,尽管两类指标的研究侧重点不同,但两类指标均能很好地对结构的安全性进行描述。在地震作用下,对导管架平台进行了动力性能研究。

选择了26条具备不同频谱特性的三向地震记录,采用IDA方法对结构进行了动力增量分析,在分析中记录不同地震波作用下结构全过程响应信息与杆件状态信息,以及塑性点、倒塌点对应的载荷水平。探讨了结构的位移、层间角等动力参数的发展规律,发现结构在不同地震波下的动力参数发展特性并不一致且差别较大。

然后对结构的塑性发展过程进行了研究,提出了基于塑性发展影响系数的最易出现失效模式。该方法获取的失效模式与所有真实倒塌失效模式均较为接近且相似度离散性较小,具有统计意义。

对平台结构的动力倒塌失效特性进行了研究。首先,对相关倒塌参数进行总结,通过变形能、位移响应、基底剪力等特征参数对海洋平台结构的抗倒塌能力与安全储备进行分析,进而,从频谱特性的角度探讨了结构的倒塌极限状态动力特性,以及不同频谱特性与倒塌相关参数之间的联系。

研究发现:针对地震这类动力特性较为强烈的载荷形式,平台结构的承载能力与变形能力同时保证了结构的整体安全储备,不同地震作用下的结构倒塌承载力相近,结构的失效模式为动力强度破坏。从频谱特性的角度来看,当载荷水平较低时,结构响应频率在主振动区成分最高。

随着载荷水平的提高,结构受迫振动增强,共振效应比重降低。地震频谱特性中共振频率附近一定范围内频谱成分较大时,会对结构产生不利的影响。

导管架海洋平台系统可靠性分析

大连理工大学 硕士学位论文 导管架海洋平台系统可靠性分析 姓名:杜超 申请学位级别:硕士 专业:防灾减灾工程及防护工程 指导教师:李昕 20060616

大连理工大学硕士学位论文 1绪论 1.1前言 1.1.1海洋平台的发展概况 随着社会的快速发展,人类对能源的需求也越来越大。石油是当今世界最主要的能源,人类对石油的开发已经从昔日的陆地逐渐向海洋进军。占地球面积71%的海洋,蕴藏着丰富的生物资源和矿物资源【1]。海洋石油开发具有投资高、风险大、高新技术密集等特点,即便如此,面对及其丰富的海洋资源,各国都加紧了海洋高新技术的开发。使海洋环境探测、海洋资源调查、海洋油气开发、海洋深潜和海生物技术等成为世界高技术竞争的热点。 海洋平台是一种海洋工程结构物,它为开发和利用海洋资源提供了海上作业与生活的场所。随着海洋开发事业的迅速发展,海洋平台得到了广泛的应用,如海底石油和天然气的勘探与开发、海底管线铺设、建造海上机场及海上工厂等。目前应用海洋平台最为广泛的领域当属海上油气资源的勘探与开发。海洋平台的建造历史可以追溯到1887年在美国加利福尼亚所建造的第一座用于钻探海底石油的木质平台;1947年墨西哥collissana海域建造了第一座钢质海洋石油开采平台,开创了海洋开发的新篇章[21。 图ltl几种典型海洋平台示意图 Fig.1.1SeVeral¨ndoftypicaloceallpIa饰ms

导管架海洋平台系统可靠性分析 按结构型式及其特点来划分,海洋平台大致分为固定式平台、移动式平台和顺应式平台等三大类【26】,如图1.1所示。水深在5—200米范围内,导管架平台是应用最多的一种平台形式,约占90%以上。“导管架”【8】的取名基于管架的各条腿柱作为管桩的导管这一实际。固定式钢质导管架海洋平台主要由两部分组成p刀】:一部分是由导管架腿柱和连接腿柱的纵横杆系所构成的空间构架。腿柱(导管)是中空的,钢管桩是一根细长的焊接圆管,它通过打桩的方法固定于海底,由若干根单桩组成的群桩基础把整个平台牢牢地固定于海床。腿柱和桩共同作用构成了用来支撑上部设施与设备的支撑构件;另一部分由甲板及其上面的设施与设备构成,是收集和处理油气、生活及其它用途的场所。如图1.2所示,就是典型的寻管架式海洋平台结构。 图1.2东海油田导管架海洋平台示意图 Fig.I.2ThejacketpIatfomlinE越tChinasea 1.1.2我国海洋平台的发展状况 我国有1sooo多公里的海岸线,6500多个海岛。在近300万平方公里的海域内,大陆架海区含油气盆地面积近70万平方公里,预测石油资源储量为275.3亿吨,天然气储量为lO.6万亿立方米。目前已探明在渤海、黄海、东海、南海等海域均有分布,且储量丰富[5】。我国从六十年代中期开始建造石油平台,于1966年依靠自己的技术力量在渤海海域成功的安装了第一座导管架式海洋平台。近年来,我国的平台设计、制造、安装都得到了突飞猛进的发展,在各海域陆续建造了近百座海洋平台。其中,我国“十五”重

数据库安全设计与分析

井冈山大学 《网络安全课程设计报告》 选题名称数据库的安全与分析 学院电子与信息工程 专业网络工程 班级网络工程13本(1) 姓名何依 学号130913029 日期2016.10.08

