导管架式平台

导管架式平台
导管架式平台

导管架平台的历史和发展进程

世界上第 一座固定式海洋平台建于1887年,它安装在美国加利弗尼亚的油田上,实际上是一座木结构的栈桥。二战后,用于战争中的许多先进科学技术成果被应用到海洋开发中。1947年在美国墨西哥湾水深6米处成功地安装了世界上第一座设备齐全的钢质导管架平台。开创了海洋开发的新时期。此后,海洋平台得到了迅速的发展。上世纪七十年代末,钢制导管架平台已经安装于300多米的海域,而到了1990年具有486米高的巨型导管架平台也已工作与墨西哥湾400多米的水深中。这种导管架式平台在随后的多年中逐渐地扩展到更深的水域和更恶劣的海洋环境中。这些平台以勘探、开发海洋资源为主,其中尤以开发、储藏石油和天然气的平台占多数。

自上世纪四十年代美国安装使用了世界上第一座钢质导管架式平台(Steel Jacket Offshore Platform)以来,这种结构已经成为中浅海海洋平台的主要结构型式。随着海洋石油开发的迅速发展,导管架式海洋平台被广泛用于海上油田开发、海上观光以及海洋科学观测等方面。迄今为止,世界上建成的大、中型导管架式海洋平台约有2000余座。工作水深已达到四、五百米。

结构形式

“导 管 架 ”的取名基于管架的各条腿柱作为管桩的导管这一实际。固定式钢质导管架海洋平台主要由两部分组成: 一部分是由导管架腿柱和连接腿柱的纵横杆系所构成的空间构架。腿柱(或称导管)是中空的,钢管桩是一根细长的焊接圆管,它通过打桩的力一法固定于海底,由若干根单桩组成的群桩基础把整个平台牢牢地固定于海床。腿柱和桩共同作用构成了用来支撑上部设施一与设备的支撑结构:另一部分由甲板及其上面的设施与设备组成,是收集和处理油气、生活及其它用途的场所。图1-2为典型的导管架式海洋平台结构的示意图。

固定设施的类型:桩基式固定设施、重力式固定设施、人工岛、顺应型平台、简易平台

属于桩基式固定设施

导管架式平台,主要由四大部分组成:导管架、桩、导管架帽和甲板。在一般情况下,甲板由模块组成。

模块:也称组块。由各种组块组成平台甲板。平台可以是一个多层甲板组成的结构,也可以是单层甲板组成的结构,视平台规模大小而定。如钻井区域的模块可称为钻井模块;机械动力区可称为动力模块;生活区称为生活模块等。

在许多情况下,导管架帽和甲板模块合二为一,所以这时导管架式平台仅分为导管架、桩和甲板模块三部分。如图5-1-1所示。

(1) 导管架

导管架系钢质桁架结构,由大直径、厚壁的低合金钢管焊接而成。钢桁架的主柱(也称大腿或腿柱)作为打桩时的导向管,故称导管架。其主管可以是三根的塔式导管架,也有四柱式、六柱式、八柱式等,视平台上部模块尺寸大小和水深而定。导管架的腿柱之间由水平横撑与斜撑、立向斜撑作为拉筋,以起传递负

荷及加强导管架强度的作用。

(2)桩

导管架依靠桩固定于海底,桩结构有主桩式,即所有的桩均由主腿内打入;也有裙桩式,即在导管架底部四周布置桩,裙桩一般是水下桩。

桩结构设计内容包括:根据平台总体规划设计所选定的尺度,分析在最不利荷载组合作用下桩结构的构件出现的内力;根据桩所承受的最大轴向力和弯矩,校核桩身强度;由桩所承受的最大轴向力和横向力,确定桩的入土深度;根据导管架在施工和使用阶段各构件出现的内力(轴力、弯矩和剪力),该校各构件的强度、刚度和稳定性。

海上导管架平台的承载能力主要取决于打入海床的钢管桩基础。打入海床的钢管桩穿过软弱的压缩性土层,把来自海洋环境引起的荷载及上部设施和设备荷载传递到更硬或更密实的、且压缩性较小的土层中。对于受压桩,其承载能力主要来自桩身表面所发挥出来的摩擦阻力和桩端阻力。大多数情况下,桩承载能力主要是由桩身摩擦阻力提供,其承载能力随着桩身表面的增加而增大,因此海上导管架平台通常用深(桩)基础。

桩的尺寸主要取决于桩的数量、上部设施与设备荷载、海底土质性状及沉桩方法。

导管架平台桩基础,各单桩之间的间距一般都比较大,通常是桩径的5倍至10倍,往往可忽略桩端(尖)压力的某些作用重叠的影响,桩基的承载能力可简单地采用各单桩承载能力之和表示。由于桩打的比较深,作用于桩上的荷载主要是通过桩身侧摩擦阻力传递到桩周土壤中,且在整个使用寿命期,作用于桩基础的荷载小于极限荷载,故一般情况下桩基的沉降可忽略不计。

在导管架平台中,桩基础按其施工方法可分为三类。

①打入桩基础

②钻孔灌注桩基础

③钟型桩基础

上述三种桩基础型式,打入桩施工最简单,费用最便宜,是海洋工程中首先选用的一种桩基础型式;钻孔灌注桩和钟型桩,一般是在不得已的情况下采用。在实际工程中到底采用何种桩基主要考虑土质条件、桩的用途、桩的承载能力、

地基类型及施工条件等因素。对上述诸因素的考虑主要取决于设计者的经验及对工程全貌的认识。

(3)导管架帽

导管架帽是指导管架以上,模块以下带有甲板的这部分结构。它是导管架与模块之间的过渡结构。对于导管架帽的设计,可以参照导管架、甲板和甲板模块等部分的内容,此处不再详细论述。

(4)甲板和甲板模块

为方便计,将甲板和甲板模块(包括导管架帽等)统称为上部结构。

进行上部结构设计时,首先要确定上部结构的主要轮廓尺度。

平台上部结构轮廓尺度主要指甲板面积和甲板高程。

甲板面积和甲板高程是平台总体规划中的两个重要尺度,它对决定支承结构轮廓尺度有重要影响。

(5) 生活模块

供海上工作人员生活、娱乐和休息的场所称为生活区。生活区可以布置在一个专门的平台上,通常称为生活平台;生活区也可以与钻井区和生产区布置在同一平台上。如所周知,这种平台称为综合平台。生活区是平台上部设施的一部分,通常制做成一个独立的吊装单元,一般称为生活模块。生活平台作为一个独立工作的平台,对于操作员的安全、舒适的生活是十分理想的,但投资比较高。主要是经济上的原因,目前大多采用生活模块,作为平台上部设施的一部分供平台上工作人员休息和居住。下面主要讨论生活模块的结构设计特点及一般分析方法。

①生活模块总体布置的特点

安装在综合平台上的生活模块从外观来看,类似于一座高楼,通常为2~6层,所以有人称它为平台上的“生活楼”。

生活模块设计要综合考虑防火、防爆、防震、防潮、保温、隔音、通风、采光等要求。例如,卧室应设计成为在井口和加工区万一出现紧急情况的避难场所。它可以直接通向逃生通道。卧室与卧室之间采用防火壁,这种防火壁要有一定的燃烧时间,以便逃生。

