像素级多分辨图像融合技术概述

像素级多分辨图像融合技术概述
像素级多分辨图像融合技术概述

实验五_不同分辨率图像融合

实验五不同分辨率图像融合 一实验目的 通过本次实验了解图像数据融合的基本原理和基本思路,学会利用ERDAS软件进行不同分辨率图像之间的融合,并对不同数据融合方法进行分析和比较,掌握不同数据融合方法的基本操作。 二实验原理 在遥感中,数据融合属于一种属性融合,它是将同一地区的多源遥感影像数据加以智能化合成,产生比单一信息源更精确、更完全、更可靠的估计和判断。 在ERDAS是指分辨率融合(Resolution Merge)是对不同空间分辨率遥感图像的融合处理,使处理后的遥感图像既具有较好的空间分辨率,又具有多光谱特征,从而达到图像增强的目的。 一般来说,遥感影像的数据融合分为预处理和数据融合两步: 1.预处理:主要包括遥感影像的几何纠正、大气订正、辐射校正及空间配准 (1)几何纠正、大气订正及辐射校正的目的主要在于去处透视收缩、叠掩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响; (2)影像空间配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。空间配准的精度一般要求在1~2个像元内。 2.ERDAS软件提供了三种图像融合方法: 1、主成分变换融合(Pinciple Component) 主成分变换融合是建立在图像统计特征基础上的多维线性变换,具有方差信息浓缩、数据量压缩的作用,可以更准确地提示提示多波段数据结构内部的遥感信息,常常是以高分辨率数据替代多波段数据变换以后的第一主成分来达到融合的目的。具体过程是首选对输入的多波段遥感数据进行主成分变换,然后以高空间分辨遥感数据替代变换以后的第一主成分,最后再进行主成分逆变换,生成具有高空间分辨率的多波段融合图像。 2、乘积变换融合(Mutiplicative) 乘积变换融合应用最基本的乘积组合算法直接对两种空间分辨率的遥感数据进地合成,即Bi_new=Bi_m*B_h,其中Bi_new代表融合以后的波段数值(i=1,2,3,..n),Bi_m表示多波段图像中的任意一个波段数值,B_h代表高分辨率遥感数据。乘积变换是由crippen的4种分析技术演变而来的,cippen研究表明:将一定亮度的图像进行变换处理时,只有乘法变换可以使其色彩保持不变。 3、比值变换融合(Brovey Transform) 比值变换融合是将输入遥感数据的3个波段按照下列公式进行计算,获得融合以后各波段的数据:Bi_new=[Bi_m/(Br_m+Bg_m+Bb_m)]*B_h,其中Bi_new代表融合以后的波段数值(i=1,2,3),Br_m,Bg_m,Bb_m分别代表多波段图像中的红绿蓝波段数值,Bi_m表示红、绿、蓝3波段中的任意一个,B_h代表高分辨率遥感数据。 三实验内容 数据融合:主成分变换融合(Pinciple Component),乘积变换融合(Mutiplicative),比值变换融合(Brovey Transform) 四实验数据

