膨胀土缩胀过程中体变特征的试验研究

IndustrialConstructionVol畅45,No畅9,2015

工业建筑 2015年第45卷第9期 膨胀土缩胀过程中体变特征的试验研究

李 芃 谭晓慧 王 雪 辛志宇 汪贤恩

(合肥工业大学资源与环境工程学院,合肥 230009)

摘 要:膨胀土的胀缩变形会对其上的建筑产生危害,研究膨胀土的胀缩变形特征具有重要意义。通过一系列干燥收缩-加湿膨胀试验,研究膨胀土在收缩-膨胀循环过程中孔隙比-含水率的关系及初始干密度对其的影响,结果表明:采用照相法测量土样面积是一种较为理想的非接触测量方法;不同初始干密度下的收缩曲线及膨胀曲线分别相互平行,且随着初始干密度的增加,孔隙比-含水率曲线往下移动;当初始干密度小于临界干密度时,土样的收缩曲线与膨胀曲线相交;随着初始干密度的增加,土样的收缩曲线与膨胀曲线逐渐由交叉状态变为分离状态;在一次干缩-湿胀过程中,随着初始干密度的增大,土样的体积收缩率逐渐减小,体积膨胀率变化不大,即经过一次收缩后,初始干密度对土样膨胀性的影响减弱。 关键词:膨胀土;胀缩变形;体变特征;干密度;照相法 DOI:10畅13204/j.gyjz201509020

EXPERIMENTALSTUDYOFVOLUMEDEFORMATIONCHARACTERISTICS

OFEXPANSIVESOILSDURINGSHRINKAGEANDSWELLINGPROCESS

LiPeng TanXiaohui WangXue XinZhiyu WangXianen

(SchoolofResourcesandEnvironmentalEngineering,HefeiUniversityofTechnology,Hefei230009,China)Abstract:Theswellingandshrinkagedeformationofexpansivesoilhasaverybadinfluenceonthebuildingstructures.It

isveryimportanttoresearchtheswellingandshrinkagedeformationcharacteristics.Aseriesofindoortestswerecarriedoutincludingshrinkagetestandhumidificationtest,inordertoresearchtherelationshipbetweenvoidratioandwatercontentintheprocessofshrinkageandwetting,andtheinfluenceofinitialdrydensityontherelation.Resultsindicatedthatphotographicmethodtomeasurethesurfaceareaofsoilsampleswasanidealnon-contactmeasurementmethod.Theshrinkageandswellcurveswereparalleltoeachotherunderdifferentinitialdrydensities,andwatercontent-voidratiocurvesmoveddownwardwithanincreaseofinitialdrydensity,aswellashumidificationcurves.Whentheinitialdrydensitywaslessthanthecriticaldrydensity,theshrinkagecurveandswellcurveintersected,thecross-stateinshrinkage-swellcurveturnedintotheseparate-statewhendrydensityincreased.Intheprocessofashrinkage-wetting,thevolumetricshrinkagedecreasedgraduallyandthevolumetricswellingwasroughlythesamewithanincreaseofinitialdrydensity,inotherwords,theeffectoftheinitialdrydensityonsoilswellwasweakened.Keywords:expansivesoil;swelling-shrinkdeformation;volumedeformationcharacteristic;drydensity;photo-

graphicmethod

倡国家自然科学基金项目(40972194;41172273;41372281)。第一作者:李芃,女,1992年出生,硕士研究生。通信作者:谭晓慧,tantan9666@sina.com。收稿日期:2015-01-20

膨胀土是一种在我国分布范围极广的具有破坏性的黏性土,它具有强亲水性和胀缩性等特点。膨胀土的胀缩性一直是国内外研究的热点,许多学者都围绕该课题开展了大量的试验及理论研究。李志清等用DoesResponse模型定量模拟了膨胀土胀缩时程规律

[1]

;唐朝生等研究了土体干燥过程中的体

积收缩变形特征,提出了压实土样收缩应变与初始

干密度及含水率之间的函数关系式[2]

。膨胀土经历多次干湿循环后胀缩变形会随着循环次数的增加逐渐趋于稳定,表现出可逆的性质,即达到平衡状态[3-6]。达到平衡状态后,土的孔隙比及含水率不

受初始干密度的影响,但是在达到平衡之前,初始干

密度会对膨胀土的胀缩性产生影响[6]

