像素级多传感器图像融合新方法研究

像素级多传感器图像融合新方法研究
像素级多传感器图像融合新方法研究

像素级多传感器图像融合新方法研究

像素级图像融合是将同类或异类传感器采集到的关于同一场景或目标的图

像经过一定的处理,综合成一幅图像,从而获得对同一场景或目标更为准确、全面、可靠的图像描述,是图像处理与计算机视觉领域中多传感器图像信息综合利用的重要手段。随着图像传感技术的发展,像素级图像信息融合已经成为军事、遥感、医学、工业、交通等领域信息综合处理的重要技术。

由于图像传感器种类繁多,应用环境各不相同,所以图像融合算法也是各种

各样。相对于国外的研究,国内研究起步较晚,其理论以及技术水平亟待提高。

本文在深入分析了现有图像融合理论的基础上,结合目前图像处理发展的最新理论,构建了两种新型图像融合框架,提出了稀疏表示域图像融合新方法。在这三种新型图像融合框架下,结合不同图像融合任务的特点,提出了一系列新型像

素级图像融算法。

另外针对高速公路智能交通系统的需求,本文还提出了多时相图像融合技术和基于特征融合的车牌检测技术,解决了高速公路智能交通系统中监控和信息获取两个重要环节的关键问题。本文主要研究成果如下:1.混合多分辨率分析图像融合传统像素级图像融合算法往往只考虑一种图像多分辨率分析方法,融合算法性能很难获得较大的突破。

这是因为任何一种图像多分辨率变换基函数的构造都有严格的限制,使其在表达图像特征时存在一定程度的局限,例如小波变换不能表达图像边缘信

息,Curvelet变换不能很好地表达图像细节。由于无法全面表达图像信息,仅通

过改变系数融合规则很难进一步提高图像融合算法性能。

实际上,不同多尺度几何分析方法之间存在互补特性。例如小波变换适合表

示源图像中的纹理、角点等细小特征,而Curvelet和Contourlet变换适合表示源图像的边缘和线信息。

基于此本文在通过大量的对比实验以及理论分析的基础上,提出了图像的混合多分辨率分析理论,将具有互补特性的不同图像变换方法以串联的形式结合,获得图像的混合多分辨率分解,并进一步构建了混合多分辨率分析图像融合框架,在混合多分辨率分解域内对分解系数进行融合,最后通过逆变换得到融合图像。在该框架指导下,我们结合小波变换与Curvelet变换的互补特性以及静态小波变换与非下采样Contourlet变换的互补特性,实现了两种基于混合多分辨率分析的图像融合方法。

仿真实验显示这两种方法都能很好地保留源图像的细节信息,融合图像质量比单纯使用小波、Curvelet或Contourlet得到的融合图像质量有明显改进。特别地,混合静态小波与非下采样Contourlet变换的多分辨率分析方法还能很好地保持图像变换的移不变特性,使得待融合源图像存在误配准时仍能取得高质量融合图像。

2.多聚焦图像区域级融合多聚焦图像融合能够突破光学镜头景深的物理限制,获得场景中所有目标聚焦清晰的合成图像,是许多机器视觉处理任务,如边缘检测、图像分割、目标识别等的关键技术。在传统多聚焦图像融合框架下,融合规则只考虑了源图像单个像素特征或其变换域系数的局部邻域特征,通常是在损失部分清晰特征的情况下达到场景内所有目标的相对清晰,融合图像很难达到最优。

且对于没有或不能严格配准的源图像,根本无法得到满意的融合结果。针对这一国内外同行公认的难题,本文通过模拟手工获得理想多聚焦融合图像的剪与

贴方法,构建了分割合并相结合的多聚焦图像区域级融合框架。

在该框架下,算法自动选择源图像中最清晰的区域合成融合图像,克服了传统方法会损失源图像清晰特征的缺点。基于该框架,我们分别采用Normalized cut和Watershed图像分割算法以及图像空间频率和形态小波变换系数区域清晰度标准设计了两种区域级多聚焦图像融合算法,实验结果显示这两种算法能够得到近似“理想”的多聚焦融合图像。

另外,根据多聚焦图像融合的特点,本文还提出了根据图像清晰测度直接对图像进行分割,巧妙地通过比较源图像空间频率特征来得到清晰区域与模糊区域的模板,进一步提高了算法效率。3.稀疏表示域图像融合稀疏表示理论是继小波、Curvelet等多分辨率表示方法后一种新型的信号表示理论,具有稀疏的信号表