目录 一、背景与目的 (3) 二、实施方案概要 (3) 1、用户权限 (3) 2、访问权限 (3) 3、再次校对 (4) 4、登录 (4) 三、技术与理论 (4) 1、三层式数据访问机制 (4) 2、数据加密处理机制 (4) 3、数据库系统的安全策略: (5) 四、课程设计实施 (6) 1、第一步 (6) 2、第二步 (8) 3、第三步 (9) 4、第四步 (10) 5、第五步 (11) 五、课程设计结果分析 (11) 六、总结 (12)

一、背景与目的 无论是从十大酒店泄露大量开房信息,到工商银行的快捷支付漏洞导致用户存款消失,这一种种触目惊心的事件表明数据库的安全性能对于整个社会来说是十分重要的,数据库安全是对顾客的权益的安全保障,也是国家、企业以及更多的人的安全保障,从而数据库的安全性非常值得重视。 对于数据库的安全我将进行以下分析,旨在了解更多的数据库安全技术和对常见的数据库攻击的一些防范措施,并借鉴到今后的实际开发项目中去,更好的保护客户的权益。 二、实施方案概要 本次的数据库主要基于我们比较熟悉的SQLSever进行。 为了保障用户的数据的存储安全,保障数据的访问安全,我们应该对拘束看的用户采取监控的机制,分布式的处理各种应用类型的数据即采取三层式数据库连接的机制。 1、用户权限 当一个数据库被建立后,它将被指定给一个所有者,即运行建立数据库语句的用户。通常,只有所有者(或者超级用户)才能对该数据库中的对象进行任何操作,为了能让其它用户使用该数据库,需要进行权限设置。应用程序不能使用所有者或者超级用户的账号来连接到数据库,因为这些用户可以执行任何查询,例如,修改数据结构(如删除表格)或者删除所有的内容,一旦发生黑客事件数据库的安全将会岌岌可危。 2、访问权限 可以为应用程序不同的部分建立不同的数据库账号,使得它们职能对数据库对象行使非常有限的权限。对这些账号应该只赋予最需要的权限,同时应该防止相同的用户能够在不同的使用情况与数据库进行交流。这也就是说,如果某一个入侵者利用这些账号中的某一个获得了访问数据库的权限,他们也仅仅能够影响

核电站安全性分析报告

核电站安全性分析姓名:X X X 学号:0 9 X X X X X X 专业:核工程与核技术 学院:核工程与地球物理学院 指导老师:X X

2012 年06月10 日 核电站安全性分析 东华理工大学核工系XXX 摘要:能源是社会和经济发展的基础,是人类生活和生产的要素。随着社会的发展,能源的需求也在不断扩大。从能源的供应结构来看,目前世界上消耗的能源主要来自煤、石油、天然气三大资源,这三种能源不仅利用率低,而且对生态环境造成严重污染。为了缓解能源矛盾,除了应积极开发太阳能、风能、潮汐能以及生物质能等再生资源外,核能是被公认的唯一实现的可大规模替代常规能源的即清洁又经济的现代能源。核能不仅单位能量大,而且资源丰富。地球蕴藏的铀矿和钍矿资源相当于有机燃料的几十倍。如果进一步实现控核聚变,并在海水中提取氚加以利用,就会从根本上解决能源供应矛盾。然而随着一系列的核事故的发生,核能的安全性再一步受到人们的质疑,本文简要回顾核电的发展,并对其安全性做了分析,指出核电是一种安全的能源。

关键词:能源核电安全 Nuclear power plant safety analysis East China University of Technology Nuclear Engineering XXX Abstract: Energy is the basis of the social and economic development, the elements of human life and production. With the social development, energy demand is also expanding. From the structure of energy supply, energy consumption in the world from the three resources of coal, oil, natural gas, three energy is not only a low utilization rate, and cause serious pollution to the ecological environment. In order to alleviate the energy contradictions, should actively develop solar, wind, tidal energy and biomass energy renewable resources, nuclear energy is recognized only can achieve large-scale alternative to conventional energy, clean and modern energy economy. Nuclear power units of energy, but also rich in natural resources. Global reserves of uranium and thorium mineral resources is equivalent to several times of the organic fuel. Further to achieve controlled nuclear fusion, and be used to extract tritium in seawater, will fundamentally solve the contradictions among the energy supply. However, with a series of nuclear accidents, the safety of nuclear energy and then step been questioned, briefly reviewed the development of nuclear power, and its

海洋钻井平台的分类

海洋钻井平台的分类 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动式平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台(2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台 坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平

坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台 自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位。1953年美国建成第一座自升式平台,这种平台对水深适应性强,工作稳定性良好,发展较快,约占移动式钻井装置总数的1/2。 钻井船