在总体布置上还要考虑与生活膳宿有关的一些其他问题。例如:污水及污

物处理系统;若男女共处一个平台,则卧室、厕所、卫生间要合理布置;当平台上工作人员民族不同,则平台要考虑设置两个厨房和两个餐室。

②生活模块结构的受力分析

生活模块是一个多层的框架结构,通常可简化为横向刚架计算简图。主梁通常在横向与立柱刚性连接,纵向梁与立柱采用铰接或柔性连接。这种结构体系也可以按空间框架进行分析,但在一般情况下,当纵向刚度较大时可忽略它的空间作用而取平面横向框架来计算。

(6) 直升飞机甲板

直升飞机甲板是设在海上平台上的直升飞机起降场。直升飞机甲板必须具有足够的面积供直升机起落和装卸作业;必须具有足够的强度能承受飞机降落时的冲击荷载。

①直升飞机甲板设计依据及一般布置

a. 设计依据

(a) 直升飞机甲板的功能。是停泊单直升飞机作业用的,还是停泊多直

升飞机作业用的。

(b) 直升飞机的性能。包括飞机的毛重、总长、总高、旋翼直径以及主

轮间距等。

(c) 直升飞机甲板位置。

(d) 环境条件。

b.一般布置

直升飞机甲板通常布置在生活区建筑物的顶上,若顶部面积不够,往往设计成悬臂式结构型式,以满足机杨甲板面积要求。

直升飞机甲板的平面型式有圆型、方型及六角型的。一般在确定直升飞机甲板尺度时,要综合考虑平台的轮廓、设备布置、平台方位、到障碍物距离、所选飞机型号、以及经常出现的环境条件。

当平台结构型式和设备布置对直升飞机有影响时,应该把直升飞机甲板架高。在确定直升飞机甲板空间时,要充分考虑直升飞机甲板上部空气扰动。

直升飞机甲板的设备,例如灯具、加油软管、灭火器、系留点及系留绳索、风向指示器及直升飞机甲板上下出口等,都应布置得避免成为直升飞机平台区域

的障碍物。

设计时,还应注意在甲板上布置适当的排水设施,以便把甲板表面的积水减至最少。飞行甲板表面应能防滑,并且无实体建筑物,以便旋翼产生的向下气流形成地面气垫。对于在恶劣环境区域作业的轮式着陆直升飞机,直升飞机甲板提供锁紧装置,例如格栅,以保证直升飞机着陆后的安全。为了固定住每架飞机,在飞行甲板上要布设系留点。为了保证工作人员安全,应沿直升飞机甲板周边铺设安全网或安全架。为了保证夜间能停降飞机,甲板四周应布设灯具。

②设计荷载及荷载组合

设计荷载及荷载组合见有关规范。

③直升飞机甲板结构设计概述

直升飞机甲板结构由两部分构成,一部分是为直升飞机起飞和着陆而提供甲板表面区域,一般称为飞行甲板;一部分是飞行甲板的支承结构。当生活模块顶部有足够面积可供布置飞行甲板时,生活模块顶部甲板梁格按飞行甲板支承结构设计,用以支承飞行甲板;当生活模块顶部没有足够的面积可供作为飞行甲板时,通常在模块顶部挑出一悬臂甲板,挑出部分由三角型桁架支承。甲板外伸部分由支撑桁架支承,支承桁架采用管型截面,悬臂桁架之间采用支撑桁架以加强侧向刚度。

这里特别要注意的是直升飞机甲板的板、梁、柱等构件的设计一定要按照直升飞机最不利的着陆位置来考虑。

(7) 栈桥

栈桥是平台上部设施的一部分,是连接相邻两个平台的通道。

栈桥的主要作用:除了作为海上相邻两个平台的交通通道外,同时也用来做为各种管道的支撑结构,例如原油管道、饮用水管道、公用水管道、电缆导管、通讯线路以及气管道和燃烧管线等。

①栈桥的结构型式及一般布置

连接相邻两个平台间的栈桥,通常设计成直的、单跨的钢管结构桥,由于栈桥功能不同,每座栈桥的长、宽、高和构架的型式都各不相同。一般来说,海上栈桥都是多功能汇集于一桥。既是人们行走的通道,也是各种管线的支撑。一个多功用的栈桥,其断面型式可以设计为矩型,也可设计为呈三角形。在各种栈

桥型式中,以正三角型截面型式的栈桥应用的较为普遍。

②设计荷载与荷载组合

设计荷载与荷载组合见有关规范。

③栈桥结构设计要点

连接两个相邻平台的栈桥,一般跨度在30~60m之间,最长可达100m左右,例如采油平台与火炬平台之间的栈桥。栈桥设计的是否合理,对节约钢材、节省工时,降低造价具有重要意义,因此在栈桥设计中,要根据结构的用途、考虑多种方案,进行技术和经济比较,选择最优方案。

(8) 火炬塔(或火炬臂)

火炬塔(或火炬臂)主要用于安放主气管道线、火焰管线及引焰线(火焰发生器),以便处理油气分离出来的伴生气。另外还有一条从油井引出的出油管线,以便在紧急情况下需要暂时把采出来的原油全部烧掉。

火炬塔通常安装在一个小导管架上(火炬臂则安装在平台上部结构之上),这种导管架一般称为火炬导管架。火炬导管架是一座由三腿柱或四腿柱构成的框架结构,用桩固定于海底,火炬塔立柱直接焊在桩顶上,做成一个单体结构。

火炬塔的结构型式类似导管架,但它是最简单的一种钢管桁架结构物;主腿柱通常是垂直的,它与斜支撑共同构成三角型构架,主燃烧管成为火炬塔一部分。火炬塔设计要考虑的主要荷载是风荷载。其受力分析类似塔式结构,这里就不详述了。

施工

是一个复杂的过程,分为陆上预制和海上安装两种作业。

陆上预制是在专门的场地上进行。导管架、上部模块和导管架帽分别在陆上预制好。

海上安装包括海上运输和海上安装两部分。导管架和组块用驳船或其他方法运到油田现场,先将导管架沉放到预定位置,然后沿各导管向海底打桩,再将导管架帽安装在导管架上,最后用起重船将上部模块吊装到导管架帽上,这时平台即告建成。

优缺点

优点是:(1)技术成熟、可靠;(2)在浅海和中深海区使用较为经济;(3)

海上作业平稳和安全。

具有适应性强、安全可靠、结构简单、造价低

缺点是:(1)随着水深的增加费用显著增加;(2)海上安装工作量大;(3)制造和安装周期长;(4)当油田预测产量发生变化时,对油田开发方案进行调整的适应性受到限制。