示形式,更加符合人的视觉特性。

图像稀疏系数能够更加准确地表达图像显著信息的特点也使其非常适合图像融合任务。然而,稀疏表示理论与小波变换有着不同的变换形式,基于传统多分辨率分解的图像融合框架并不适用于稀疏表示。

本文针对稀疏表示的特点,并考虑到图像融合处理局部显著信息的特点,提出了滑窗技术,在此基础上提出了稀疏表示域图像融合方法。在新的图像融合方法指导下,我们首先提出了多聚焦图像稀疏表示域的融合算法,并对其进一步扩展实现图像恢复融合,在源图像受噪声干扰时,仍能取得非常好的去噪和融合结果。

另外经理论分析发现,当进行多模图像融合时,不同的源图像可能分解到过完备稀疏字典不同的子集上,使得稀疏系数的融合规则难于设计。对此本文提出利用同步正交匹配追踪的图像稀疏表示算法来保证异质图像的稀疏表示系数一

一对应。

大量的仿真比较实验结果显示基于稀疏表示的图像融合方法能够大幅提高

融合图像质量。压缩传感是图像稀疏表示理论的重要应用之一,其一经提出就受到了国内外学者的高度关注,2007年被美国科技评论评为年度十大科技进展之一。

该理论指出在稀疏约束下,可压缩的信号/图像可从远低于Nyquist标准的

压缩采样数据中精确地恢复出来。本文充分结合遥感图像的成像原理,光照特性以及传感器的光谱反应特性,构造了遥感图像压缩传感模型,将遥感图像融合问

题转化为具有线性约束的信号恢复问题,并在图像稀疏表示域图像融合框架下,

提出了一种基于压缩传感理论的稀疏表示域遥感图像融合算法。

在Quickbrid卫星和IKONOS卫星数据上的仿真实验证明该方法能够得到比传统方法更好的融合图像。4.图像信息融合技术在智能交通监控系统中的应用智能交通系统是从根本上解决日益严重的交通问题的一个新型技术手段,它可以为交通部门提供及时、准确的交通信息,从而最大效能的发挥交通管理系统在交通监视、交通控制等方面的作用。

然而与我国高速公路建设的快速发展相比,智能交通系统的发展则相对落后。随着日益严重的地面交通问题的出现,开发稳定有效的智能交通系统势在必行。

智能交通系统首要任务就是视频监控,然而由于夜间能见度的不足,监控摄

像机不能采集到足够的信息,这给视频监控带来了一定的难题。对此本文设计了一种梯度域多时相图像融合方法,将夜间图像与白天背景图像进行融合,提高了

夜间图像中背景的质量,改善了高速公路夜间视频监控的能力。

交通信息的获取是交通信息服务系统的重要组成部分,其核心为运动汽车车

牌的自动检测与识别。针对传统算法检测率不高,后续处理压力较大的问题,本文提出了基于特征融合的车牌检测技术,同时考虑了车牌区域扩展Haar特征和边缘方向直方图特征,使得车牌检测率有显著提高,仿真实验证实了本文算法的有效性。

论文最后总结了全文的主要工作和创新性研究成果,并对下一步研究工作进行了展望。

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.360docs.net/doc/3217533609.html,/Periodical_jqr2003z1037.aspx