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多聚焦图像融合源代码

针对经典的最大系数法不准确和方差法计算量大的问题,本文给出了一种混合多级式多聚焦图像融合方法。对于三层小波分解的多聚焦图像融合,每幅图像被分解为三层十个频带。对这十个频带本文分别采用三种方法进行融合。对于低频系数,本文仍然采用求平均法;对于高频系数本文采用方差法和最大系数法进行融合。它们的计算量比最大系数法大一些,但是融合结果更接近于原始清晰图像,而相比于方差法,它们的计算量小的多,但是融合质量稍差一些,应用者可以根据不同的需要进行选择。 本文还给出了一种基于Canny算 子边缘检测的小波变换多聚焦图像融 合方法。首先对图像进行三层小波分 解,然后用Canny算子进行边缘检测, 得到各层分辨率下的边缘图像;对相 应分辨率的高频小波系数根据其是否 为图像的边缘点采用最大系数法或方 差法分别进行融合。仿真实验证明该 方法效果良好,计算量可以灵活调节。 关键词:小波变换;多尺度几何分析;多聚焦图像融合;边缘检测主要程序: clear all; close all; leo1=imread('a1.bmp');%读入图片 leo2=imread('a2.bmp') T=0.4;k1=0.5;k2=0.5;w='db4';m='edge'; tic; outdoor1=leo1; outdoor2=leo2; %三层小波分解 [ca11,chd11,cvd11,cdd11]=dwt2(outdoor1,w); [ca12,chd12,cvd12,cdd12]=dwt2(ca11,w); [ca13,chd13,cvd13,cdd13]=dwt2(ca12,w); [ca21,chd21,cvd21,cdd21]=dwt2(outdoor2,w); [ca22,chd22,cvd22,cdd22]=dwt2(ca21,w); [ca23,chd23,cvd23,cdd23]=dwt2(ca22,w); %求边缘图像 e11=edge(ca11,'canny',T); e12=edge(ca12,'canny',T); e13=edge(ca13,'canny',T); e21=edge(ca21,'canny',T); e22=edge(ca22,'canny',T); e23=edge(ca23,'canny',T); %矩阵融合 chd3=matfusion(chd13,chd23,e13,e23); cvd3=matfusion(cvd13,cvd23,e13,e23); cdd3=matfusion(cdd13,cdd23,e13,e23); chd2=matfusion(chd12,chd22,e12,e22); cvd2=matfusion(cvd12,cvd22,e12,e22); cdd2=matfusion(cdd12,cdd22,e12,e22); chd1=matfusion(chd11,chd21,e11,e21); cvd1=matfusion(cvd11,cvd21,e11,e21); cdd1=matfusion(cdd11,cdd21,e11,e21); ca3=k1*ca13+k2*ca23; %反小波变换 L2=size(chd2);L1=size(chd1); ca2=idwt2(ca3,chd3,cvd3,cdd3,w); ca1=idwt2(ca2(1:L2(1),1:L2(2)),chd2,cvd2,cd d2,w); I=idwt2(ca1(1:L1(1),1:L1(2)),chd1,cvd1,cdd1, w);

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

多聚焦图像融合算法研究

本科毕业设计论文题目多聚焦图像融合算法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 任务书 一、题目 多聚焦图像融合算法研究 二、指导思想和目的要求 本题目来源于科研,主要研究多聚焦图像的概念,学习多聚焦图像的常用融合算法,进而实现相关算法。希望通过该毕业设计,学生能达到: 1.利用已有的专业知识,培养学生解决实际工程问题的能力; 2.锻炼学生的科研工作能力和培养学生团队合作及攻关能力。 三、主要技术指标 1.学习多聚焦图像的特点; 2.研究多聚焦图像的融合算法; 3.实现多聚焦图像的融合。 四、进度和要求 第01周----第02周: 参考翻译英文文献; 第03周----第04周: 学习多聚焦图像的特点; 第05周----第08周: 研究多聚焦图像的融合算法; 第09周----第14周: 编写多聚焦图像的融合程序; 第15周----第16周: 撰写毕业设计论文,论文答辩。 五、主要参考书及参考资料 1.张德丰.MATLAB 数字图像处理[M].北京:机械工业出版社,201 2. 2. 敬忠良. 图像融合——理论与应用[M].北京:高等教育出版社,2010. 3. 郭雷. 图像融合[M]. 北京:电子工业出版社,2011. 4. 孙巍. 孙巍. 像素及多聚焦图像融合算法研究[D].长春:吉林大学,2008. 5. 马先喜. 多聚焦图像融合算法研究[D].无锡:江南大学,2012. 学生 指导教师 系主任 __ __ 设计 论文