数据库的安全性实验报告

西安邮电大学 (计算机学院) 课内实验报告 实验:数据库的安全性实验 课程:数据库原理及应用B 班级:网络1203 学号: 学生姓名: 任课教师:孟彩霞

一、实验目的 (1)理解SQL Server验证用户身份的过程,掌握设置身份验证模式的方法(2)理解登录帐号的概念,掌握混合认证模式下登录帐号的建立与取消方法 (3)掌握混合认证模式下数据库用户的建立与取消方法 (4)掌握数据库用户权限的设置方法 (5)理解角色的概念,掌握管理角色技术 二、实验内容 (1)在企业管理器中打开“SQL Server属性(配置)”对话框,设置身份验证模式为“SQL Server”和“Windows”模式(即混合模式)。 (2)创建、管理数据库服务器的登录账号。 (3)创建、管理数据库用户。 (4)管理用户权限。 (5)创建、管理数据库角色。 三、实验环境 Windows7 SQL SERVER 2012 四、实验前准备 课本 上机使用代码 五、实验步骤 1.在企业管理器中打开“SQL Server属性(配置)”对话框,设置身份验证模式为“SQL Server”和“Windows”模式(即混合模式)。 2.创建、管理数据库服务器的登录账号。用T-SQL语句创建、查看、删除登录账号。 创建一个名为Student、密码为111、使用的默认数据库为JWGL的登录账号。 EXEC sp_addlogin ‘student’,’111’,’JWGL’查看登录账号EXEC sp_helplogins 删除登录账号为EXEC sp_droplogins ‘student’ 3.创建、管理数据库用户。 用T-SQL语句创建、查看、删除数据库用户。 为数据库JWGL创建一个用户user1,该用户登录SQL Server服务器的账号为wang,登录密码为secret,相应的程序代码为: EXEC sp_addlogin ‘wang’, ‘secret’, ‘JWGL’ GO EXEC sp_grantdbaccess ‘wang’, ‘user1’查看数据库用户为EXEC sp_helpuser 删除数据库中的“wang”用户为EXEC sp_revokedbaccess ‘wang’ 4.管理用户权限。 使用T-SQL语句完成第3章习题12中(1)~(3)的用户管理和用户权限管理。企业管理器: (1)允许用户李明对Orders表进行插入、删除操作。 GRANT INSERT ,DELETE ON Orders TO ‘李明’

反应堆安全分析整理资料

核反应堆安全分析 英文缩写 ABWR Advanced Boiling Water Reactor 先进沸水堆 APWR Advanced Pressurized Water Reactor 先进压水堆 AP Advanced Passive Plant 先进非能动厂 ADS Accelerator driven system 加速器驱动机构 AFP Auxiliary Feed-water Pump 辅助给水泵 ASME American Society of Mechanical Engineers 美国机械工程师协会ASCOT assessment of safety culture organizational teams 安全文化组织机构评价ATWS Anticipated Transient Without Screen 未能停堆的预期瞬态ANSI American National Standards Institute 美国标准协会 ALARA as low as reasonably achievable 合理可行尽量低原则BWR boiling water reactor 沸水堆 BDBA Beyond Design Basic Accident 超设计基准事故 BOL Beginning Of Life 寿期初 CEFR China Experimental Fast Reactor 中国实验快堆 CSS Containment Spray System 安全壳喷淋系统 CVCS Chemical and Volume Control System 化学容积控制系统CNNC china national nuclear corporation 中国核工业集团CSRDM Control and Safety Rod Drive Mechanism 控制棒安全棒驱动机构CHF Critical Heat Flux 临界热流密度

导管架平台动力性能及安全性分析

导管架平台动力性能及安全性分析 作为常见的海上结构,导管架平台在完成钻井、采油、储油等作业的同时,由于长期暴露在海洋环境当中,会受到恶劣的天气环境以及其他诸多复杂因素的影响,有时还会受到爆炸、撞击等偶然载荷的作用,因此平台倒塌事故时有发生,这不仅造成了严重的环境污染,同时也带来了巨大的经济损失。为保证结构在恶劣环境下的抗倒塌能力,延长结构的服役期,有必要从整体结构层面出发,研究平台结构的整体安全性能。 目前导管架平台的整体安全水平研究主要围绕在静力载荷作用分析的阶段,由动力载荷造成的整体倒塌以及所体现的安全储备方面研究较少。同时,对于导管架的倒塌过程,很少进行结构内部杆件的屈服过程与塑性发展特性相关探讨。 本文针对以上几个问题展开了相关研究:探究了非线性方法在有限元分析中的实施手段。对于常见的倒塌分析,一般要求考虑材料、几何非线性,从而能够模拟更为反映实际情况的倒塌过程,因此有必要深入了解非线性在结构分析中的实施过程与分析手段。 将推导二维梁单元的几何、材料非线性有限元模型,结合Newton-Raphson 方法编制程序,研究非线性在结构分析中对计算结果产生的影响。研究了导管架平台的静力倒塌安全性。 采用某冰工况下的环境要素,以及基于提高重现期的载荷增量方法,对平台进行了Pushover分析,得到了不同方向的结构承载力与杆件塑性发展过程,进而根据其储备强度(RSR)探讨了结构整体安全性能;编制了逐步回归响应面程序,该方法不需提前给出功能函数,且计算效率较高。然后,计算了结构的整体可靠度,并通过给定拟合方程的JC法验证了程序的可靠性。