实验五_不同分辨率图像融合

实验五不同分辨率图像融合 一实验目的 通过本次实验了解图像数据融合的基本原理和基本思路,学会利用ERDAS软件进行不同分辨率图像之间的融合,并对不同数据融合方法进行分析和比较,掌握不同数据融合方法的基本操作。 二实验原理 在遥感中,数据融合属于一种属性融合,它是将同一地区的多源遥感影像数据加以智能化合成,产生比单一信息源更精确、更完全、更可靠的估计和判断。 在ERDAS是指分辨率融合(Resolution Merge)是对不同空间分辨率遥感图像的融合处理,使处理后的遥感图像既具有较好的空间分辨率,又具有多光谱特征,从而达到图像增强的目的。 一般来说,遥感影像的数据融合分为预处理和数据融合两步: 1.预处理:主要包括遥感影像的几何纠正、大气订正、辐射校正及空间配准 (1)几何纠正、大气订正及辐射校正的目的主要在于去处透视收缩、叠掩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响; (2)影像空间配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。空间配准的精度一般要求在1~2个像元内。 2.ERDAS软件提供了三种图像融合方法: 1、主成分变换融合(Pinciple Component) 主成分变换融合是建立在图像统计特征基础上的多维线性变换,具有方差信息浓缩、数据量压缩的作用,可以更准确地提示提示多波段数据结构内部的遥感信息,常常是以高分辨率数据替代多波段数据变换以后的第一主成分来达到融合的目的。具体过程是首选对输入的多波段遥感数据进行主成分变换,然后以高空间分辨遥感数据替代变换以后的第一主成分,最后再进行主成分逆变换,生成具有高空间分辨率的多波段融合图像。 2、乘积变换融合(Mutiplicative) 乘积变换融合应用最基本的乘积组合算法直接对两种空间分辨率的遥感数据进地合成,即Bi_new=Bi_m*B_h,其中Bi_new代表融合以后的波段数值(i=1,2,3,..n),Bi_m表示多波段图像中的任意一个波段数值,B_h代表高分辨率遥感数据。乘积变换是由crippen的4种分析技术演变而来的,cippen研究表明:将一定亮度的图像进行变换处理时,只有乘法变换可以使其色彩保持不变。 3、比值变换融合(Brovey Transform) 比值变换融合是将输入遥感数据的3个波段按照下列公式进行计算,获得融合以后各波段的数据:Bi_new=[Bi_m/(Br_m+Bg_m+Bb_m)]*B_h,其中Bi_new代表融合以后的波段数值(i=1,2,3),Br_m,Bg_m,Bb_m分别代表多波段图像中的红绿蓝波段数值,Bi_m表示红、绿、蓝3波段中的任意一个,B_h代表高分辨率遥感数据。 三实验内容 数据融合:主成分变换融合(Pinciple Component),乘积变换融合(Mutiplicative),比值变换融合(Brovey Transform) 四实验数据

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多传感器信息融合

多传感器信息融合

0前言 移动机器人的定位问题是提高移动机器人自主能力的关键问题之一。具体来说,定位是利用先验环境地图信息、机器人位姿的当前估计及传感器的观测值等输入信息,经过一定的处理和变换,产生更加准确地对机器人当前位姿的估计。机器人的定位方式有很多种,如,基于光电寻线的定位、基于声纳的机器人自主定位、基于全景视觉的定位及基于激光测距的定位等。可以看出:机器人的定位方式取决于所采用的传感器。目前,在移动机器人上使用较多的传感器有视觉传感器、里程计和惯导系统、超声传感器、激光测距仪、GPS 定位系统等。其中,视觉传感器具有信息量大、感应时间短的优点,但往往获得的数据噪声大、信息处理时间长;激光传感器在测距范围和方向上具有较高的精度,但价格昂贵;超声波传感器虽然角度分辨力较低,但它处理信息简单、成本低、速度快,因此,在自主移动机器人上得到了广泛的应用;里程计是一种相对定位传感器,它通过累计计算得到定位信息,缺点是存在累计误差问题,因此,可结合绝对定位传感器,如超声传感器等,提供较准确的定位。各传感器都有它自己的局限性,因此,移动机器人往往同时装备多种传感器,各自提供关于机器人定位的消息。目前的趋势是:根据传感器的可靠性。使用不同类型的传感器来测量相关数据。本文采用扩展卡尔曼滤波( EKF) 技术,将里程计和超声波传感器所提供的数据进行融合定位。 1 机器人运动模型的建立 由于移动机器人机构复杂,为了便于构造运动学模型与规划控制机器人的位姿,本文选择两轮驱动小车作为运动平台。将整个机器人本体看作一个刚体,车轮视为刚性轮,并在运动不是太快而转弯半径较大时,不考虑车轮与地面侧向滑动的情况,其简化运动学模型如图1 所示。