。一般情况下,初始干密度越大,膨胀土的膨胀率越大,而收缩

率越小[7]

通常以含水率-吸力的关系曲线(土水特征曲线)或含水率-孔隙比关系曲线描述膨胀土的脱湿

和吸湿路径[5-6]

,含水率-吸力-孔隙比的土水特

膨胀土的膨胀潜势分类研究

西部交通建设科技项目 合同号:2002 318 00014 : 膨胀土地区公路勘察设计技术研究研究报告简本 中交第二公路勘察设计研究院 2004年10月

目录 1、引言 0 1.1项目概况及研究意义 0 1.2国内外研究概况 0 1.3总体目标 (2) 1.4技术路线 (2) 2、主要研究内容 (2) 2.1揭示典型膨胀土的物理力学性质和公路工程特性 (2) 2.2膨胀土的膨胀潜势分类研究 (4) 2.3膨胀土的工程分类研究 (5) 2.4膨胀土的原位测试与评价技术研究 (5) 2.5基于GIS的我国数字化膨胀土的区域分布图的研制和开发 (6) 2.6编制膨胀土地区公路勘察设计指南 (6) 3、主要研究成果 (7)

1、引言 1. 1项目概况及研究意义 我国近22个省份有膨胀土分布,今后修筑的国道主干线大部分将穿越膨胀土地区。由于地形地貌和公路线形的制约,膨胀土填方路堤和挖方路堑将不可避免。膨胀土地区的建筑物、公路、铁路、机场、水利工程等经常遭受严重的破坏,造成巨大的经济损失。从已建和在建的高速公路情况看,膨胀土地区高速公路往往经过多年运行,其路基仍不稳定,还在产生路基沉陷,路堤边坡坍滑也时有发生,水泥混凝土板断裂、甚至产生较大的错台等病害。针对以上问题,交通部西部交通建设科技项目(2002年)“膨胀土地区公路修筑的成套技术研究”获得立项,中交第二公路勘察设计研究院等四家单位承担了其中的“膨胀土地区公路勘察设计技术研究(合同号:200231800014)”的分题研究,本项目进行了调研、理论分析、室内外试验和依托工程现场试验,立足于膨胀土的物理力学性质和公路工程性质,研究了膨胀土公路勘测设计技术,提出了公路膨胀土的分类体系和膨胀土地区公路勘察设计指南,开发了数字化全国膨胀土分布的地理信息系统。通过本课题的研究促进了膨胀土地区公路勘察、设计技术水平的提高,指导全国膨胀土地区公路工程建设,均具有重要的理论意义和实际价值。 1. 2国内外研究概况 近年来,随着大规模基础设施的建设和人类对居住空间的更高要求,开挖边坡填筑路堤的施工活动正迅速增加。边坡的开挖和回填导致边坡产生新的加(卸)载路径和新的边界条件。为了评估施工活动的影响,必须进行边坡稳定性评价、路基填筑技术和边坡防护方法的研究。一般深基坑开挖工程只需考虑短期施工活动的影响,而永久边坡则需考虑施工后长期的气候、水文地质和岩土工程环境的变化对边坡稳定性的影响。 国外于二十年代开始对膨胀土加以关注,但是直到六十年代中期才发展成为世界性的研究专题。在我国对膨胀土的研究始于三十年代初,到七十年代,我国接受援外工程接触到较多膨胀土的问题,同时国内在膨胀土地区的建筑工程也不断出现问题。1976年,北京建科院组织了一些单位进行膨胀土的专题研究,特别对云南、四川、广西、广东、湖北、河南、安徽等十几个省和地区的膨胀土,