导管架海洋平台系统可靠性分析

大连理工大学 硕士学位论文 导管架海洋平台系统可靠性分析 姓名:杜超 申请学位级别:硕士 专业:防灾减灾工程及防护工程 指导教师:李昕 20060616

大连理工大学硕士学位论文 1绪论 1.1前言 1.1.1海洋平台的发展概况 随着社会的快速发展,人类对能源的需求也越来越大。石油是当今世界最主要的能源,人类对石油的开发已经从昔日的陆地逐渐向海洋进军。占地球面积71%的海洋,蕴藏着丰富的生物资源和矿物资源【1]。海洋石油开发具有投资高、风险大、高新技术密集等特点,即便如此,面对及其丰富的海洋资源,各国都加紧了海洋高新技术的开发。使海洋环境探测、海洋资源调查、海洋油气开发、海洋深潜和海生物技术等成为世界高技术竞争的热点。 海洋平台是一种海洋工程结构物,它为开发和利用海洋资源提供了海上作业与生活的场所。随着海洋开发事业的迅速发展,海洋平台得到了广泛的应用,如海底石油和天然气的勘探与开发、海底管线铺设、建造海上机场及海上工厂等。目前应用海洋平台最为广泛的领域当属海上油气资源的勘探与开发。海洋平台的建造历史可以追溯到1887年在美国加利福尼亚所建造的第一座用于钻探海底石油的木质平台;1947年墨西哥collissana海域建造了第一座钢质海洋石油开采平台,开创了海洋开发的新篇章[21。 图ltl几种典型海洋平台示意图 Fig.1.1SeVeral¨ndoftypicaloceallpIa饰ms

导管架海洋平台系统可靠性分析 按结构型式及其特点来划分,海洋平台大致分为固定式平台、移动式平台和顺应式平台等三大类【26】,如图1.1所示。水深在5—200米范围内,导管架平台是应用最多的一种平台形式,约占90%以上。“导管架”【8】的取名基于管架的各条腿柱作为管桩的导管这一实际。固定式钢质导管架海洋平台主要由两部分组成p刀】:一部分是由导管架腿柱和连接腿柱的纵横杆系所构成的空间构架。腿柱(导管)是中空的,钢管桩是一根细长的焊接圆管,它通过打桩的方法固定于海底,由若干根单桩组成的群桩基础把整个平台牢牢地固定于海床。腿柱和桩共同作用构成了用来支撑上部设施与设备的支撑构件;另一部分由甲板及其上面的设施与设备构成,是收集和处理油气、生活及其它用途的场所。如图1.2所示,就是典型的寻管架式海洋平台结构。 图1.2东海油田导管架海洋平台示意图 Fig.I.2ThejacketpIatfomlinE越tChinasea 1.1.2我国海洋平台的发展状况 我国有1sooo多公里的海岸线,6500多个海岛。在近300万平方公里的海域内,大陆架海区含油气盆地面积近70万平方公里,预测石油资源储量为275.3亿吨,天然气储量为lO.6万亿立方米。目前已探明在渤海、黄海、东海、南海等海域均有分布,且储量丰富[5】。我国从六十年代中期开始建造石油平台,于1966年依靠自己的技术力量在渤海海域成功的安装了第一座导管架式海洋平台。近年来,我国的平台设计、制造、安装都得到了突飞猛进的发展,在各海域陆续建造了近百座海洋平台。其中,我国“十五”重

海洋钻井平台的分类

海洋钻井平台的分类 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动式平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台(2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台 坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平

坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台 自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位。1953年美国建成第一座自升式平台,这种平台对水深适应性强,工作稳定性良好,发展较快,约占移动式钻井装置总数的1/2。 钻井船

导管架设计

第五篇 海上平台结构 第二章 导管架设计 第一节 结构总体确定 一、结构总体布置 1. 基本原则 总体布局合理,传力路径短,构件综合利用性好,材料利用率高,满足其他专业对结构型式的要求。 2. 一般考虑 在进行结构总体布置时,一般应考虑如下几个方面: 1) 应尽量使杆件在各种受力状态下都能发挥较大作用, 杆件数量和规格力求少,结构尽量对称; 2) 不宜在飞溅区内设置水平构件; 3) 不宜在冰作用区内设置水平构件和斜撑; 4) 一般情况下,管节点宜设计为简单节点; 5) 导管架斜撑的角度(即与水平面夹角)宜在45度左右; 6) 导管架腿的表观斜度宜在10:1 7:1; 7) 隔水导管与结构的连接: 如业主没有指定,对于动力响应较明显的平台(如三腿或独腿平台),水上部分(包括在甲板和导管架的水上水平层上),隔水导管和甲板﹑导管架的连接要用焊接方法固定,水下部分用楔块固定; 8) 各桩的受力力求均匀; 9) 对于滑移装船吊装下水型导管架,滑靴的布置与吊点的布置要协调考虑; 10)装船滑靴的横向间距的确定应考虑预制场地与运输驳船滑道的间距; 11)应考虑钻井﹑修井的要求。 二、结构构件的选取 1. 结构构件的选取要综合考虑强度、刚度、稳定性和经济性这几方面的因素。 2. 不论是成品钢管还是卷制钢管,如有可能,尽量减少所用材料的规格。 3. 对于管型构件的选择要考虑下列因素: 1) D/t比:不宜大于60,对于卷制焊接钢管不应小于20,最好大于30; 注: D---中性直径,t---壁厚。 2) Kl/r:对主要杆件不宜大于120; 注: k---有效长度系数,l---侧向无支撑长度,单位为米(m),r---回转半径, 单位为米(m)。 3) -Y-K节点:主要节点: d/D=0.4~0.8 次要节点: d/D取值可稍小些; 注: d---支杆直径,D---弦杆外径。 三、结构材料选取 1. 基本原则 结构材料的选取既要考虑强度要求,又要考虑结构工作场所的环境条件,在结构中的部位和可能使用的加工方法等。

海洋石油平台种类

海洋石油平台种类 海洋平台是在海洋上进行作业,石油钻探与生产所需的平台,主要分钻井平台和生产平台两大类。在钻井平台上设钻井设备,在生产平台上设采油设备。平台与海底井口有立管相通。 呵呵,石油钻探就是民用啦,当然也可理解为战略物资储备。但多才的美军把雷达也放到半潜式平台上了。 咱们先把军用的放在一边,海洋平台就是石油开采业向水下进军的一个产物。最原始的海洋平台甚至不能称为海洋平台,而是湖泊平台(1891年,圣玛丽湖,俄亥俄州),结构为木质,作业水深甚至仅有1.5m。说白了,就是给陆上井架加了一层台阶。既然能在湖边,也能在海边嘛,到现在海洋平台已经发展成为高附加值、高科技的工业设施。形式多种多样,且几乎每种新型的平台形式出现都是为了再更深的海区中作业。 最早出现的平台是导管架平台(Jacket),适用于浅近海。导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。钢桩穿过导管打入海底,并由若干根导管组合成导管架。导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。平台设于导管架的顶部,高于作业区的波高,具体高度须视当地的海况而定,一般大约高出4-5m,这样可避免波浪的冲击。导管架平台的整体结构刚性大,适用于各种土质,是目前最主要的固定式平台。但其尺度、重量随水深增加而急骤增加,所以在深水中的经济性较差。