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

多传感器图像融合算法研究开题报告汇总

毕业(设计)论文 开题报告 系别自动化系 专业自动化 班级 191102 学生姓名 学号 指导教师 报告日期 2015-3-30

毕业(设计)论文开题报告表 论文题目多传感器图像融合算法研究 学生姓名学号114434 指导教师 题目来源(划√)科研√生产□实验室□专题研究□ 论文类型(划√)设计□论文√其他□ 一、选题的意义 数字图像融合是将两个或者两个以上的传感器在同一时间(或不同时间)获取的关于某个具体场景的图像或者图像序列信息加以综合,以生成一个新的有关此场景的解释,而这个解释是从单一传感器获取的信息中无法得到的。图像融合的目的是减少不确定性,其作用包括:(1)图像增强。通过综合来自多传感器(或者单一传感器在不同时间)的图像,获得比原始图像清晰度更高的新图像。(2)特征提取。通过融合来自多传感器的图像更好地提取图像的特征,如线段,边缘等。(3)去噪。(4)目标识别与跟踪。(5)三维重构。 图像融合技术(Image Fusion Technology)作为多传感器信息融合的一个非常重要的分支——可视信息融合,近二十年来,引起了世界范围的广泛关注和研究。图像融合是一门综合了传感器技术、图像处理、信息处理、计算机和人工智能等多种学科的现代高新技术。图像融合的主要思想是采用一定的算法,把来自多个传感器的多幅图像综合成一幅新图像,使融合后的图像具有更高的可信度,较少的不确定性以及更好的可理解性,融合后的图像比原来的图像更加清晰可靠,易于分辨,最终得到在任何一幅单独的原始图像中无法表现的某些特征,可为分类识别系统提供更加完备的数据集。 图像融合的基本原理就是在对同一目标的采用不同传感器所获得的图像,或者同一传感器在不同时间、不同角度所获得的图像在经过像素级配准之后,利用其在信息表达上的互补性和冗余性,根据一定的融合法则合成一幅满足某种要求的新的图像。因此,图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,实现多幅源图像信息的综合,已达到人们的某种需要。 最近这些年来,在军事领域与民事领域的各种各样种类繁多的需求牵引之下,

多传感器图像融合应用研究

原野林宏中国人民解放军61855 部队韩晓静中国人民解放军61741 部队 肖舟旻中国人民解放军重庆通信学院邢劭谦中国人民解放军61855 部队 【摘要】多传感器图像融合的应用表现在多个领域中,航空航天、军事、医疗,以及其他高新技术产业,图像融合条件下,多传感器能够将数字化信号反应在图像中,并把图像特征充分的发挥出来。经多维度、多测度空间处理,多源信息图像的应用功能会愈加丰富、多样,不仅图像的信号层、像素层、特征层能够有机的融合在一起,其还会展现出不同种类、风格的融合图像。 【关键词】多传感器图像融合影响因素应用研究 在光学、电子学、摄影技术,以及传感器技术、计算机技术的多重应用表现下,图像融合这一科研课题迅速发展起来。传感器作为一种检测装置,在信息测量、信号编辑方面拥有强大的功能优势,它不但能在复杂环境下接收图像信号,还能将多重信号一一过滤、整合在一起,形成融合型图像。 一、传感器图像融合技术分类 1、信号https://www.360docs.net/doc/3217533609.html,层。传感器接收的是源信号,所以相对于信号层的图像融合,与其他种类相比,其图像质感、表现更好,因为首先信号的误差小、传感器信号处理能力强,微小、弱势的信号都可以被检测、处理到。信号层信号会混有随机噪声影响,该信号在估量过程会发生阶段性改变,因此需要精准确定、对比信号频率才行。 2、像素层。像素层图像代表的是不同程度的像素信息内容,与信号信息不同,它具有一定的特征性,多半以图像的形式展现出来。为了让图像能够最真实、细腻的传输信号,传感器会依靠滤波功能,对同种像素级的图像信息源进行映射处理,以谋求图像信息源在融合后产生交互影响,进而的形成丰富多元的融合图像。如果各传感器参加融合的图像具有不同分辨率,则需要在映射处理的基础上,对图像信号源进行细致、精密的对准和校对,从高到底像素级,一步步提取、融合图像信号源的各特征信息。 3、特征层。特征层体现在传感器信息数据的融合特征,与信号层和像素层存在某种联系,信号的原始特征、图像信息源的特征,都能够透过信息的“特殊含义”所展现出来,也就是说,在某特殊区域、特殊范围、特殊时间内,如果要求传感器信息融合处理,那么首当其冲的便会是特征层的信号内容,因为其在边界提取、同密度或同景深区域表示等方面存在较大差异,亦容易被发觉、应用。 二、多传感器图像融合应用研究 本文选择红外图像与可见光图像融合应用为研究对象,探索多传感器是如何实现图像融合的,红外信号具有感光、感温功能,在不同温度梯度环境中,红外图像所表现出来的信号内容是存在明显差异的。可见光图像与其相比,可以展现、表露出诸多图像上的信息细节,如:局部高度、表征状态,以及光感亮度等等。该项技术应用在军事领域,军人要在夜晚的环境中组织进攻,必博闻新闻须通过红外传感器探索、检测周边环境,在将其与可见光图像融合,展现夜晚环境下真实的地区环境状态,使军人犹如在白天作战。 为了进一步丰富红外图像与可见光图像的融合效果,技术人员选择了特征层图像融合技术,它首先利用红外传感器把周边环境的探索信号、内容搜集过来,再由滤波器、信号编辑器、图像处理装置,将其复制粘贴到传统可见光图像中,使检测到的信号发挥图像编辑、处理能力,通过信号的变化、编辑处理,使图像展现可变的几何图形、方向、位置,以及特征的时域范围情境状态。红外传感器检测到的图像数据是信号翻译过来的,所以准度较高,可达到中级,如果精度要求还有待提升,可通过提高红外传感器检索信号的频率和波长,提高图像数据的精度级别。此外,在把红外传感器中的众多图像信号进行压缩处理的过程中,可见光