湿化问题及其研究进展

湿化问题及其研究进展 一湿化变形及湿化机理 1.1 湿化变形 地基基础工程以及土石坝等重要的水工建筑物,不可避免地要与水发生直接的接触,水位的上升使建筑物局部开始浸水,浸水后的土体由非饱和状态变为饱和状态,这时土体的结构发生变化,其应力应变关系也随之改变,各项物理力学指标有所降低,这个过程称为湿化过程。土体受湿化过程的影响,一般都要发生土体体积的改变,这种在湿化过程中的体积变化称之为湿化变形。土体产生湿化变形的原因通常有如下几种:土石坝初次蓄水;由毛细现象等引起的水位上升;大气降雨等等。 一些学者对土体的湿化和湿化变形进行了研究,对堆石料、土坝坝料土和膨胀土等分别进行了湿化试验,建立了一些土体湿化的数学模型。 1.2 湿化机理及防治 土体产生湿化变形的大小与土的三相组成和构成土的固体颗粒的结构形式具有密切的联系。 土是由固体的土颗粒、水和气体等所组成的三相体系。固相土颗粒构成土体的骨架,是土体的主要部分,一般为粘土矿物颗粒或砂粒;土颗粒之间的孔隙充满了水和气体,饱和土体,为两相体系;孔隙中水、气并存,为三相体系。 (1) 固体土颗粒 土体中的固体土颗粒是决定土的物理性质和工程性质的主要因素。一般情况下,矿物颗粒之间的作用比较稳定,具有较强的联系,因而土体的强度也比较高。土体浸水湿化后受水分子的润滑作用,矿物颗粒间的联系发生改变,土颗粒之间的作用也被削弱,土体的强度也随之降低。 土颗粒之间的关系可以从土体的狭义结构即构成土的固体颗粒的结构形式得到,它取决于土体固体颗粒的大小、形状、表面特性、相对位置和相互之间的联结等等。 目前研究比较多的还是土体固体颗粒的狭义结构以及由此建立的结构类型。 固体土颗粒按基本结构要素分为简单颗粒、团聚体和半团

d395橡胶压缩永久变形特性试验方法

Designation:D395–02 Standard Test Methods for Rubber Property—Compression Set1 This standard is issued under the?xed designation D395;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. 1.Scope 1.1These test methods cover the testing of rubber intended for use in applications in which the rubber will be subjected to compressive stresses in air or liquid media.They are applicable particularly to the rubber used in machinery mountings,vibra-tion dampers,and seals.Two test methods are covered as follows: Test Method Section A—Compression Set Under Constant Force in Air7–10 B—Compression Set Under Constant De?ection in Air11–14 1.2The choice of test method is optional,but consideration should be given to the nature of the service for which correlation of test results may be sought.Unless otherwise stated in a detailed speci?cation,Test Method B shall be used. 1.3Test Method B is not suitable for vulcanizates harder than90IRHD. 1.4The values stated in SI units are to be regarded as the standard. 1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards: D1349Practice for Rubber—Standard Temperatures for Testing2 D3182Practice for Rubber—Materials,Equipment,and Procedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized Sheets2 D3183Practice for Rubber—Preparation of Pieces for Test Purposes from Products2 D3767Practice for Rubber—Measurement of Dimensions2 D4483Practice for Determining Precision for Test Meth-ods Standards in the Rubber and Carbon Black Industries2 E145Speci?cation for Gravity-Convection and Forced-Ventilation Ovens3 3.Summary of Test Methods 3.1A test specimen is compressed to either a de?ection or by a speci?ed force and maintained under this condition for a speci?ed time and at a speci?ed temperature. 3.2The residual deformation of a test specimen is measured 30min after removal from a suitable compression device in which the specimen had been subjected for a de?nite time to compressive deformation under speci?ed conditions. 3.3After the measurement of the residual deformation,the compression set,as speci?ed in the appropriate test method,is calculated according to Eq1and Eq2. 4.Signi?cance and Use 4.1Compression set tests are intended to measure the ability of rubber compounds to retain elastic properties after pro-longed action of compressive stresses.The actual stressing service may involve the maintenance of a de?nite de?ection, the constant application of a known force,or the rapidly repeated deformation and recovery resulting from intermittent compressive forces.Though the latter dynamic stressing,like the others,produces compression set,its effects as a whole are simulated more closely by compression?exing or hysteresis tests.Therefore,compression set tests are considered to be mainly applicable to service conditions involving static stresses.Tests are frequently conducted at elevated tempera-tures. 5.Test Specimens 5.1Specimens from each sample may be tested in duplicate (Option1)or triplicate(Option2).The compression set of the sample in Option1shall be the average of the two specimens expressed as a percentage.The compression set of the sample in Option2shall be the median(middle most value)of the three specimens expressed as a percentage. 5.2The standard test specimen shall be a cylindrical disk cut from a laboratory prepared slab. 5.2.1The dimensions of the standard specimens shall be: 1These test methods are under the jurisdiction of ASTM Committee D11on Rubber and are the direct responsibility of Subcommittee D11.10on Physical Testing. Current edition approved Dec.10,2002.Published January2003.Originally approved https://www.360docs.net/doc/329807372.html,st previous edition approved in2001as D395–01. 2Annual Book of ASTM Standards,V ol09.01.3Annual Book of ASTM Standards,V ol14.04. 1 Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