导管架平台使用水深一般小于300m,世界上大于300m水深的导管架平台仅7座。目前最大的导管架平台是在墨西哥湾安装的水深为610m的导管架平台。呵呵,看到下图,你是不是就想到一个字,“笨”? 典型导管架平台

海洋钻井平台扫盲

巨型海洋钻井平台 ——世界第六代3000米深水半潜式钻井平台 工程总投资:60亿元 工程期限:2008年——2011年 大型海洋石油钻井平台堪称海上巨无霸,其使用的平台作业吊钩比人还高。 目前,世界上已探明的海上油气资源大部分蕴藏在大陆架及3000米以下的海底。有数据显示,深海能源储量将是陆地能源储量的100倍,但由于开采技术上的限制,其还是能源领域最具潜力的处女地。 2009年4月20日上午,我国海洋工程装备制造标志性项目——世界第六代3000米深水半潜式钻井平台,在上海外高桥造船有限公司顺利下坞,进入关键的搭载总装阶段。这是我国首次自主设计、建造的当今世界上最先进的深水半潜式钻井平台,不仅填补了我国在深水钻井特大型装备项目上的空白,而且对于加速我国进军世界级海洋工程装备开发、设计和制造领域,提升我国深水作业能力,具有重要的战略意义。 这座深水半潜式钻井平台的拥有者是中国第三大石油集团——中国海洋石油总公司,由中国船舶工业集团公司708研究所和上海外高桥造船有限公司联合承担详细设计与生产设计,由上海外高桥造船有限公司承建,是我国实施深水海

洋石油开发战略的重点配套项目之一,也是“十一五”期间国家重点“863”项目之一,并作为拥有自主知识产权的重大装备项目纳入国家重大科技专项。 上海外高桥造船厂承建的世界第六代3000米深水半潜式钻井平台,造价60亿元人民币。 海上巨无霸 2008年4月29日,这座第六代3000米深水半潜式钻井平台在上海外高桥造船有限公司开工兴建。这是中国继1983年成功自主开发“勘探3号”大型半潜式钻井平台后,时隔20多年再次斥巨资设计建造新一代深水半潜式钻井平台。 该钻井平台自重30670吨,甲板长度为114米,宽度为79米,甲板面积相当于一个足球场大小,从船底到钻井架顶高度为130米,相当于43层的高楼,电缆总长度650公里,相当于上海至天津的直线距离。在主甲板前部布臵可容纳约160人的居住区,甲板室顶部配备有包含完整消防系统的直升机起降平台,可起降Sikorsky S-92型直升机。 这座平台具有多项自主创新设计:如平台稳性和强度按照南海恶劣海况设计,能抵御200年一遇的台风;选用大马力推进器及DP3动力定位系统,可以在45海里/小时的风速下正常作业,在109海里/小时的风速下生存。在1500米水深内可使用锚泊定位,甲板最大可变载荷达9000吨等;可在中国南海、东南亚、西非等深水海域作业,其最大作业水深3050米,钻井深度10000米,设计寿命30年,入美国船级社(ABS)和中国船级社(CCS),计划于2010年底交付。该项目总造价近60亿元人民币,堪称海洋工程领域的“航空母舰”。 深海石油作业是国际上公认的海洋石油工业的前沿战略阵地,其核心技术一直由欧美少数国家所掌握。我国的海洋石油开发长期以来受技术水平所限只能在近海进行,如今这一情况将得到根本性的转变。作为目前国内设施最先进、综合实力领先的造船企业,上海外高桥造船有限公司一直致力于先进海洋工程装备

海洋石油平台的分类

海洋平台是在海洋上进行作业,石油钻探与生产所需的平台,主要分钻井平台和生产平台两大类。在钻井平台上设钻井设备,在生产平台上设采油设备。平台与海底井口有立管相通。 呵呵,石油钻探就是民用啦,当然也可理解为战略物资储备,但多才的美军把雷达也放到半潜式平台上了。 咱们先把军用的放在一边,海洋平台就是石油开采业向水下进军的一个产物。最原始的海洋平台甚至不能称为海洋平台,而是湖泊平台(1891年,圣玛丽湖,俄亥俄州),结构为木质,作业水深甚至仅有 1.5m。说白了,就是给陆上井架加了一层台阶。既然能在湖边,也能在海边嘛,到现在海洋平台已经发展成为高附加值、高科技的工业设施。形式多种多样,且几乎每种新型的平台形式出现都是为了再更深的海区中作业。 最早出现的平台是导管架平台(Jacket),适用于浅近海。导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。钢桩穿过导管打入海底,并由若干根导管组合成导管架。导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。平台设于导管架的顶部,高于作业区的波高,具体高度须视当地的海况而定,一般大约高出4-5m,这样可避免波浪的冲击。导管架平台的整体结构刚性大,适用于各种土质,是目前最主要的固定式平台。但其尺度、重量随水深增加而急骤增加,所以在深水中的经济性较差。导管架平台使用水深一般小于300m,世界上大于300m水深的导管架平台仅7座。目前最大的导管架平台是在墨西哥湾安装的水深为610m的导管架平台。呵呵,看到下图,你是不是就想到一个字,―笨‖? 典型导管架平台

导管架基本常识简介

1.1 简述 1.2 主要特点 2 组成 2.1 主要结构(Primary) 2.2 附属结构(Appurtenance) 3 简单分类 3.1 按导管腿的数量分类 3.2 按水深分类 3.3 按重量分类 3.4 按基本功能分类 4设计 4.1 设计的基本内容 4.2 设计的要求 4.3 设计的依据 4.4 设计的方法 4.5 设计阶段 4.6 设计步骤 4.7 设计荷载及其组合 4.8 设计分析内容 5 建造 5.1 建造主要标准简介 5.2 建造流程 5.3 典型建造方法 6 装船 6.1 吊装装船 6.2 滑移装船 6.3 拖车装船 7 运输 8 安装 8.1 下水方法 8.2 扶正 8.3 就位与固定 8.4 附件安装 9 结束语