摘要 图像融合是将同一对象的两个或多个图像按一定规则合成为一幅图像。其关键是抽取每幅源图像中的清晰区域,并将这些清晰区域以一定的规则融合起来,从而生成一幅清晰且信息量完整的融合图像。多聚焦图像融合的具体目标在于提高图像的空间分辨率、改善图像的几何精度、增强特征显示能力、改善分类精度、替代或修补图像数据的缺陷等。 本文概括了多聚焦图像融合的一些基本概念和相关的基本知识,对DWT分解的层数和方向子带的个数对融合结果的影响进行了初步的研究。并就加权平均法、单层DWT分解、二层及二层以上DWT分解对多聚焦图像的融合进行了算法研究和编程实现,并对这些方法的仿真结果进行了比较分析。 仿真结果表明,基于空间域的加权平均法的融合效果非常一般,在图像的细节表现力方面存在很大的不足;而基于变换域中的小波变换的低频取平均、高频取绝对值最大的融合算法在小波分解层数达到三层时,所得融合图像的性能指标,如信息熵、空间频率和清晰度都较为理想,达到了预期目的。可见多层DWT分解融合方法具有较高的应用价值,可以将其用于图片的判读分析,如指纹识别、人脸鉴别、不完整图片的复原等。 关键词:图像融合,多聚焦图像,加权平均,DWT

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多聚焦图像像素级融合算法研究

多聚焦图像像素级融合算法研究 多聚焦图像融合是多源图像融合领域的一个重要分支,主要用于同一光学传感器在相同成像条件下获取的聚焦目标不同的多幅图像的融合处理。由于聚焦范围有限,光学成像系统不能将焦点内外的所有目标同时清晰成像,导致图像分析时需要耗费大量时间和精力。 多聚焦图像融合是一种解决光学成像系统聚焦范围局限性问题的有效方法,可以有效提高图像信息的利用率,扩大系统工作范围,增强系统可靠性,更加准确的描述场景中的目标信息。目前,该技术广泛应用于交通、医疗、物流、军事等领域。 多聚焦图像像素级融合是多聚焦图像融合的基础,它获得的原始信息最多,能够提供更多的细节信息。如何准确定位并有效提取源图像中的聚焦区域是多聚焦图像像素级融合的关键。 由于受图像内容复杂性影响,传统的多聚焦图像像素级融合方法很难对源图像中聚焦区域准确定位,且融合图像质量并不理想。本论文针对现有多聚焦图像像素级融合方法存在的不足,在空间域内对多聚焦图像像素级融合算法进行了深入研究。 论文主要研究内容如下:1、提出了基于鲁棒主成分分析(Robust Principal Component Analysis, RPCA)与脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)的多聚焦图像融合算法。根据RPCA构建的低维线性子空间可表示高维图像数据,增强目标特征信息,对噪声具有鲁棒性的特点,将源图像在RPCA分解域的稀疏特征作为PCNN神经元的外部输入,并根据PCNN神经元的点火频率来定位源图像中的聚焦区域,增强了融合算法对噪声的鲁棒性,提高了融合

图像质量。 2、提出了基于RPCA与四叉树分解相结合的多聚焦图像融合算法。利用源图像稀疏矩阵的区域一致性进行块划分,有利于提高聚焦区域信息提取的完整性和准确性。 此外,四叉树分解用树结构存储图像块划分结果,有利于提高源图像递归剖分的效率。该算法在自适应确定最优分块大小的基础上,利用稀疏矩阵各稀疏矩阵子块的局部特征检测源图像的聚焦区域,抑制了“块效应”对融合图像质量的影响,取得了良好的融合效果。 3、提出了基于图像分解的多成分图像融合算法。利用基于 (Rudin-Osher-Fatemi, ROF)模型的Split Bregman算法将源图像分解为卡通和纹理部分,用卡通成分和纹理成分中像素邻域窗口的梯度能量(Energy of image Gradient, EOG)检测聚焦区域像素,并根据融合规则对这些像素进行融合,将融合后的卡通和纹理部分合并实现图像融合。 该算法提高了融合算法对源图像几何特征描述的完整性,提升了融合算法性能,改善了融合图像的视觉效果。4、提出了基于非负矩阵分解(Negative Matrix Factorization, NMF)和聚焦区域检测的多聚焦图像融合算法。 利用NMF的纯加性和稀疏性,对多聚焦图像进行初始融合,利用初始融合图像与源图像间的差异图像的局部梯度特征检测聚焦区域,根据融合规则将检测到的聚焦区域进行合并得到最后的融合图像。该算法提高了聚焦区域检测准确性,改善了传统NMF融合算法所得融合图像对比度,提高了融合图像质量。 最后,对本文的主要研究工作和创新点进行总结,并对未来研究方向进行了展望。