膨胀土的判别与分类

膨胀土的判别与分类 路基土工 2008-05-03 20:02 阅读19 评论0 字号:大中小 膨胀土的判别与分类 --摘自西部项目《膨胀土地区公路勘察设计技术研究》研究成果 膨胀土在我国大部分地区均有分布。膨胀土的胀缩性直接影响着建筑物的安全性,它不仅造成房屋成群开裂,公路、铁路塌方,而且可导致膨胀土边坡产生表层浅滑现象,造成农田水利设施的破坏,影响人们的生活环境。因此,在工程地质勘察中,必须正确地识别膨胀土与非膨胀土,准确地判定膨胀土的胀缩性等级,这有助于合理进行拟建建筑物的设计与地基处理,对保障建筑物安全与人们的生活环境具有非常重要的意义。一、膨胀土的定义 1996年《公路路基设计规范》(JTJ013-95)的膨胀土定义是:“膨胀土系指土中含有较多的粘粒及其亲水性较强的蒙脱石或伊利石等粘土矿物成分,它具有遇水膨胀,失水收缩,是一种特殊膨胀结构的粘性土。”从这个定义上来看,膨胀土的主要特性是膨胀和收缩。但膨胀和收缩是一个十分复杂的问题,不仅仅是遇水膨胀和失水收缩这么简单。在增加溶液电解质浓度的情况下,即使是遇水,膨胀土也会产生收缩现象。因此,膨胀土的膨胀和收缩是在水和电解质共同作用下的结果。另外,定义中指出土中含有较多的亲水性较强的蒙脱石或伊利石等粘土矿物成分的说法也不确切。如果膨胀土中仅含伊利石显示不出膨胀土具有较强的膨胀与收缩特性,伊利石的亲水性仅为蒙脱石的十分之一。膨胀土的胀缩特性主要是由亲水性粘土矿物蒙脱石决定的。因此,《膨胀土地区建筑技术规范》(GBJ112-87)给出的膨胀土的定义更为恰当:“膨胀土应是土中粘粒成分主要由亲水矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性的粘性土。” 二、膨胀土判别指标 要鉴别某种土是否属于膨胀土,应根据本身的固有属性来进行区分,只有内在的主要固有属性才是控制膨胀土工程特性的决定性因素;至于在膨胀土地区各种建筑物的稳定程度,只能用作辅助的判别。所以对膨胀土的判别原则,首先应从工程地质观点出发,分析土体的裂隙特征,概括出能反映膨胀土工程性质的实际情况,能代表膨胀土规律的主要指标。 能否充当膨胀土的判别指标,主要看它能否满足以下三个条件: 能反映膨胀土的本质; 指标的测定简单便捷; 指标数据可靠,重现性好。 可能用来判别膨胀土的指标分述如下: (1)界限含水量反映土粒与水相互作用的灵敏指标之一,在一定程度上反映了土的亲水性能。它与土的颗粒组成,粘土矿物成分,阳离子交换性能,土粒的分散度和比表面积,以及孔隙水溶液的性质等有着十分密切的关系。通常有液限、塑限、缩限三个定量指标。 (2)胀缩总率反映膨胀土粘土矿物成分和结构特征。 (3)粒度成分反映膨胀土物质组成的特性指标。