1.1 简述 ?导管架型平台是由钢管桩通过导管架固定于海底的结构物,导管架本身具有足够的刚 性,以保证平台结构的整体性,从而提高了平台抵抗自然荷载的能力。 ?导管架是海洋石油平台中传递荷载的主要部件,其主体是钢质桁架结构,是海洋石油平 台的固定基础。 ?导管架是由若干竖向立柱(圆钢管)和横向、斜向联接钢管焊接结成的空间框架结构, 横向和斜向的钢管分别叫横撑和斜撑,也叫横拉筋或斜拉筋,竖向大直径圆管立柱叫导管。 ?导管架的作用: 为平台的海上施工提供条件:在导管架的竖向圆管(导管或桩套筒)内打桩,大大减少了在海上施工时单桩定位等操作上的困难。 把各单位联成一个整体:打桩完毕后,桩和圆管之间的环向内用水泥浆固结,这样再通过导管架的空间结构,将各单桩联成一体,加强了平台工作的整体性,且使平 台的各种荷载能均匀的传递到各桩上。 可安装泊船设备,供交通联络、船舶停靠。 可安装电缆护管及电缆,供通讯、动力。 可安装梯子、走道,登陆桥等,供工作、维护时的通行。 在导管架上架设临时性的工作平台,以加快施工进度和保证施工过程中的安全。 1.2 主要特点 导管型桩基固定平台是国内外制造与使用最多的一种形式,它包括上部结构和基础结构。上部结构(Topsdie)分为甲板、梁、立柱或椼架,主要作用是为海上钻、采提供必须的场地以及布置工作人员的生活设施等,提供充足的加班面积(分不同层),保证钻井或采油作业能顺利进行。 下部结构(Substructure)分为导管架(Jacket)和钢桩(Pile)。 导管架主要由管状构件通过焊接而成,一般呈多边棱台型,座落于海床上,适应复杂的海洋气候工作环境:如海啸、风暴、波、浪、流、海洋生物侵蚀、冰、地震等等,同时它还承受平台的工作荷载。复杂的工作环境,高频率的振动冲击决定了导管架的特殊性。 2 组成 无论何种形式的导管架,其组成基本分为主要结构和附属结构。下面主要介绍各部件的基本结构形式与基本功能。 2.1 主要结构(Primary) 2.1.1 导管腿leg:竖向大直径圆管立柱,承受并传递平台荷载的主要受力构件。 2.1.2 拉筋brace-chord(barrel),stub:导管腿之间的管状联接构件,也是承受并传递平台荷载的主要受力构件。 2.1.3 裙装套筒skirt pile sleeve:桩与导管架之间的立联接构件,主要结构是管状物与板的组合形式,通过它可将平台荷载传递到钢桩。有些导管架的钢桩直接从导管腿内打入,不需要裙装套筒:有些导管架既有腿内桩,也有裙装。 在裙装套筒构造中还有一些特定构件: 焊珠weld bead—在套筒内壁及钢桩外表面通过焊接而形成的剪力环,加固裙装套筒(或导管腿)与钢桩之间的联接。 间隙块shim—焊接于套筒(或导管腿)的内壁,减少钢桩与套筒之间的间隙,以便于钢桩的垂直打入。 剪力板shear plate、轭状作用板yoke\裙板skirt plate:特定作用及特定位置上的

(完整版)海上风电导管架安装专项方案.

珠海桂山海上风电场一期导管架安装专项方案 编制: 复核: 审批: 中铁大桥局股份有限公司 2014年9月

目录 1、工程概况 (1) 1.1工程位置及项目规模 (1) 1.2 导管架设计概况 (1) 2、自然环境 (2) 2.1地质及地貌 (2) 2.2 气象条件 (4) 2.3 特征气象参数 (4) 2.4 潮汐 (4) 2.5 波浪 (5) 2.6 海流 (6) 3、导管架安装方案 (6) 3.1 总体安装方案 (6) 3.2 施工步骤 (6) 3.3 构件进场检查 (6) 3.4 导管架安装 (6) 3.5 牺牲阳极接地电缆安装 (7) 3.6 施工重难点及控制措施 (7) 4、施工设备及劳动力组织 (7) 4.1 施工设备 (7) 4.2 劳动力组织 (8) 5、施工周期分析 (8) 6、HSE保证措施 (8) 6.1 职业健康保证措施 (8) 6.2 特种作业安全保证措施 (10) 6.3 环境保证措施 (12) 6.4 施工安全保证措施 (14) 7、附图 (14)

1、工程概况 1.1工程位置及项目规模 珠海桂山海上风电场场址位于珠江河口的伶仃洋水域,处于珠海市万山区青洲、三角岛、大碌岛、细碌岛、大头洲岛与赤滩岛之间的海域。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-6.0m~12.0m,属于近海风电场。在三角岛上设置110kV升压站,风机电能通过8条35kV集电海缆汇集到三角岛升压站,再通过2回110kV送出海缆,接入220kV吉大站,实现与珠海电网的联网,并在珠海陆域设一集控中心。同时兴建三角岛-桂山岛、三角岛-东澳岛-大万山岛的35kV海底电缆,实现三个海岛的微网与珠海电网联网。 本工程风电场共安装17个风电机组,主要施工内容为:钢管桩沉桩、导管架安装、防腐、灌浆、钢管桩嵌岩、风机整体运输安装、零星工程。 图1-1 风机总体布置图 1.2 导管架设计概况 导管架下部与4根钢桩对接后,通过灌浆进行连接,顶面通过法兰与风机连接,

导管架平台动力性能及安全性分析

导管架平台动力性能及安全性分析 作为常见的海上结构,导管架平台在完成钻井、采油、储油等作业的同时,由于长期暴露在海洋环境当中,会受到恶劣的天气环境以及其他诸多复杂因素的影响,有时还会受到爆炸、撞击等偶然载荷的作用,因此平台倒塌事故时有发生,这不仅造成了严重的环境污染,同时也带来了巨大的经济损失。为保证结构在恶劣环境下的抗倒塌能力,延长结构的服役期,有必要从整体结构层面出发,研究平台结构的整体安全性能。 目前导管架平台的整体安全水平研究主要围绕在静力载荷作用分析的阶段,由动力载荷造成的整体倒塌以及所体现的安全储备方面研究较少。同时,对于导管架的倒塌过程,很少进行结构内部杆件的屈服过程与塑性发展特性相关探讨。 本文针对以上几个问题展开了相关研究:探究了非线性方法在有限元分析中的实施手段。对于常见的倒塌分析,一般要求考虑材料、几何非线性,从而能够模拟更为反映实际情况的倒塌过程,因此有必要深入了解非线性在结构分析中的实施过程与分析手段。 将推导二维梁单元的几何、材料非线性有限元模型,结合Newton-Raphson 方法编制程序,研究非线性在结构分析中对计算结果产生的影响。研究了导管架平台的静力倒塌安全性。 采用某冰工况下的环境要素,以及基于提高重现期的载荷增量方法,对平台进行了Pushover分析,得到了不同方向的结构承载力与杆件塑性发展过程,进而根据其储备强度(RSR)探讨了结构整体安全性能;编制了逐步回归响应面程序,该方法不需提前给出功能函数,且计算效率较高。然后,计算了结构的整体可靠度,并通过给定拟合方程的JC法验证了程序的可靠性。