研究表明,尽管两类指标的研究侧重点不同,但两类指标均能很好地对结构的安全性进行描述。在地震作用下,对导管架平台进行了动力性能研究。 选择了26条具备不同频谱特性的三向地震记录,采用IDA方法对结构进行了动力增量分析,在分析中记录不同地震波作用下结构全过程响应信息与杆件状态信息,以及塑性点、倒塌点对应的载荷水平。探讨了结构的位移、层间角等动力参数的发展规律,发现结构在不同地震波下的动力参数发展特性并不一致且差别较大。 然后对结构的塑性发展过程进行了研究,提出了基于塑性发展影响系数的最易出现失效模式。该方法获取的失效模式与所有真实倒塌失效模式均较为接近且相似度离散性较小,具有统计意义。 对平台结构的动力倒塌失效特性进行了研究。首先,对相关倒塌参数进行总结,通过变形能、位移响应、基底剪力等特征参数对海洋平台结构的抗倒塌能力与安全储备进行分析,进而,从频谱特性的角度探讨了结构的倒塌极限状态动力特性,以及不同频谱特性与倒塌相关参数之间的联系。 研究发现:针对地震这类动力特性较为强烈的载荷形式,平台结构的承载能力与变形能力同时保证了结构的整体安全储备,不同地震作用下的结构倒塌承载力相近,结构的失效模式为动力强度破坏。从频谱特性的角度来看,当载荷水平较低时,结构响应频率在主振动区成分最高。 随着载荷水平的提高,结构受迫振动增强,共振效应比重降低。地震频谱特性中共振频率附近一定范围内频谱成分较大时,会对结构产生不利的影响。

[安全管理,数据库,计算机]计算机数据库安全管理分析与研究

计算机数据库安全管理分析与研究 摘要:现阶段我国计算机数据库和网络信息技术迎来蓬勃发展趋势,可关于数据库被非法侵入以及内部关键性数据丢失问题依旧未能根除,直接限制今后大规模网络信息系统建设进度。在此类背景下,笔者决定针对目前我国网络环境中数据库面临的一切安全威胁,加以客观论证,同时结合最新技术手段和实践经验制定妥善的数据库安全维护方案,最终开拓电子商务业务的企业获得长效发展机遇,真正为我国综合竞争实力绽放,提供保障。 关键词:计算机数据库安全管理指令内容验证解析 前言:计算机数据库内部储存大量信息,依照不同路径将挖掘的信息,直接传递给指令发送终端,该类系统独立性显著,并且和其余结构单元有着本质性差异。事实上,大多数企业和电子空间,都开始将自身核心业务转移到网络数据库之中,使得地理过于分散的厂商和公司之间的数据收集、存储、传播模式,顺利地朝着分布式、开放式过渡转化,不过涉及当中的系统介入和数据盗用等安全性问题却是始终延续。这就需要相关技术人员在完整论述计算机数据库面临的威胁因素基础上,主动透过计算机操作系统、数据库注入防护等层面,进行灵活地调试方案规划整理,进一步为日后计算机数据库安全管理绩效绽放,奠定基础。 一、关于计算机数据库安全管理的必要性论述 1.计算机数据库模型的科学组建 计算机数据库运作的核心便是后台数据库,其一切访问操作功能都将交由前台程序提供支持,尤其是在网络空间之下,数据库为关键性信息共享应用提供最小冗余度和访问控制条件,尽量保证终端最终接收过程中不会产生丢失迹象。关于这部分模型具体可划分出三个层次,包括数据库、应用服务器和浏览器等。当中浏览器作为第一层客户端,更加方便用户随时输入信息,此时代码快速转化为网页并提供交互功能,将操作主体一切请求处理完毕。位于二层的应用服务器则是扮演后台角色,利用对应的进程予以开启,保证快速响应不同请求,顺势生成必要性代码处理相关结果,如若说数据存取正好落在客户端请求范畴之中,数据库服务器则必须联合二层结构单元,进行特定请求回应。而最终层数据库服务器,则针对内部关键性数据提供严格的保护管制,对于不同类型的应用服务器当下发出请求加以轻松协调。 2.计算机数据库安全性的系统化论证 针对计算机数据库安全性加以细致验证解析。这是信息管理系统的核心任务,任何细节处理不当,都会直接限制最终数据安全管制实效,毕竟大部分关键性数据都是在数据库服务器之上捆绑,包括财务、工程技术、战略性决策数据等,都是归属于机密信息范畴内部的,杜绝一切非法访问操作行为。再就是企业内部资源规划、对外交易、日常业务的交接等,也都深刻依靠网络数据库过渡转接,所以说这部分数据的安全管理,也是十分重要的。 二、针对计算机数据库加以科学安全管理的策略内容解析 1.树立全新的计算机信息安全管理理念