膨胀土改良

膨胀土改良 摘要:本文综合分析化学试剂对膨胀土的改良效果,得出改良处理后的膨胀土 的颗粒组成、物理力学性质、胀缩特性均有明显的改善,力学强度得到提高。可以用作工程建设材料。 关键词:膨胀土,胀缩性,物理性质,强度 膨胀土是一种吸水膨胀软化、失水收缩干裂的特种粘性土,其主要工程性质表现为多裂隙性、超固结性、强亲水性和反复胀缩性,矿物成分以强亲水性矿物蒙脱石和伊利石为主。膨胀土的膨胀潜势明显依赖于土中的粘土矿物成分及其含量。【1】;膨胀土在世界范围内分布极广,迄今发现存在膨胀土的国家达40多个,遍及六大洲。我国是膨胀土分布最广的国家之一,先后有20多个省区发现有膨胀土川。由于膨胀土的胀缩特牲、裂隙性、超固结性的基本特性显著,在其基本特性的复杂共同作用下,使得膨胀土的工程性质极差,,使膨胀土地区的房屋建筑、铁路、公路、机场、水利工程等经常遭受巨大的破坏【2】;随着膨胀土工程问题的增多,对膨胀土的研究已成为当前岩土工程的重要研究方向之一,并成为世界性的共同课题。目前国内常用的膨胀土加固改良方法有很多,如化学方法和物理方法。其中化学方法是较常用的改良方法。常用的化学改良剂有石灰、水泥和粉煤灰等,【3-4】还有的学者用ESR生态改性剂[5]和高炉水渣【6】等对膨胀土进行改良。本文从石灰、水泥粉煤灰及ESR生态改性剂等改良膨胀土的物理性质,胀缩性、强度综合分析其改良效果。 1膨胀土胀缩机理 膨胀土的矿物学理论研究者从矿物晶格构造出发,认为膨胀土的膨胀取决于膨胀土的矿物成分及其结构(廖世文,1984;GrimeRe,1986)及颗粒表面交换阳离子成分(Ingles、0.G,1968)等;膨胀土物理化学理论中,应用较为普遍的是晶格扩张理论和双电层理论。晶格扩张理论认为,膨胀土晶格构造中存在膨胀晶格结构,水易渗入晶层间形成水膜夹层,从而引起晶格扩张,使土体体积增大。但晶格扩张理论仅仅局限于晶层间吸附结合水膜的楔入作用,而没有考虑粘土颗粒间及聚集体间吸附结合水的作用。事实上,粘土膨胀不仅发生在晶格构造内部晶层之间,同时也发生在颗粒和颗粒之间以及聚集体和聚集体之间。双电层理论认为,双电层内的离子对水分子具有吸附能力,被吸附的水分子在电场力作用下按一定取向排列,在粘土矿物颗粒周围形成表面结合水膜。由于结合水膜增厚“楔开”土颗粒,从而使固体颗粒之间的距离增大,导致土体膨胀。双电层理论弥补了晶格扩张理论在解释粘土胀缩原因方面的不足,发展了结合水膜在膨胀理论中的应用,使得膨胀机理的理论更加全面和充实。【7】 2改良效果 膨胀土的物理指标主要有天然含水率/%、液限/%、塑限/%、塑性指数/%、自由膨胀率/%、最优含水率/%、最大干密度/(g·cm-3);胀缩指标有无荷膨胀率/%、50Kpa

岩块的变形与强度性质

岩块的力学属性: 1.弹性(elasticity):在一定的应力范围内,物体受外力产生的全部变形当去除外力后能够立即恢复其原有的形状和大小的性质。 2.塑性(plasticity):物体受力后产生变形,在外力去除(卸荷)后不能完全恢复原状的性质。不能恢复的变形叫塑性变形或永久变形、残余变形。 3.粘性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质。应变速率随应力变化的变形叫流动变形。 4.脆性(brittle):物质受力后,变形很小时就发生破裂的性质。 5.延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质。 第一节岩块的变形性质 一、单轴压缩条件下的岩块变形性质 1.连续加载下的变形性质 (1)加载方式: 单调加载(等加载速率加载和等应变速率加载) 循环加载(逐级循环加载和反复循环加载) (2)四个阶段: ①Ⅰ:OA段,孔隙裂隙压密阶段; ②Ⅱ:AC段,弹性变形至微破裂稳定发展阶段(AB段和BC段) 弹性极限→屈服极限 ③Ⅲ:CD段,非稳定破裂发展阶段(累进破裂阶段)→“扩容”现象发生 “扩容”:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂(裂纹)继续发生和扩展,岩石的体积应变增量由压缩转为膨胀的力学过程。 —峰值强度或单轴抗压强度 ④Ⅳ:D点以后阶段,破坏后阶段(残余强度) 以上说明: 岩块在外荷作用下变形→破坏的全过程,具有明显的阶段性,总体上可分为两个阶段: 1)峰值前阶段(前区) 2)峰值后阶段(后区) (3)峰值前岩块的变形特征(Miller,1965) ①应力—应变曲线类型 米勒(Miller,1965)6类(σ—εL曲线),如图4.3所示: Ⅰ:近似直线型(坚硬、极坚硬岩石):如玄武岩、石英岩等; Ⅱ:下凹型(较坚硬、少裂隙岩石):如石灰岩、砂砾岩; Ⅲ:上凹型(坚硬有裂隙发育):如花岗岩、砂岩; Ⅳ:陡“S”型(坚硬变质岩):如大理岩、片麻岩; Ⅴ:缓“S”型(压缩性较高的岩石):如片岩; Ⅵ:下凹型(极软岩)。 法默(Farmer,1968),根据峰前σ—ε曲线把岩石划分三类,如图4.4所示: 准弹性岩石:细粒致密块状岩石,如无气孔构造的喷出岩、浅成岩浆岩和变质岩等。 具弹脆性性质。 半弹性岩石:空隙率低且具有较大内聚力的粗粒岩浆岩和细粒致密的沉积岩。 非弹性岩石:内聚力低,空隙率大的软弱岩石,如泥岩、页岩、千枚岩等。