图像融合

图像融合的定义 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象。正是由于这一特点,图像融合技术现已广泛地应用于军事、遥感、计算机视觉、医学图像处理等领域中。 数字图像融合是图像分析的一项重要技术,该技术在数字地图拼接、全景图、虚拟现实等领域有着重要应用。虽然Photoshop等图像处现软件提供了图像处理功能,可以通过拖放的方式进行图像拼接,但由于完全是手工操作,单调乏味,且精度不高,因此,有必要寻找一种方便可行的图像融合方法。Matlab具有强大的计算功能和丰富的工具箱函数,例如图像处理和小波工具箱包含了大多数经典算法,并且它提供了一个非常方便快捷的算法研究平台。 一、图像融合算法 2.1图象融合算法的层次分类 图像融合系统的算法按层次结构划分可分为信号级、像素级、特征级和决策级。 信号级融合:是指合成一组传感器信号,目的是提供与原始信号形式相同但品质更高的信号。 像素级图像融合:是指直接对图像中像素点进行信息综合处理的过程。像素级图像融合的目的是生成一幅包含更多信息、更清晰的图像。像素级图像融合属于较低层次的融合,目前,大部分研究集中在该层次上。 特征级图像融合:是指从各个传感器图像中提取特征信息,并将其进行综合分析和处理的过程。提取的特征信息应是像素信息的充分表示量或充分统计量,典型的特征信息有边缘、形状、轮廓、角、纹理、相似亮度区域、相似景深区域等。在进行融合处理时,所关心的主要特征信息的具体形式和内容与多传感器图像融合的应用目的、场合密切相关。通过特征级图像融合可以在原始图像中挖掘相关特征信息、增加特征信息的可信度、排除虚假特征、建立新的复合特征等。

一种改进多分辨率图像融合算法

第32卷第9期 光电工程V ol.32, No.9 2005年9月 Opto-Electronic Engineering Sept, 2005文章编号:1003-501X(2005)09-0055-04 一种改进多分辨率图像融合算法 杨平先,孙兴波 (四川理工学院电子与信息工程系,四川自贡 643000) 摘要:提出一种基于局部熵的多分辨图像融合算法。利用小波变换得到待融合图像的多分辨结构,同时得到图像的多分辨局部熵序列。以局部熵为判据,在图像多分辨结构相应各级上进行融合,得到融合图像的多分辨结构,利用小波逆变换重构融合图像。实验结果表明,该图像融合方法在保留TM多光谱图像光谱分辨率的同时,通过融合SPOT全色图像提高了空间分辨率,丰富了图像细节信息。 关键词:局部熵;多分辨分析;图像融合;小波变换 中图分类号:TP391文献标识码:A Improved algorithm for image fusion based on multi-resolution analysis YANG Ping-xian,SUN Xing-bo (Deptartment of Electronic Engineering,Sichuan University of Science&Engineering,Zigong 643000,China) Abstract:This paper introduces a local entropy-based multi-resolution image fusion technique. The algorithm consists of three steps: First,decomposing the input multi-spectral image by wavelet transform to obtain the multi-resolution local entropy sequences of each input image. Second, according to local entropy-based criterion,the multi-resolution analysis of the fused image can be obtained on the corresponding levels of the multi-resolution analysis of the input images. Finally,the output image can be obtained through inverse wavelet transform. Experiment results show that image details are enriched while spectral solution of TM image is reserved by fusing TM image with SPOT image with the image fusion method. Key words:Local entropy;Multi-resolution analysis;Image fusion;Wavelet transform 引言 随着成像技术的发展,图像数据可以从多个不同传感器获得,由于单独的图像传感器提供的信息往往是有限的,因此通常需要其他的图像传感器提供辅助信息,国内外的研究现状表明,对于利用图像融合算法对多源遥感图像中像素进行分类,从而实现图像分割这类问题,解决的主要途径包括统计模型,证据理论和神经网络等。 针对多光谱TM图像和全色SPOT图像来说,TM图像具有较好的光谱分辨率,而SPOT图像空间分辨率较高,因此融合这两类图像可以在保留多光谱图像光谱分辨率的同时,提高其空间分辨率,从而可提高这类遥感图像目标识别的准确度和地构目标分类的精度。多光谱TM图像和全色SPOT图像进行融合的传统方法主要有:HIS变换,主成分分析,高通滤波等方法。 本文给出一种新颖算法,首先利用局部熵的概念对图像每点计算局部熵得到变换后新的图像序列,然