海洋石油平台种类

海洋石油平台种类 海洋平台是在海洋上进行作业,石油钻探与生产所需的平台,主要分钻井平台和生产平台两大类。在钻井平台上设钻井设备,在生产平台上设采油设备。平台与海底井口有立管相通。 呵呵,石油钻探就是民用啦,当然也可理解为战略物资储备。但多才的美军把雷达也放到半潜式平台上了。 咱们先把军用的放在一边,海洋平台就是石油开采业向水下进军的一个产物。最原始的海洋平台甚至不能称为海洋平台,而是湖泊平台(1891年,圣玛丽湖,俄亥俄州),结构为木质,作业水深甚至仅有1.5m。说白了,就是给陆上井架加了一层台阶。既然能在湖边,也能在海边嘛,到现在海洋平台已经发展成为高附加值、高科技的工业设施。形式多种多样,且几乎每种新型的平台形式出现都是为了再更深的海区中作业。 最早出现的平台是导管架平台(Jacket),适用于浅近海。导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。钢桩穿过导管打入海底,并由若干根导管组合成导管架。导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。平台设于导管架的顶部,高于作业区的波高,具体高度须视当地的海况而定,一般大约高出4-5m,这样可避免波浪的冲击。导管架平台的整体结构刚性大,适用于各种土质,是目前最主要的固定式平台。但其尺度、重量随水深增加而急骤增加,所以在深水中的经济性较差。

导管架平台使用水深一般小于300m,世界上大于300m水深的导管架平台仅7座。目前最大的导管架平台是在墨西哥湾安装的水深为610m的导管架平台。呵呵,看到下图,你是不是就想到一个字,“笨”? 典型导管架平台

海洋钻井平台扫盲

巨型海洋钻井平台 ——世界第六代3000米深水半潜式钻井平台 工程总投资:60亿元 工程期限:2008年——2011年 大型海洋石油钻井平台堪称海上巨无霸,其使用的平台作业吊钩比人还高。 目前,世界上已探明的海上油气资源大部分蕴藏在大陆架及3000米以下的海底。有数据显示,深海能源储量将是陆地能源储量的100倍,但由于开采技术上的限制,其还是能源领域最具潜力的处女地。 2009年4月20日上午,我国海洋工程装备制造标志性项目——世界第六代3000米深水半潜式钻井平台,在上海外高桥造船有限公司顺利下坞,进入关键的搭载总装阶段。这是我国首次自主设计、建造的当今世界上最先进的深水半潜式钻井平台,不仅填补了我国在深水钻井特大型装备项目上的空白,而且对于加速我国进军世界级海洋工程装备开发、设计和制造领域,提升我国深水作业能力,具有重要的战略意义。 这座深水半潜式钻井平台的拥有者是中国第三大石油集团——中国海洋石油总公司,由中国船舶工业集团公司708研究所和上海外高桥造船有限公司联合承担详细设计与生产设计,由上海外高桥造船有限公司承建,是我国实施深水海

洋石油开发战略的重点配套项目之一,也是“十一五”期间国家重点“863”项目之一,并作为拥有自主知识产权的重大装备项目纳入国家重大科技专项。 上海外高桥造船厂承建的世界第六代3000米深水半潜式钻井平台,造价60亿元人民币。 海上巨无霸 2008年4月29日,这座第六代3000米深水半潜式钻井平台在上海外高桥造船有限公司开工兴建。这是中国继1983年成功自主开发“勘探3号”大型半潜式钻井平台后,时隔20多年再次斥巨资设计建造新一代深水半潜式钻井平台。 该钻井平台自重30670吨,甲板长度为114米,宽度为79米,甲板面积相当于一个足球场大小,从船底到钻井架顶高度为130米,相当于43层的高楼,电缆总长度650公里,相当于上海至天津的直线距离。在主甲板前部布臵可容纳约160人的居住区,甲板室顶部配备有包含完整消防系统的直升机起降平台,可起降Sikorsky S-92型直升机。 这座平台具有多项自主创新设计:如平台稳性和强度按照南海恶劣海况设计,能抵御200年一遇的台风;选用大马力推进器及DP3动力定位系统,可以在45海里/小时的风速下正常作业,在109海里/小时的风速下生存。在1500米水深内可使用锚泊定位,甲板最大可变载荷达9000吨等;可在中国南海、东南亚、西非等深水海域作业,其最大作业水深3050米,钻井深度10000米,设计寿命30年,入美国船级社(ABS)和中国船级社(CCS),计划于2010年底交付。该项目总造价近60亿元人民币,堪称海洋工程领域的“航空母舰”。 深海石油作业是国际上公认的海洋石油工业的前沿战略阵地,其核心技术一直由欧美少数国家所掌握。我国的海洋石油开发长期以来受技术水平所限只能在近海进行,如今这一情况将得到根本性的转变。作为目前国内设施最先进、综合实力领先的造船企业,上海外高桥造船有限公司一直致力于先进海洋工程装备