高岭土和膨胀土特性

高岭土与膨胀土特性 一、高岭土: 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 1. 化学式 Al2O3-2SiO2-2H2O 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4.结合性 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15粒级占70%,0.15—0.09mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。 5.粘性和触变性 粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约0.5Pa·s,高速涂布时要求小于1.5Pa·s。

浅述膨胀土判定方法与标准

浅述膨胀土判定方法与标准 膨胀土是土体颗粒成分由强亲水性矿物组成,对环境湿热变化敏感的高液限粘土,具有显著湿胀干缩和反复湿胀干缩,同时具有多裂隙性,超固结性,强度衰减性等特殊性质。膨胀土对工程建设危害很大且具有反复性。膨胀土地区房屋建筑大量开裂变形,铁路路基边坡经常坍方、滑坡,公路经常路堤沉陷、纵向开裂、坍肩,路堤边坡滑坍,以及路堑边坡剥落、冲蚀、泥石流、滑坍等病害,公路路面经常出现大幅度的随季节变化的波浪变形。 膨胀土主要特征: 1、粘粒(<0.002mm)含量》≥30%; 2、粘土矿物中蒙脱石、伊利石等强亲水性矿物居主导地位; 3、土体随含水量增加,体积膨胀产生压力,土体受热干燥失水收缩形成干缩裂缝; 4、膨胀收缩变形随环境湿热变化多次重复,引起强度衰减; 5、属于液限大于40%的高液限粘土; 吸水膨胀,失水收缩是粘性土共性,膨胀土只是粘性中很特殊的一种土体。若对膨胀土漏判,会给工程埋下隐患,造成病害。若把普通粘土误判成膨胀土,或对其胀缩潜势判断有误,将增大工程规模,增加工程造价造成浪费。故正确判定膨胀土在工程中意义重大。 当今,国内外判定膨胀土的方法指标很多,甚至国内不同行业间的判定方法指标也不相同。基本分为物理法、化学法、力学法。物理法主要根据土的粒度组成与稠度性质判定;化学法主要分析土的矿物成分或化学性质因而判定;力学法主要以膨胀力指标判定。还有以物理、化学、力学性质指标综合判定。 一、国外判别方法 1、前苏联建筑法规: ①土质遇水,eL=WLeL-e01+e0π≥0.3,考虑土的膨胀性, 式中:eL——液限状态WL时土的孔隙比, e0——天然状态时土的孔隙比; GS——土的相对密度;