信息融合技术在图像融合中的应用

信息融合技术在图像融合中的应用 摘要:图像信息融合能够以软件手段把对同一目标或场景的不同图像,综合成对同一目标或场景的全面、准确的描述,它在医学、遥感、军事等领域有着较为广泛的应用。良好的图像融合方法能够为后续的计算机自动化处理奠定坚实的基础。本文介绍了图像融合的概念和层次划分,并重点分析了图像融合中所用到的信息融合方法。 关键词:信息融合,图像融合 1.引言 军事、医学、自然资源勘探、海洋资源管理、环境和土地利用管理、地形地貌分析、生物学等的应用需求有力地刺激了图像处理和图像融合技术的发展。医学上,图像融合技术被用来诊疗和制定手术方案。商业和情报部门用图像融合技术来对旧照片、录像带进行恢复、转换等处理。随着遥感技术的发展,获取遥感数据的手段越来越丰富,各种传感器获得的影像数据在同一地区形成影像金字塔,图像融合技术实现多源数据的优势互补,为提高这些数据的利用效益提供了有效的途径。星载遥感用于地图绘制、多光谱、高光谱分析、数据的可视化处理、数字地球建设等,图像融合是必不可少的技术手段。 2.图像融合的概念 图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像是二维信号,图像融合技术是

多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模糊性、改善分类性能等。 目前,将图像融合技术应用于数字图像处理的主要目的有以下几种: (1)增加图像中有用信息的含量,改善图像的清晰度,增强在单一传感器图像中无法看见/看清的某些特性; (2)改善图像的空间分辨率,增加光谱信息的含量,为改善检测/分类/理解/识别性能获取补充的图像信息; (3)通过不同时刻的图像序列融合来检测场景/目标的变化情况; (4)通过融合多个二维图像产生具有立体视觉的三维图像,可用于三维重建或立体摄影、测量等; (5)利用来自其它传感器的图像来替代/弥补某一传感器图像中的丢失/故障信息。 3.图像融合层次划分 作为信息融合的一种,图像融合是对多个场景信息的综合,其目的就是通过对各个场景信息的提取,从而获得对同一场景更为准确、更为全面、更为可靠的图像描述。一般来说,图像融合可以在以下3个层次上进行[3]: 像素级——像素级融合是在获取的图像信息上进行融合,它能够