研究表明,尽管两类指标的研究侧重点不同,但两类指标均能很好地对结构的安全性进行描述。在地震作用下,对导管架平台进行了动力性能研究。 选择了26条具备不同频谱特性的三向地震记录,采用IDA方法对结构进行了动力增量分析,在分析中记录不同地震波作用下结构全过程响应信息与杆件状态信息,以及塑性点、倒塌点对应的载荷水平。探讨了结构的位移、层间角等动力参数的发展规律,发现结构在不同地震波下的动力参数发展特性并不一致且差别较大。 然后对结构的塑性发展过程进行了研究,提出了基于塑性发展影响系数的最易出现失效模式。该方法获取的失效模式与所有真实倒塌失效模式均较为接近且相似度离散性较小,具有统计意义。 对平台结构的动力倒塌失效特性进行了研究。首先,对相关倒塌参数进行总结,通过变形能、位移响应、基底剪力等特征参数对海洋平台结构的抗倒塌能力与安全储备进行分析,进而,从频谱特性的角度探讨了结构的倒塌极限状态动力特性,以及不同频谱特性与倒塌相关参数之间的联系。 研究发现:针对地震这类动力特性较为强烈的载荷形式,平台结构的承载能力与变形能力同时保证了结构的整体安全储备,不同地震作用下的结构倒塌承载力相近,结构的失效模式为动力强度破坏。从频谱特性的角度来看,当载荷水平较低时,结构响应频率在主振动区成分最高。 随着载荷水平的提高,结构受迫振动增强,共振效应比重降低。地震频谱特性中共振频率附近一定范围内频谱成分较大时,会对结构产生不利的影响。

海洋钻井平台简介

海洋钻井平台简介 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台 (2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台

坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m 以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油 开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央

填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台 自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台

海洋导管架平台防腐技术

海洋导管架平台防腐技术 发布日期:2014-05-15 浏览次数:62 1、海洋平台防腐海水淡化后对铝合金牺牲阳极性能的影响实验 1.1海洋平台防腐室内实验情况 利用新鲜海水配制成不同盐度的海水样品,采用CB4948-85规定的方法研究海水盐度的变化对铝基牺牲阳极电化学性能的影响。实验选用六种盐度的海水,盐度分别为30、25、20、15、10、5。每次试验时间为13天,实验结果为: (1)在不同盐度的海水中阳极的开路电位随时间的变化结果。在盐度为10以上的海水中,铝阳极的开路电位其值向正移动,但变化不大,保持在国标规定(-1.18~-1.10V)的范围内。在盐度为5的海水中,铝阳极的开路电位正移较大,大约在-1.07V即超出国标规定的范围。 (2)在不同盐度的海水中阳极的闭路电位随时间的变化结果。阳极的闭路电位即阳极的工作电位是评价阳极电化学性能的重要指标。实验结果显示,阳极的闭路电位值随海水盐度变低有正移趋势,在盐度为10以上的海水中,铝阳极的闭路电位值保持在国标规定(-1.1 2~-1.05V)的范围内。在盐度为5的海水中,铝阳极的闭路电位值变化较大,达到-1.0 0V即超出国标规定的范围。 (3)阳极的电流效率随盐度的变化结果。阳极的电流效率在海水盐度大于10时,其值都在85%以上,即在国标规定的范圉内。海水盐度为5时,其阳极的电流效率明显下降,在81%左右,已低于国标要求的范围。 由以上结果可知,盐度为10以上的海水对铝阳极的各种电化学性能无明显影响。只有海水盐度低于5以后才对铝阳极的各种电化学性能产生明显影响。并使电化学性能指标低于国标规定的范围。 1.2埕北海域海水盐度变化情况 埕北海域海水盐度变化情况通过对埕北海域海水一年多(1995.07.11~1996.09.11)的取样分析,海水盐度最大35,最小25,相差10。详细数据见表2。从表中数据可知,埕北海域海水盐度不会小于20,其海水盐度的变化对铝阳极的电化学性能无明显影响。 铝阳极在不同盐度海水中的电化学试验与埕北海域海水盐度的分析,证明了铝基阳极在埕北海域中电化学性能比较稳定。据中科院青岛海洋研究所实测。埕北海域海泥电阻率在3 7~100Ω·cm之间。这样低的电阻率可以确保铝基阳极在埕北海域海底使用是安全可行的。

海上设施测厚指南-固定导管架式平台

海上设施测厚指南—固定导管架式平台部分 天津分社海工处 2006年7月28日 丁果林

第三章规范对测厚的要求 3.4 固定导管架式平台 综合下列规范、规则: 《海上固定平台入级与建造规范1992》中国船级社 《海上固定设施安全技术规则1997》中华人民共和国船舶检验局 《海上平台安全规则1984》中华人民共和国船舶检验局 《浅海固定平台建造与检验规范2004》中国船级社 《海上固定平台安全规则》国家经贸委 固定导管架式平台的测厚要求归纳如下:固定平台每五年进行一次定期检验,每一年进行一次年度检验。年度检验时没有特别指定测厚范围,只有在年检外观检查结构发现有可疑区域时,才进行测厚工作。而在定期检验时,要求同时进行水下检验,应对严重腐蚀的杆件、高应力杆件以及有代表性的杆件进行测厚,而水上结构,如发现有腐蚀也应进行有代表性的测厚。 上述规范对固定导管架式平台的与测厚有关的详细要求请参见附录一。

第四章测厚位置的选择 4.4 固定导管架式平台 固定导管架式平台按模块结构可划分为上部组块结构和下部导管架结构两部分,另外按照水上水下所在区域又可分为大气区(水上部分)、飞溅区、全浸区三部分。大气区结构的测厚,施工条件要求低,对测厚人员、测厚设备的要求也低,测厚工作安排也很容易。但飞溅区和全浸区的测厚则较为困难,测厚公司要求具有水下作业的相关资质,测厚人员要求具有潜水员证书并取得水下测厚作业的证书,并且得配有水下作业所用的呼吸器、潜水服、减压舱、水下测厚仪、水下录像仪等等相关设备,施工当天的天气情况、海水能见度等要求高,测厚之前必须先清除海生物,等等。所以在这里,分别对大气区、飞溅区、全浸区的各自测厚位置选择进行阐述。 一、大气区 测厚范围为: 所有甲板板(包括直升飞机甲板); 上部组块立柱、主斜支撑梁以及支撑管、主要甲板横梁以及纵桁、钻修井机底座的轨道梁等; 吊机底座筒、救生艇艇架以及下面的主要支撑结构、直升飞机平台下主要支撑管、火炬臂、平台群连接栈桥的主要结构件等; 导管架结构的大气区部分; 可疑区域; 其它高应力集中区域; 以前检测发现有问题的区载; 曾经修理改造过的重要区域。 上述检测范围的比例应根据每一次检测工作平台的实际情况区别对待。投产10年以内(包括10年)的平台可对上述各种类型结构分别抽查30%~60%,10年~15年的平台可抽查50%~80%,15年~20年的平台可抽查70%~100%,20年以上的平台应100%测厚。检测工作开始前,外观检查这些结构,状况很好时,