土石坝地震永久变形计算方法_李湛

土石坝地震永久变形计算方法 李 湛1,3,栾茂田2,3 (11中国建筑科学研究院,北京 100013; 21大连理工大学海岸和近海工程国家重点实验室,辽宁大连 116024; 31大连理工大学土木水利学院岩土工程研究所,辽宁大连 116024) 摘 要:对于土石坝的地震永久变形,本文提出等效结点力-逐步软化有限元计算模型。首先根据坝体地震动力响应的 非线性有限元分析确定各时段坝体单元可能发生的残余应变、振动孔隙水压力增量及累积振动孔隙水压力,以此对静变 形模量和强度及静应力-应变关系进行修正,并应用于下一时段计算中;同时基于所确定的与上一时段地震作用所产生 的潜在残余应变增量和静应力-应变关系确定地震作用相应的等效结点力。在每一时段末根据上述所确定的等效结点 力和应力-应变关系,运用整体有限元分析确定坝休的残余变形增量,将各个时段计算所确定的残余位移累加得到地震 作用后坝体的残余变形量。这种方法能够同时考虑地震惯性力效应和土的软化效应对土石坝地震永久变形的影响。 关键词:水工结构;地震永久变形;等效结点力-逐步软化有限元模型;土石坝;抗震稳定性 中图分类号:TV312文献标识码:A 收稿日期:2008-03-03 基金项目:国家自然科学基金(50179006),教育部跨世纪优秀人才培养计划研究基金和中国科学院武汉岩土力学研究所前沿领域基础研究基金 (Q110305) 作者简介:李湛(1975)),男,博士.E -mail:lz -xj@https://www.360docs.net/doc/329807372.html, Computation method for seismically -induced permanent deformation of earth -rock dams LI Zhan 1,3,LUAN Maotian 2,3 (1.China Academy o f Building Research ,Beijing 100013; 2.State Key Laboratory o f Coastal and O ffshore Engineering ,Dalian University o f Technology ,Dalian 116024; 3.Institute o f Geotechnical Engineering ,School o f Civil and Hydraulic Engineering , Dalian University o f Technology ,Dalian 116024) Abstract :This paper presents a finite element procedure for evaluating seismically -induced permanent deformation of earth -rock da ms.In the proposed procedure,both concepts of equivalent nodal forces and step -by -step gradually softening moduli are integrated together.The earthquake duration is divided into a certain number of time incre ments.And for each time increment the residual strain and dyna mic pore water pressure which is likely induced during previous time increments under undrained condition are estimated on the basis of the stress condition obtained by the dyna mic analysis and the empirical patterns of both residual strain and pore water pressure achieved e xperimentally.Then,the computed accumulative pore -water pressure at the end o f each time increment is used directly to modify the static hyperbolic relationship between stress and strain which is to be used for the next time period.And at the same time,the equivalent nodal forces equivalent to incremental residual strain potential are defined.B y using the modified stress -strain relationship,the incremental deformations are computed when the nodal forces equivalent to earthquake effect on the dam defined as above are imposed on the earth -rock dam.The computed incremental displacements of the earth -rock dam for each time incre ment are accumulated and the accumulative displacements can be regarded as approximation of the residual deformation which is to be initiated by earthquake shaking.In fact,the proposed numerical procedure has taken into c onsideration both the inertia effect 第28卷第4期 2009年8月水 力 发 电 学 报JOURNAL OF HYDROELEC TRIC ENGINEERING Vol.28 No.4Aug.,2009