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

像素级多传感器图像融合新方法研究

像素级多传感器图像融合新方法研究 像素级图像融合是将同类或异类传感器采集到的关于同一场景或目标的图 像经过一定的处理,综合成一幅图像,从而获得对同一场景或目标更为准确、全面、可靠的图像描述,是图像处理与计算机视觉领域中多传感器图像信息综合利用的重要手段。随着图像传感技术的发展,像素级图像信息融合已经成为军事、遥感、医学、工业、交通等领域信息综合处理的重要技术。 由于图像传感器种类繁多,应用环境各不相同,所以图像融合算法也是各种 各样。相对于国外的研究,国内研究起步较晚,其理论以及技术水平亟待提高。 本文在深入分析了现有图像融合理论的基础上,结合目前图像处理发展的最新理论,构建了两种新型图像融合框架,提出了稀疏表示域图像融合新方法。在这三种新型图像融合框架下,结合不同图像融合任务的特点,提出了一系列新型像 素级图像融算法。 另外针对高速公路智能交通系统的需求,本文还提出了多时相图像融合技术和基于特征融合的车牌检测技术,解决了高速公路智能交通系统中监控和信息获取两个重要环节的关键问题。本文主要研究成果如下:1.混合多分辨率分析图像融合传统像素级图像融合算法往往只考虑一种图像多分辨率分析方法,融合算法性能很难获得较大的突破。 这是因为任何一种图像多分辨率变换基函数的构造都有严格的限制,使其在表达图像特征时存在一定程度的局限,例如小波变换不能表达图像边缘信 息,Curvelet变换不能很好地表达图像细节。由于无法全面表达图像信息,仅通 过改变系数融合规则很难进一步提高图像融合算法性能。 实际上,不同多尺度几何分析方法之间存在互补特性。例如小波变换适合表

示源图像中的纹理、角点等细小特征,而Curvelet和Contourlet变换适合表示源图像的边缘和线信息。 基于此本文在通过大量的对比实验以及理论分析的基础上,提出了图像的混合多分辨率分析理论,将具有互补特性的不同图像变换方法以串联的形式结合,获得图像的混合多分辨率分解,并进一步构建了混合多分辨率分析图像融合框架,在混合多分辨率分解域内对分解系数进行融合,最后通过逆变换得到融合图像。在该框架指导下,我们结合小波变换与Curvelet变换的互补特性以及静态小波变换与非下采样Contourlet变换的互补特性,实现了两种基于混合多分辨率分析的图像融合方法。 仿真实验显示这两种方法都能很好地保留源图像的细节信息,融合图像质量比单纯使用小波、Curvelet或Contourlet得到的融合图像质量有明显改进。特别地,混合静态小波与非下采样Contourlet变换的多分辨率分析方法还能很好地保持图像变换的移不变特性,使得待融合源图像存在误配准时仍能取得高质量融合图像。 2.多聚焦图像区域级融合多聚焦图像融合能够突破光学镜头景深的物理限制,获得场景中所有目标聚焦清晰的合成图像,是许多机器视觉处理任务,如边缘检测、图像分割、目标识别等的关键技术。在传统多聚焦图像融合框架下,融合规则只考虑了源图像单个像素特征或其变换域系数的局部邻域特征,通常是在损失部分清晰特征的情况下达到场景内所有目标的相对清晰,融合图像很难达到最优。 且对于没有或不能严格配准的源图像,根本无法得到满意的融合结果。针对这一国内外同行公认的难题,本文通过模拟手工获得理想多聚焦融合图像的剪与

多聚焦图像融合源代码演示教学

多聚焦图像融合源代 码

针对经典的最大系数法不准确和方差法计算量大的问题,本文给出了一种混合多级式多聚焦图像融合方法。对于三层小波分解的多聚焦图像融合,每幅图像被分解为三层十个频带。对这十个频带本文分别采用三种方法进行融合。对于低频系数,本文仍然采用求平均法;对于高频系数本文采用方差法和最大系数法进行融合。它们的计算量比最大系数法大一些,但是融合结果更接近于原始清晰图像,而相比于方差法,它们的计算量小的多,但是融合质量稍差一些,应用者可以根据不同的需要进行选择。 本文还给出了一种基于Canny算子边缘检测的小波变换多聚焦图像融合方法。首先对图像进行三层小波分解,然后用Canny算子进行边缘检测,得到各层分辨率下的边缘图像;对相应分辨率的高频小波系数根据其是否为图像的边缘点采用最大系数法或方差法分别进行融合。仿真实验证明该方法效果良好,计算量可以灵活调节。 关键词:小波变换;多尺度几何分析;多聚焦图像融合;边缘检测 主要程序: clear all; close all; leo1=imread('a1.bmp');%读入图片 leo2=imread('a2.bmp') T=0.4;k1=0.5;k2=0.5;w='db4';m='edge'; tic; outdoor1=leo1; outdoor2=leo2; %三层小波分解 [ca11,chd11,cvd11,cdd11]=dwt2(outdoo r1,w); [ca12,chd12,cvd12,cdd12]=dwt2(ca11,w ); [ca13,chd13,cvd13,cdd13]=dwt2(ca12,w ); [ca21,chd21,cvd21,cdd21]=dwt2(outdoo r2,w); [ca22,chd22,cvd22,cdd22]=dwt2(ca21,w );