平湖油气田平台导管架防海生物装置的应用_刘孔忠

平湖油气田平台导管架防海生物装置的应用 刘孔忠 官耀华 仲 华 中海石油(中国)有限公司上海分公司,上海,200030 摘 要 安装在海洋结构构件上的环状防海生物装置)))M GP(Marine Growth Preventer)在海洋自然力的作用下连续地撞击构件,并不停地沿着构件往复运动,使得海生物得到有效防除。平湖油气田在国内率先引进M GP 技术进行导管架的海生物防除,现场使用证明,MGP 对海生物清除的效果是比较理想的。 关键词 海生物 防海生物装置 多环M GP 单环M GP 海洋平台导管架等水下结构物一般都有海生物附着存在,海生物的存在会直接加大海洋结构的受力,使其荷载能力受到限制和削弱,同时,海生物的存在增加了海洋结构表面的不均匀性并破坏了飞溅区的保护涂层。海生物分泌物一般呈酸性,会加快海洋钢结构的腐蚀,从而进一步减小海洋结构的荷载能力,增加结构重量并增加投资,缩短结构物的使用寿命。 平湖油气田位于温热的东海海域,该海域适于硬质海生物的生长。经水下实测,平湖油气田投产后仅2年,其导管架大部分面积上的海生物的附着厚度已接近甚至超过海生物的设计厚度,在导管架的飞溅区问题更为严重。为此寻求一种经济有效的方法,使海生物的生长得到较好的控制,已经成为海洋石油行业需要解决的一个课题。 1 导管架海生物防治方法及比较 对海洋平台导管架等海上钢结构物上附着的海生物,传统防治方法有3种:1)在钢结构表面涂敷具有杀死或抑制海生物的涂层,如铜-镍涂料等;2)用电化学阴极保护技术抑制硫酸盐还原菌(SRB);3)对海生物进行定期机械清除,如由水下ROV 或潜水员实施的高压水清除等。 上述第1种方法,成本昂贵,实施困难,实用效果也不理想。第2种方法,主要是从腐蚀控制的角度来考虑的,对飞溅区不能有效发挥作用,并且这2种方法仅适用于新建的海洋钢结构,对已建结构实施则较为困难。第3种方法是目前采用的,效果较好,但需要每隔2~3年定期进行清除作业,因该项作业受海 况的影响大,作业时效低、风险大,成本较高。 在摒除各种传统方法的不足和充分考虑海洋坏境力学特点的基础上,一种比较理想的、采用防海生 物装置(Marine Grow th Preventer,简称M GP)进行海生物防治的技术问世,并在近20年得到迅速发展和应用。 防海生物装置(见图1、图2)是由工程塑料做成的环状结构,该装置可以放置在海洋结构物如导管架的各竖向、斜向、横向构件上,在涌浪、潮汐、海流等海洋自然力的连续作用下,不断地撞击构件并沿着构件做往复运动,即可以对已有的海生物进行清除,又可以防止使海生物赖以生存的各种微生物、浮游生物以及腐损物等附着在构件上,从而使海生物的生长得到有效的控制。据统计,MGP 的使用寿命一般在10年以上,它既可用于已固定的海洋结构上,也可以在结构物下水安装之前预先安装在相应的构件上。从经济上讲,该方法要比定期进行海生物清除的方法节省70%左右的投资。 图1 多环M GP I 第15卷第1期中国海上油气(工程) Vol 115,No 11 2003年2月 CH INA OFFSH ORE OIL AND GAS (ENGINEERING) Feb.,2003

海洋石油平台课程设计

海洋石油平台课程设计

《海洋石油平台设计》课程设计

目录 第一章综述 (1) 1.1 平台概述 (1) 1.1.1 海洋平台的分类 (1) 1.1.2海洋平台结构的发展历史及现状 (2) 1.1.3海洋平台结构的发展趋势 (3) 1.2 海洋环境荷载 (4) 1.2.1海风荷载 (4) 1.2.2海流荷载 (4) 1.2.3波浪荷载 (5) 1.2.4海冰荷载 (6) 1.2.5地震作用 (6) 1.3 ANSYS软件介绍 (7) 1.3.1 ANSYS 的发展历史 (7) 1.3.2 基本功能 (7) 1.3.3分析过程 (8)

第二章导管架平台整体结构分析 (12) 2.1 导管架平台简介 (12) 2.2 平台整体模型建立 (12) 2.2.1工程实例基本数据: (12) 2.2.2平台几何模型的建立 (13) 2.3、波流耦合作用下导管架平台整体结构 静力分析 (20) 2.3.1结构整体静力分析 (20) 2.3.2 静力结果分析 (23) 2.4 导管架平台整体结构模态分析 (26) 2.4.1结构模态计算 (26) 2.4.2观察模态分析结果 (26) 2.5 波浪作用下平台结构瞬态动力分析30 2.5.1瞬态动力分析 (30) 2.5.2动力分析结果处理 (33) 第三章平台桩腿与海底土相互作用模拟 (37) 3.1 基础数据 (37)

3.2前处理过程 (38) 3.3静力求解计算 (42) 3.4 结构模态分析 (47) 第四章总结 (53)

第一章综述 1.1 平台概述 海洋平台是一种海洋工程结构物,它为开发和利用海洋资源提供了海上作业与生活的场所。随着海洋开发事业的迅速发展,海洋平台得到了广泛的应用,如海底石油和天然气的勘探与开发、海底管线铺设、海洋波浪能的利用、建造海上机场及海上工厂等。目前应用海洋平台最为广泛的领域当属海上油气资源的勘探与开发。用于海上油气资源勘探与开发的洋平台按功能划分主要分为钻井平台和生产平台两大类,在钻井平台上设有钻井设备,在生产平台上则设有采油设备。若按结构型式及其特点来划分,海洋平台大致可分为三大类固定式平台、移动式平台和顺应式平台。 1.1.1 海洋平台的分类 1.固定式平台 固定式平台靠打桩或自身重量固定于海底,目前用于海上石油生产阶段的大多数是固 定式平台,它又可分为桩式平台和重力式平台两个类别。桩式平台通过打桩的方法固定于海底,其中的钢质导管架平台是目前海上使用最广泛的一种平台;而重力式平台则是依靠自身重量直接置于海底,这种平台的底部通常是一个巨大的混凝土基础沉箱,由三个或四个空心的混凝土立柱支撑着甲板结构。 2.移动式平台 移动式平台是一种装备有钻井设备,并能从一个井位移到另一个井位的平台,它可用于海上石油的钻探或生产。移动式平台可分为坐底式平台、自升或平台、钻井船和半潜式平台四个类别。坐底式平台一般用于水深较浅的海域,工作水深通常在60米以内;自升式平台具有能垂直升降的桩腿,钻井时桩腿着底,平台则沿桩腿升离海面一定高度,移位时平台降至水面,桩腿升起,平台就像驳船可由拖轮把它拖移到新的井位。自升式平台的优点主要是所需钢材少,造价低,在各种情况下都能平稳地进行钻井作业,缺点是桩长度有限,使它的工作水深受到限制,最大的工作水深约在120米左右;钻井船是在船中央设有井孔和井架,它靠锚泊系统或动力定位装置定位于井位上。它漂浮于水面作业,能适应更大的水深,同时它的移动性能最好,便于自航。但由于它在波浪上的运动响应大,稍有风浪就会引起很大的运动,使钻井作业无法再进行下去,风浪更大时船还得离开井位,这是钻井船得不到大发展的主要原因;半潜式平台是由坐底式平台演变而