一种改进多分辨率图像融合算法

第32卷第9期 光电工程V ol.32, No.9 2005年9月 Opto-Electronic Engineering Sept, 2005文章编号:1003-501X(2005)09-0055-04 一种改进多分辨率图像融合算法 杨平先,孙兴波 (四川理工学院电子与信息工程系,四川自贡 643000) 摘要:提出一种基于局部熵的多分辨图像融合算法。利用小波变换得到待融合图像的多分辨结构,同时得到图像的多分辨局部熵序列。以局部熵为判据,在图像多分辨结构相应各级上进行融合,得到融合图像的多分辨结构,利用小波逆变换重构融合图像。实验结果表明,该图像融合方法在保留TM多光谱图像光谱分辨率的同时,通过融合SPOT全色图像提高了空间分辨率,丰富了图像细节信息。 关键词:局部熵;多分辨分析;图像融合;小波变换 中图分类号:TP391文献标识码:A Improved algorithm for image fusion based on multi-resolution analysis YANG Ping-xian,SUN Xing-bo (Deptartment of Electronic Engineering,Sichuan University of Science&Engineering,Zigong 643000,China) Abstract:This paper introduces a local entropy-based multi-resolution image fusion technique. The algorithm consists of three steps: First,decomposing the input multi-spectral image by wavelet transform to obtain the multi-resolution local entropy sequences of each input image. Second, according to local entropy-based criterion,the multi-resolution analysis of the fused image can be obtained on the corresponding levels of the multi-resolution analysis of the input images. Finally,the output image can be obtained through inverse wavelet transform. Experiment results show that image details are enriched while spectral solution of TM image is reserved by fusing TM image with SPOT image with the image fusion method. Key words:Local entropy;Multi-resolution analysis;Image fusion;Wavelet transform 引言 随着成像技术的发展,图像数据可以从多个不同传感器获得,由于单独的图像传感器提供的信息往往是有限的,因此通常需要其他的图像传感器提供辅助信息,国内外的研究现状表明,对于利用图像融合算法对多源遥感图像中像素进行分类,从而实现图像分割这类问题,解决的主要途径包括统计模型,证据理论和神经网络等。 针对多光谱TM图像和全色SPOT图像来说,TM图像具有较好的光谱分辨率,而SPOT图像空间分辨率较高,因此融合这两类图像可以在保留多光谱图像光谱分辨率的同时,提高其空间分辨率,从而可提高这类遥感图像目标识别的准确度和地构目标分类的精度。多光谱TM图像和全色SPOT图像进行融合的传统方法主要有:HIS变换,主成分分析,高通滤波等方法。 本文给出一种新颖算法,首先利用局部熵的概念对图像每点计算局部熵得到变换后新的图像序列,然