数据库系统安全性分析与实现

数据库系统安全性分析与实现 (刘中胜信息系统项目管理师,高级项目经理) 摘要:随着信息技术的不断发展,各行企业都不同程度地实现了信息化,因而信息系统的应用非常普及,作为信息系统的重要组成部分---数据库系统也就成为重中之重。数据库系统在运行过程中,会受到软件、硬件、人为和自然灾害等各种因素的影响,这些因素不但会破坏数据的机密性、完整性、可用性,造成数据损坏或丢失,而且会影响数据库系统的正常运行,甚至导致数据库系统的崩溃,因此,数据库系统的安全性问题变得尤为突出,不断面临巨大的、新的挑战。本文将从数据库系统的安全属性及安全技术进行分析,探讨实现数据库系统的高安全性策略。 关键字:数据库系统;数据库技术;安全性;安全策略 随着信息技术的不断发展,各行企业都不同程度地实现了信息化,因而信息系统的应用非常普及,作为信息系统的重要组成部分---数据库系统也就成为重中之重。数据库系统在运行过程中,会受到软件缺陷和故障、硬件损坏和故障,人为非法访问和误操作,以及自然灾害等各种因素的影响,这些因素不但影响数据的安全,而且会影响数据库系统的正常运行,甚至导致数据库系统的崩溃,因此,数据库系统的安全性问题变得尤为突出,不断面临巨大的、新的挑战。如何保证数据的安全,如何保证数据库系统正常安全地运行,是我们在实现企业信息化建设过程中必须认真考虑的问题。下面将从数据库系统的安全属性出发,分析构建数据库系统的安全技术,并阐述实现数据库系统高安全性的策略。 一、数据库系统的安全属性分析 对数据库系统安全属性的分析,是实现数据库安全策略的一个重要环节,是一个数据库系统采用恰当安全策略的前提。数据库系统的安全属性涉及多个方面,从总体上来讲,包括机密性、完整性、可用性、可控性和可审查性等属性。 (1)机密性:防止数据被非法窃取、调用或存取而泄密。数据只能被其相应的合法用户访问或调用。 (2)完整性:防止非法用户对数据进行添加、修改和删除,同时也防止合法用户越权访问对未被授权的数据进行添加、修改和删除,并且能够判断数据是否被修改。

导管架设计

第五篇 海上平台结构 第二章 导管架设计 第一节 结构总体确定 一、结构总体布置 1. 基本原则 总体布局合理,传力路径短,构件综合利用性好,材料利用率高,满足其他专业对结构型式的要求。 2. 一般考虑 在进行结构总体布置时,一般应考虑如下几个方面: 1) 应尽量使杆件在各种受力状态下都能发挥较大作用, 杆件数量和规格力求少,结构尽量对称; 2) 不宜在飞溅区内设置水平构件; 3) 不宜在冰作用区内设置水平构件和斜撑; 4) 一般情况下,管节点宜设计为简单节点; 5) 导管架斜撑的角度(即与水平面夹角)宜在45度左右; 6) 导管架腿的表观斜度宜在10:1 7:1; 7) 隔水导管与结构的连接: 如业主没有指定,对于动力响应较明显的平台(如三腿或独腿平台),水上部分(包括在甲板和导管架的水上水平层上),隔水导管和甲板﹑导管架的连接要用焊接方法固定,水下部分用楔块固定; 8) 各桩的受力力求均匀; 9) 对于滑移装船吊装下水型导管架,滑靴的布置与吊点的布置要协调考虑; 10)装船滑靴的横向间距的确定应考虑预制场地与运输驳船滑道的间距; 11)应考虑钻井﹑修井的要求。 二、结构构件的选取 1. 结构构件的选取要综合考虑强度、刚度、稳定性和经济性这几方面的因素。 2. 不论是成品钢管还是卷制钢管,如有可能,尽量减少所用材料的规格。 3. 对于管型构件的选择要考虑下列因素: 1) D/t比:不宜大于60,对于卷制焊接钢管不应小于20,最好大于30; 注: D---中性直径,t---壁厚。 2) Kl/r:对主要杆件不宜大于120; 注: k---有效长度系数,l---侧向无支撑长度,单位为米(m),r---回转半径, 单位为米(m)。 3) -Y-K节点:主要节点: d/D=0.4~0.8 次要节点: d/D取值可稍小些; 注: d---支杆直径,D---弦杆外径。 三、结构材料选取 1. 基本原则 结构材料的选取既要考虑强度要求,又要考虑结构工作场所的环境条件,在结构中的部位和可能使用的加工方法等。

海洋石油平台的分类

海洋平台是在海洋上进行作业,石油钻探与生产所需的平台,主要分钻井平台和生产平台两大类。在钻井平台上设钻井设备,在生产平台上设采油设备。平台与海底井口有立管相通。 呵呵,石油钻探就是民用啦,当然也可理解为战略物资储备,但多才的美军把雷达也放到半潜式平台上了。 咱们先把军用的放在一边,海洋平台就是石油开采业向水下进军的一个产物。最原始的海洋平台甚至不能称为海洋平台,而是湖泊平台(1891年,圣玛丽湖,俄亥俄州),结构为木质,作业水深甚至仅有 1.5m。说白了,就是给陆上井架加了一层台阶。既然能在湖边,也能在海边嘛,到现在海洋平台已经发展成为高附加值、高科技的工业设施。形式多种多样,且几乎每种新型的平台形式出现都是为了再更深的海区中作业。 最早出现的平台是导管架平台(Jacket),适用于浅近海。导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。钢桩穿过导管打入海底,并由若干根导管组合成导管架。导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。平台设于导管架的顶部,高于作业区的波高,具体高度须视当地的海况而定,一般大约高出4-5m,这样可避免波浪的冲击。导管架平台的整体结构刚性大,适用于各种土质,是目前最主要的固定式平台。但其尺度、重量随水深增加而急骤增加,所以在深水中的经济性较差。导管架平台使用水深一般小于300m,世界上大于300m水深的导管架平台仅7座。目前最大的导管架平台是在墨西哥湾安装的水深为610m的导管架平台。呵呵,看到下图,你是不是就想到一个字,―笨‖? 典型导管架平台