导管架式海洋平台的主动控制问题研究

上海交通大学硕士学位论文目录 目录 第一章绪论 (1) 1.1研究目的与意义 (1) 1.2海洋平台振动控制研究现状 (2) 1.2.1被动控制技术 (2) 1.2.2主动控制技术 (4) 1.2.3半主动控制技术 (6) 1.2.4混合控制技术 (6) 1.3本文内容 (6) 第二章海洋平台的低维动力学建模与主动控制 (8) 2.1引言 (8) 2.2海洋平台有限元模型 (9) 2.2.1平台基本情况 (9) 2.2.2有限元模型 (10) 2.2.3状态方程 (13) 2.3低维动力学建模 (14) 2.3.1 OKID技术 (14) 2.3.2 ERA方法 (18) 2.4控制律的设计 (19) 2.5数值仿真 (21) 2.5.1低维模型仿真 (21) 2.5.2主动控制仿真 (24) 2.6本章小结 (28) 第三章海洋平台的载荷识别与主动控制 (29) 3.1引言 (29) 3.2独立模态空间控制与模态滤波器 (30) 3.2.1动力学方程 (30) 3.2.2独立模态空间控制 (30) 3.2.3模态滤波器的设计 (32) V 万方数据

上海交通大学硕士学位论文目录 3.3离散变结构控制 (33) 3.3.1切换面的设计 (34) 3.3.2控制律的设计 (36) 3.4数值仿真 (38) 3.4.1模态滤波器仿真 (38) 3.4.2转换面的确定 (41) 3.4.3变结构控制和扰动力观测器仿真 (41) 3.5本章小结 (51) 第四章海洋平台振动控制作动器的位置优化 (52) 4.1引言 (52) 4.2优化准则 (54) 4.3粒子群优化算法 (55) 4.4数值仿真 (56) 4.5本章小结 (60) 第五章总结与展望 (61) 5.1全文总结 (61) 5.2主要创新点 (62) 5.3研究展望 (62) 参考文献 (63) 致谢 (71) 攻读学位期间发表的学术论文······························································错误!未定义书签。 VI 万方数据

海洋钻井平台的分类

海洋钻井平台分类 海上钻井平台主要用于钻探井的海上结构物。上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施。海上油气勘探开发不可缺少的手段。 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动式平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台 (2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台 坐底式钻井平台

坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台

基于ANSYS的导管架平台强度分析

142 1?概述 导管架平台主要由两大部分组成。一部分是支承结构,由导管架和钢管桩组成,用来支承上部设施与设备的基础结构;一部分是上部设施与设备,由甲板与其上的设备组成,作为收集和处理油气、生活及其他用途的场所 [1] 。导管架是由腿柱和连接腿柱的纵横杆系所构成的空间构架。 在实际的平台设计中,要根据不同的海域,选取不同 的波浪理论来计算结构的波浪力。目前对于二维波浪理论的各种求解算法已经有了许多的研究应用,但在国内的大型平台结构分析系统方面仍有很多工作有待解决[2]。在现代的平台设计中,用人工去简化作用在结构上的波浪荷载已不切实际,所以解决大型导管架平台结构分析中的波浪荷载自动处理问题有实际意义。 2?PIPE59单元特点和模拟方法 ANSYS软件中的PIPE59单元是与空间梁单元类似的单元,能够计算圆管形构件的流体静力和动力效应[3,4]。利用这些特点,考虑用该单元模拟海流载荷,通过输入单元控制参数,就可以自动模拟海流特性。 波浪通过导管架平台时,随着地震相位周期性的变化,对平台结构的作用力也在作周期性的变化。为此按照一定的步长对相位角(0~360?o )进行等分,编程计算求得环境载荷从8个方向施加时每个方向产生最大作用的相位角,计算结果见表1。 表1?相位角计算结果 载荷方向0?o 45?o 90?o 135?o 相位角350?o 336?o 342?o 4?o 载荷方向180?o 225?o 270?o 315?o 相位角 28?o 41?o 36?o 14?o 3?导管架平台强度分析3.1?结构计算模型 采用ANSYS软件构建其有限元模型,取甲板主梁组成 的梁格和导管架各构件作为梁单元组成的空间结构(见图1)。采用PIPE16和PIPE59单元模拟导管架,采用BEAM 单元模拟平台梁格,模型共计598个单元,527个节点。建模中应考虑在泥面处设断点,泥面上下模型赋值不同单 元。 图1?ANSYS有限元分析模型 根据规范,可将桩的下部模拟为刚性固定端,刚性固定端位于设计泥面垂直以下T (m)处[6]。设计泥面的位置在自然泥面下的距离应按地质条件决定。T 值可按经验公式确定: T =6D (1) 式中:D —桩外径,m。 3.2?组合工况分析 3.2.1?冰载荷 在风和流作用下,大面积冰原挤压垂直孤立桩柱产生的冰载荷的计算方法,导管架所受的最大冰力为: F I =m ×K 1×K 2×σc ×D ×h (2) 式中:K 1、K 2—桩的局部挤压系数和桩与冰层接触系数;m —桩的形状系数,园柱体取0.9;σc —冰的单轴极限抗压强度(KPa),2244KPa;D —导管架直径(m);h —冰层厚度(m)。 3.2.2?风载荷 最大风速为45m/s,方向0?o 、45?o 、90?o 、135?o 、180?o 、225?o 、270?o 、315?o 。风荷载计算公式为: 基于ANSYS的导管架平台强度分析 任红伟 中石化胜利石油工程有限公司钻井工艺研究院?山东?东营?257000 摘要:导管架平台的波浪力分析是设计中的难点,利用ANSYS软件中PIPE59单元的浮力、波浪及海流荷载计算功能,通过控制单元参数可达到自动模拟海流载荷目的。在Water?Table菜单中分别输入8个方向波流参数,其中疲劳分析考虑的是平台在一个周期里受到的最大和最小波浪载荷,编程计算求出每个方向产生最大作用的相位角。通过建模分析,得到8种工况下结构位移和导管架各点应力。 关键词:导管架平台?强度分析?海流载荷?PIPE59单元 ?Strength?analysis?of?jacket?platform?based?on?ANSYS Ren?Hongwei Drilling Technology Research Institute ,Shengli Petroleum Engineering Co.,Ltd.,Dongying 257000,China Abstract:The?wave?force?analysis?is?difficult?in?design?for?jacket?platform.?PIPE59?element?in?ANSYS?software?has?the?function?of?computing?buoyancy,wave?and?current?load.?The?current?load?can?be?simulated?automatically?by?adjusting?the?unit?parameters.?The?wave?flow?parameters?of?eight?directions?were?input?in?the?Water?Table?menu?respectively.?Fatigue?analysis?needs?the?maximum?and?minimum?of?wave?load?in?a?cycle?of?platform,programming?to?calculate?the?phase?angle?of?maximum?effect?in?each?direction.?By?modeling?analysis,the?structural?displacement?and?stress?at?various?points?of?jacket?is?obtained?in?eight?kinds?of?conditions. Keywords:jacket?platform;strength?analysis;current?load;PIPE59?element

相关文档
最新文档