像素级多传感器图像融合新方法研究

像素级多传感器图像融合新方法研究 像素级图像融合是将同类或异类传感器采集到的关于同一场景或目标的图 像经过一定的处理,综合成一幅图像,从而获得对同一场景或目标更为准确、全面、可靠的图像描述,是图像处理与计算机视觉领域中多传感器图像信息综合利用的重要手段。随着图像传感技术的发展,像素级图像信息融合已经成为军事、遥感、医学、工业、交通等领域信息综合处理的重要技术。 由于图像传感器种类繁多,应用环境各不相同,所以图像融合算法也是各种 各样。相对于国外的研究,国内研究起步较晚,其理论以及技术水平亟待提高。 本文在深入分析了现有图像融合理论的基础上,结合目前图像处理发展的最新理论,构建了两种新型图像融合框架,提出了稀疏表示域图像融合新方法。在这三种新型图像融合框架下,结合不同图像融合任务的特点,提出了一系列新型像 素级图像融算法。 另外针对高速公路智能交通系统的需求,本文还提出了多时相图像融合技术和基于特征融合的车牌检测技术,解决了高速公路智能交通系统中监控和信息获取两个重要环节的关键问题。本文主要研究成果如下:1.混合多分辨率分析图像融合传统像素级图像融合算法往往只考虑一种图像多分辨率分析方法,融合算法性能很难获得较大的突破。 这是因为任何一种图像多分辨率变换基函数的构造都有严格的限制,使其在表达图像特征时存在一定程度的局限,例如小波变换不能表达图像边缘信 息,Curvelet变换不能很好地表达图像细节。由于无法全面表达图像信息,仅通 过改变系数融合规则很难进一步提高图像融合算法性能。 实际上,不同多尺度几何分析方法之间存在互补特性。例如小波变换适合表

示源图像中的纹理、角点等细小特征,而Curvelet和Contourlet变换适合表示源图像的边缘和线信息。 基于此本文在通过大量的对比实验以及理论分析的基础上,提出了图像的混合多分辨率分析理论,将具有互补特性的不同图像变换方法以串联的形式结合,获得图像的混合多分辨率分解,并进一步构建了混合多分辨率分析图像融合框架,在混合多分辨率分解域内对分解系数进行融合,最后通过逆变换得到融合图像。在该框架指导下,我们结合小波变换与Curvelet变换的互补特性以及静态小波变换与非下采样Contourlet变换的互补特性,实现了两种基于混合多分辨率分析的图像融合方法。 仿真实验显示这两种方法都能很好地保留源图像的细节信息,融合图像质量比单纯使用小波、Curvelet或Contourlet得到的融合图像质量有明显改进。特别地,混合静态小波与非下采样Contourlet变换的多分辨率分析方法还能很好地保持图像变换的移不变特性,使得待融合源图像存在误配准时仍能取得高质量融合图像。 2.多聚焦图像区域级融合多聚焦图像融合能够突破光学镜头景深的物理限制,获得场景中所有目标聚焦清晰的合成图像,是许多机器视觉处理任务,如边缘检测、图像分割、目标识别等的关键技术。在传统多聚焦图像融合框架下,融合规则只考虑了源图像单个像素特征或其变换域系数的局部邻域特征,通常是在损失部分清晰特征的情况下达到场景内所有目标的相对清晰,融合图像很难达到最优。 且对于没有或不能严格配准的源图像,根本无法得到满意的融合结果。针对这一国内外同行公认的难题,本文通过模拟手工获得理想多聚焦融合图像的剪与