基于ABAQUS_AQUA的深水导管架平台动力分析研究_杨江辉

文章编号:1001-4500(2007)06-0029-05基于ABAQUS /AQUA 的深水导管架平台动力分析研究 杨江辉1,张 宏2,刘锦昆3,何 锋4 (1.中国石油大学,北京102200; 2.胜利油田胜利工程设计咨询有限责任公司,东营257000) 摘 要:运用A BA Q U S/A Q U A 中的波流耦合算法模拟分析了较大水深海洋导管架平台 在随机波浪作用下的应力变化及振动响应过程,包括海流载荷引起的拖拽力作用和附连水质量 惯性力影响。通过大量数值模拟计算,得出了一些有规律性的曲线,为随机波作用下深水导管 架动力响应分析提供借鉴。 关键词:平台;波流耦合;动力响应;ABA QU S/A QU A 中图分类号: P752 文献标识码:A 1 引言 我国海洋石油开发经历了两个发展阶段。1957年到1979年为第一阶段,并在渤海浅水区进行开发试验。1980年开始的第二阶段是合作开发阶段,这阶段我国海洋石油执行了将自主经营和对外合作相结合的政策,即利用国外的先进技术和资金来开发我国的海洋石油资源,海上油气开发逐步由浅水迈向了深水,导管架平台被广泛应用于海上油田开发。随着工作水深的增加,平台桩腿延长,整体刚度变小,自振频率降低,对波浪的激振较为敏感,即使在未发生共振的条件下,结构动力响应也可能很大。因此必须对较大水深导管图1 平台几何模型 架平台进行动力分析。 ABAQU S/AQUA 是美孚石油公司同ABAQU S 公司合作开发的 大型通用有限元软件ABAQU S 的海工模块,该模块的用途是模拟海 上结构,例如海洋石油平台或船体。其具体功能包括模拟波浪、风载 荷、浮力和海流拖曳力的影响等。本文使用ABAQU S/AQUA,实现 对较大水深的八腿柱导管架平台的动力响应分析。找出其在随机波浪 作用下的动力响应规律,为我国深水油气资源的开发提供借鉴。 2 计算理论和方法 在深水导管架结构的动力响应分析中,波浪力是十分重要的,它是 平台设计中的控制荷载。计算小尺度孤立桩柱上的波浪力是由莫里森 提出,但对导管架平台而言,由于导管架是一个无限自由度的连续体, 且结构是由细长杆件构成(如图1),考虑到实际结构理想化后,波浪和 结构之间相对运动的力都集中作用在质点上[1],因此要对莫里森方程 进行修正。假定:(1)波浪力随水深减小的变化呈台阶性,以质点相邻 节间的中点之间的整个区段为一台阶;(2)作用于每杆件上的波浪力,邻近杆件并不干扰流体运动,采用未扰动流体速度计算波浪力。作用于某质点上的波浪力是实际结构与该质点有关的区段内所有杆件波浪力之和;(3)斜杆的波浪力按流向的投影长度计算,作用在与杆件平行方向的波浪力忽略不计;(4)各力相对于水平质点引起的净距,可以忽略不计。根据以上假定,应用莫里森方程收稿日期:2007-07-05 基金项目:中石化/深水油田开发关键技术预研0科技攻关项目(合同号JP05008)作者简介:杨江辉(1981O ),男,硕士生,从事工程结构研究。