多传感器图像融合技术综述

收稿日期:2002203217 作者简介:毛士艺(1935-),男,浙江黄岩人,教授,100083,北京. 多传感器图像融合技术综述 毛士艺 赵 巍 (北京航空航天大学电子工程系) 摘 要:对国内外多传感器图像融合技术的发展状况进行了介绍,描述了 图像融合的主要步骤,概括了目前主要图像融合方法的基本原理,并对各种方法的性能进行了定性分析.给出了评价图像融合效果的标准和方法,指出了图像融合技术的发展方向. 关 键 词:图像处理;图像合成;传感器;图像融合 中图分类号:T N 911.73文献标识码:A 文章编号:100125965(2002)0520512207 近20年,随着传感器技术和计算机计算能力的提高,多传感器图像融合技术的应用越来越广泛.在军事领域,以多传感器图像融合为核心内容的战场感知技术已成为现代战争中最具影响力的军事高科技.20世纪90年代,美国海军在SS N 2 691(孟菲斯)潜艇上安装了第1套图像融合样机,可使操纵手在最佳位置上直接观察到各传感器的全部图像[1],[2].1998年1月7日《防务系统月刊》电子版报道,美国国防部已授予BTG 公司2项合同,其中一项就是美国空军的图像融合设计合同,此系统能给司令部一级的指挥机构和网络提供比较稳定的战场图像.在遥感领域,大量遥感图像的融合为更方便、更全面地认识环境和自然资源提供了可能[3]~[5],其成果广泛应用于大地测绘、植被分类与农作物生长势态评估、天气预报、自然灾害检测等方面.1999年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CC D 相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围.在医学成像领域,CT 、MR 和PET 图像的融合提高了计算机辅助诊 断能力[6].2001年11月25日~30日在美国芝加哥召开了每年一度的RS NA 北美放射学会年会,在会议上GE 公司医疗系统部展销了其产品Dis 2covery LS.Discovery LS 是GE 公司于2001年6月 刚推出的最新PET/CT ,是世界上最好的PET 与最高档的多排螺旋CT 的一个完美结合,具有单体PET 不能比拟的优势.它可以完成能量衰减校正、 分子代谢影像(PET )与形态解剖影像(CT )的同机 图像融合,使检查时间成倍地降低.在网络安全领域,多尺度图像融合技术可将任意的图像水印添加到载体图像中,以确保信息安全[7]. 在各个应用领域的需求牵引下,各国学者对多传感器图像融合技术的研究也越来越重视.在多传感器信息融合领域中,图像融合是应用最为广泛,发表文献最多的一个方向.从文献[8]可看出,在参与统计的信息融合文章中,信号层的信息融合文章占53%.同时,我们做了这样一个调查,在Ei C om pendexWeb 数据库中用“image fusion ”作为关键词,检索从1980年到2001年摘要中出现这一词组的文章数目.1980年至1984年,这方面的文章只有4篇;1995年至1999年增加到603篇;2000年和2001年两年就有299篇.从中可以看出国际学术界对图像融合技术的重视程度与日俱增. 为了使国内同行对图像融合技术有一个较为全面的了解,本文在参考国内外文献的基础上,对目前常用的图像融合技术进行了概括和评述.文章首先介绍了图像融合研究的基本内容,将图像融合的概念界定到像素级;接着描述了各种图像融合技术的基本原理,对它们的优缺点进行了定性分析,给出了评价图像融合技术的方法. 1 多传感器图像融合技术研究内容 多传感器图像融合属于多传感器信息融合的范畴,是指将不同传感器获得的同一景物的图像   2002年10月第28卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2002V ol.28 N o 15

相关文档
最新文档