多传感器图像融合技术综述

收稿日期:2002203217 作者简介:毛士艺(1935-),男,浙江黄岩人,教授,100083,北京. 多传感器图像融合技术综述 毛士艺 赵 巍 (北京航空航天大学电子工程系) 摘 要:对国内外多传感器图像融合技术的发展状况进行了介绍,描述了 图像融合的主要步骤,概括了目前主要图像融合方法的基本原理,并对各种方法的性能进行了定性分析.给出了评价图像融合效果的标准和方法,指出了图像融合技术的发展方向. 关 键 词:图像处理;图像合成;传感器;图像融合 中图分类号:T N 911.73文献标识码:A 文章编号:100125965(2002)0520512207 近20年,随着传感器技术和计算机计算能力的提高,多传感器图像融合技术的应用越来越广泛.在军事领域,以多传感器图像融合为核心内容的战场感知技术已成为现代战争中最具影响力的军事高科技.20世纪90年代,美国海军在SS N 2 691(孟菲斯)潜艇上安装了第1套图像融合样机,可使操纵手在最佳位置上直接观察到各传感器的全部图像[1],[2].1998年1月7日《防务系统月刊》电子版报道,美国国防部已授予BTG 公司2项合同,其中一项就是美国空军的图像融合设计合同,此系统能给司令部一级的指挥机构和网络提供比较稳定的战场图像.在遥感领域,大量遥感图像的融合为更方便、更全面地认识环境和自然资源提供了可能[3]~[5],其成果广泛应用于大地测绘、植被分类与农作物生长势态评估、天气预报、自然灾害检测等方面.1999年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CC D 相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围.在医学成像领域,CT 、MR 和PET 图像的融合提高了计算机辅助诊 断能力[6].2001年11月25日~30日在美国芝加哥召开了每年一度的RS NA 北美放射学会年会,在会议上GE 公司医疗系统部展销了其产品Dis 2covery LS.Discovery LS 是GE 公司于2001年6月 刚推出的最新PET/CT ,是世界上最好的PET 与最高档的多排螺旋CT 的一个完美结合,具有单体PET 不能比拟的优势.它可以完成能量衰减校正、 分子代谢影像(PET )与形态解剖影像(CT )的同机 图像融合,使检查时间成倍地降低.在网络安全领域,多尺度图像融合技术可将任意的图像水印添加到载体图像中,以确保信息安全[7]. 在各个应用领域的需求牵引下,各国学者对多传感器图像融合技术的研究也越来越重视.在多传感器信息融合领域中,图像融合是应用最为广泛,发表文献最多的一个方向.从文献[8]可看出,在参与统计的信息融合文章中,信号层的信息融合文章占53%.同时,我们做了这样一个调查,在Ei C om pendexWeb 数据库中用“image fusion ”作为关键词,检索从1980年到2001年摘要中出现这一词组的文章数目.1980年至1984年,这方面的文章只有4篇;1995年至1999年增加到603篇;2000年和2001年两年就有299篇.从中可以看出国际学术界对图像融合技术的重视程度与日俱增. 为了使国内同行对图像融合技术有一个较为全面的了解,本文在参考国内外文献的基础上,对目前常用的图像融合技术进行了概括和评述.文章首先介绍了图像融合研究的基本内容,将图像融合的概念界定到像素级;接着描述了各种图像融合技术的基本原理,对它们的优缺点进行了定性分析,给出了评价图像融合技术的方法. 1 多传感器图像融合技术研究内容 多传感器图像融合属于多传感器信息融合的范畴,是指将不同传感器获得的同一景物的图像   2002年10月第28卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2002V ol.28 N o 15

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

基于多传感器信息融合的智能机器人

基于多传感器信息融合的智能机器人 院-系:信息工程与自动化学院 专业:模式识别与智能系统 年级: 2011 级 学生姓名:朱丹 学号: 2011204082 任课教师:黄国勇 2011年11月

摘要 机器人多传感器信息融合是当今科学研究的热点问题。传感器是连接机器人智能处理过程与外界环境的重要纽带,一般智能机器人都配有数个不同种类的传感器。本文主要分析了多传感器系统在机器人当中的重要性和多传感器信息融合的基本原理,并探讨了多传感器信息融合技术在智能机器人中的应用。 关键词:智能机器人、多传感器、信息融合 引言 多传感器、信息融合技术与传统机器人的结合构成了智能机器人。要使机器人拥有智能,对环境变化做出反应,首先必须使机器人具有感知环境的能力。用传感器采集环境信息加以综合处理,控制机器人进行智能作业,更是机器人智能化的重要体现。在以往机器人智能领域的研究中,人们把更多的注意力集中到研究和开发机器人的各种外部传感器上。尽管在现有的智能机器人和自主式系统中,大多数使用了多个不同类型的传感器,但并没有把这些传感器作为—个整体加以分析,更像是—个多传感器的拼合系统。虽然在各自传感器信息处理与分析方面开展了大量富有成效的工作,但由于忽视了多传感器系统的综合分析,对提高智能系统的性能带来了不利影响,效率低下而且速度缓慢。 因此,多传感器信息融合技术较之单一传感器有非常大的数据准确度的优势,已经成为现在机器人研究领域的关键技术。 一、多传感器信息融合的基本原理 多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。人类本能地具有将人体的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物声音、气味和触觉)与先验知识进行综合的能力,以便对周围的环境和正在发生的事件做出估计。这一处理过程是复杂的,也是自适应的,它将各种信息(图像、声音、气味、物理形状、描述)转化成对环境的有价值的解释,这需要大量不同的智能处理,以及适用于解释组合信息含义的知识库。 多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特征:时变的或者非时变的;实时的或者非实时的;快变的或者缓变的;模糊的或者确定的;精确的或者不完整的;可靠的或者非可靠的;相互支持的或互补的;相互矛盾的或冲突的。 多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分地利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。信息融合的目标是基于各传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。

相关文档
最新文档