AP1000与EPR专设安全系统的差异性比较和分析

AP1000与EPR专设安全系统的差异性比较和分析 摘要:以美国西屋公司开发的先进压水堆(AP1000)和法德两国联合开发的欧洲压水堆(EPR)为典型代表的第三代核电技术都在专设安全系统的设计上进行了革新或改进,旨在提高核电站的总体安全水平和可利用率。本文简要介绍了AP1000和EPR专设安全系统的组成和特点,比较了两者之间的差异,并分析了这些差异对于核电站安全、设备可靠性及成本控制的影响。 关键词:核电站;AP1000;EPR;专设安全系统;差异性 自20世纪90年代开始,为了消除广大公众因切尔诺贝利核事故带来的对核能利用的疑虑,提高核电应用的安全性和经济性,世界核电界集中力量对核电站专设安全系统和严重事故的预防与后果缓解进行了研究,美国和欧洲先后提出了符合“用户要求”[1-2]的概念,并在此基础上,开发了安全性、经济性更好的第三代核电技术。第三代核电技术通过采用非能动安全系统或增加安全系统冗余度、增设缓解严重事故后果的工程措施以及应用数字化仪控系统等先进技术,降低核电站的严重事故风险,实现更高的安全目标,使核电技术向更安全、更经济的方向发展。第三代核电技术问世以后,受到全球核电用户的普遍关注,包括中国在内的一些国家已经选用或准备选用第三代核电技术进行新的核电机组建设。第三代核电技术以美国西屋公司开发的先进压水堆(AP1000)和法德两国联合开发的欧洲压水堆(EPR)为典型代表。AP1000在传统成熟的两环路压水堆核电技术的基础上,引入安全系统非能动化理念。与传统的压水堆安全系统相比[3],非能动安全系统更加简单,它们不需要现有核电站中那些种类繁多的安全支持系统,使核电站安全系统的设计发生了革新性的变化。EPR 主要以法国N4核电站和德国Konvoi核电站为考,充分吸收了法国和德国多年核电设计、建造和运行经验,通过渐进式的模式改进安全系统的设计,提高核电站的总体安全水平和可利用率。 1AP1000专设安全系统的组成和特点 与传统核电站相比,APl000的非能动安全系统在电厂安全性和投资保护方面有了重大的提高,无需操纵人员行动或交流电支持即可建立并长期维持堆芯冷却和安全壳的完整性。非能动系统满足单一故障准则,可采用概率风险评价(PRA)来验证其可靠性。APl000反应堆的非能动安全系统比典型压水堆的安全系统显著地简化,这些非能动系统中所包含的设备部件大大减少,从而减少了所需的试验、检查和维护。它们不需要能动支持系统,其就位状况很容易被监测。AP1000专设安全系统由下列系统组成[4-5]:①非能动堆芯冷却系统; ②非能动安全壳冷却系统;③裂变产物去除与控制系统;④安全壳隔离系统;⑤主控制室应急可居留系统。 1.1非能动堆芯冷却系统 AP1000非能动堆芯冷却系统包括非能动余热去除系统和安全注入系统(图1)。与传统压水堆应急堆芯冷却系统相比,AP1000非能动堆芯冷却系统除了具有安全注射和应急硼化功能外,还具有堆芯应急衰变热导出和安全壳pH控制功能,替代了传统压水堆辅助(应急)给水系统和安全壳喷淋系统的部分功能。其主要设计特点为: (1)在反应堆冷却剂系统中,引入了一个非能动热交换器。当冷却剂泵失效时,水流自然循环到该热交换器,将热量带至安全壳内的换料水箱。整个传热过程无需动力。当换料水箱达到饱和时,向安全壳蒸发,非能动安全壳冷却系统动作,冷凝水沿壳壁流回换料水池,可实现长时间的堆芯冷却。 (2)安全注入系统由两台堆芯补给水箱、两台安注箱和安全壳内的换料水箱组成,连接在反应堆冷却剂环路上,系统中充满硼水,依靠重力和气体储能的释放注射。当正常上充水系统失效时,可应付小泄漏;由于失水事故而引起大泄漏时,提供堆芯应急冷却,最终将反应

医院信息系统数据库安全性分析及措施

医院信息系统数据库安全性分析及措施医院信息系统数据库安全性分析及措施 余大勇① ①四二一医院信息科,510000,广东省广州市新港中路468号 摘 要要 数据库系统已经渗透到医疗行业的各个方面,数据库系统的安全问题也时时在威胁医院业务正常的运行与发展。数据安全问题主要有几方面:硬件、系统软件出错,人为错误,计算机病毒,自然灾害等。通过对现数据库系统安全进行分析,统计了本医院数据库意外停机的原因。针对这些原因,提出了数据库安全措施,包括双机策略、磁盘备份策略、数据库容灾策略、数据库备份策略。这些措施对提高医院信息系统数据库安全提供比较可靠的保障。 关键词关键词 医院信息系统 数据库安全 双机备份; 1 1 引言 引言 随着计算机技术的发展,医院信息已成为医疗系统日常活动中十分重要的一个组成部分,医院信息系统的可靠性、安全性、数据的完整性越来越引起广泛的重视。与此同时,数据库系统的安全问题也正在威胁医院信息系统的正常运行。目前,数据安全问题主要有几方面:硬件、系统软件出错,人为错误,计算机病毒,自然灾害等。数据库的数据安全受到严峻的挑战。数据库安全问题已是影响业务安全、健康、高速发展的一大隐患。 2 2 数据丢失的原因数据丢失的原因 根据医院HIS数据丢失的情况,总结数据丢失原因主要是因为数据库系统停机造成的。一般来说,信息管理系统要求24小时不停机,可靠性要求高,不仅不允许出现系统故障后丢失数据,而且要求故障在几分钟甚至几秒之内迅速恢复[1]。 而数据库系统停机可以分为:计划内停机和意外(非计划内)停机。 意外停机主要包括:系统错误:电源突然断电或者服务器磁盘突然损坏或者操作系统突然崩溃 [2];数据逻辑错误及自然灾害:发生在数据的逻辑错误;自然灾害,如火灾、地震、台风、暴雨等;人为错误:人为误删除某一张表或人为不小心删除某些数据等;系统管理员在日常维护中误删除了某个数据文件。 计划内停机包括:系统维护:增加硬件或系统升级;数据维护:表都重新定义或索引重建或更改表结构等。 对医院信息系统意外停机进行了150次的统计,统计结果见表1。 表1 意外停机统计表 意外停机原因 次数 所占百分比

海洋钻井平台简介

海洋钻井平台简介 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台 (2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台

坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m 以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油 开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央

填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台 自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台

相关文档
最新文档