膨胀土缩胀过程中体变特征的试验研究

IndustrialConstructionVol畅45,No畅9,2015 工业建筑 2015年第45卷第9期 膨胀土缩胀过程中体变特征的试验研究 倡 李 芃 谭晓慧 王 雪 辛志宇 汪贤恩 (合肥工业大学资源与环境工程学院,合肥 230009) 摘 要:膨胀土的胀缩变形会对其上的建筑产生危害,研究膨胀土的胀缩变形特征具有重要意义。通过一系列干燥收缩-加湿膨胀试验,研究膨胀土在收缩-膨胀循环过程中孔隙比-含水率的关系及初始干密度对其的影响,结果表明:采用照相法测量土样面积是一种较为理想的非接触测量方法;不同初始干密度下的收缩曲线及膨胀曲线分别相互平行,且随着初始干密度的增加,孔隙比-含水率曲线往下移动;当初始干密度小于临界干密度时,土样的收缩曲线与膨胀曲线相交;随着初始干密度的增加,土样的收缩曲线与膨胀曲线逐渐由交叉状态变为分离状态;在一次干缩-湿胀过程中,随着初始干密度的增大,土样的体积收缩率逐渐减小,体积膨胀率变化不大,即经过一次收缩后,初始干密度对土样膨胀性的影响减弱。 关键词:膨胀土;胀缩变形;体变特征;干密度;照相法 DOI:10畅13204/j.gyjz201509020 EXPERIMENTALSTUDYOFVOLUMEDEFORMATIONCHARACTERISTICS OFEXPANSIVESOILSDURINGSHRINKAGEANDSWELLINGPROCESS LiPeng TanXiaohui WangXue XinZhiyu WangXianen (SchoolofResourcesandEnvironmentalEngineering,HefeiUniversityofTechnology,Hefei230009,China)Abstract:Theswellingandshrinkagedeformationofexpansivesoilhasaverybadinfluenceonthebuildingstructures.It isveryimportanttoresearchtheswellingandshrinkagedeformationcharacteristics.Aseriesofindoortestswerecarriedoutincludingshrinkagetestandhumidificationtest,inordertoresearchtherelationshipbetweenvoidratioandwatercontentintheprocessofshrinkageandwetting,andtheinfluenceofinitialdrydensityontherelation.Resultsindicatedthatphotographicmethodtomeasurethesurfaceareaofsoilsampleswasanidealnon-contactmeasurementmethod.Theshrinkageandswellcurveswereparalleltoeachotherunderdifferentinitialdrydensities,andwatercontent-voidratiocurvesmoveddownwardwithanincreaseofinitialdrydensity,aswellashumidificationcurves.Whentheinitialdrydensitywaslessthanthecriticaldrydensity,theshrinkagecurveandswellcurveintersected,thecross-stateinshrinkage-swellcurveturnedintotheseparate-statewhendrydensityincreased.Intheprocessofashrinkage-wetting,thevolumetricshrinkagedecreasedgraduallyandthevolumetricswellingwasroughlythesamewithanincreaseofinitialdrydensity,inotherwords,theeffectoftheinitialdrydensityonsoilswellwasweakened.Keywords:expansivesoil;swelling-shrinkdeformation;volumedeformationcharacteristic;drydensity;photo- graphicmethod 倡国家自然科学基金项目(40972194;41172273;41372281)。第一作者:李芃,女,1992年出生,硕士研究生。通信作者:谭晓慧,tantan9666@sina.com。收稿日期:2015-01-20 膨胀土是一种在我国分布范围极广的具有破坏性的黏性土,它具有强亲水性和胀缩性等特点。膨胀土的胀缩性一直是国内外研究的热点,许多学者都围绕该课题开展了大量的试验及理论研究。李志清等用DoesResponse模型定量模拟了膨胀土胀缩时程规律 [1] ;唐朝生等研究了土体干燥过程中的体 积收缩变形特征,提出了压实土样收缩应变与初始 干密度及含水率之间的函数关系式[2] 。膨胀土经历多次干湿循环后胀缩变形会随着循环次数的增加逐渐趋于稳定,表现出可逆的性质,即达到平衡状态[3-6]。达到平衡状态后,土的孔隙比及含水率不 受初始干密度的影响,但是在达到平衡之前,初始干 密度会对膨胀土的胀缩性产生影响[6] 。一般情况下,初始干密度越大,膨胀土的膨胀率越大,而收缩 率越小[7] 。 通常以含水率-吸力的关系曲线(土水特征曲线)或含水率-孔隙比关系曲线描述膨胀土的脱湿 和吸湿路径[5-6] ,含水率-吸力-孔隙比的土水特

膨胀土的浸水变形特性

2005年11月水利学报 SHUIUXUEBAO第36卷第11期 文章编号:0559.9350(2005)11.1385—07 膨胀土的浸水变形特性 李振1,邢义川2,张爱军1 (1西北农林科技大学水利与建筑工程学院。陕西杨陡712l呻;2中国水利水电科学研究院综合事业部。北京100蝉4) 摘要:使用压缩仪,对不同起始密度及不同起始含水率的膨胀土进行了分级浸水和一次性浸水膨胀变形试验,同时测试了试样在最水前后不同压力下膨胀变形量的变化过程。试验结果表明,不同浸水路径在浸水的初期阶段对膨胀土的膨胀变形速率有一定的影响,但膨胀率最终值基本一致;浸水膨胀再压缩试验中压缩稳定后的膨胀率比先压缩再{曼水膨胀试验膨胀稳定后的膨胀率要小,但变化较快,并随着压力的增大,加压后膨胀率逐渐减小,最终两种试验的膨胀率趋于一致;压力对不同初始含水率试样膨胀率的影响较小,对不同初始干密度试样的影响较大;在浸水单向膨胀试验过程中试样的干密度与膨胀率呈双曲线变化规律。 关键词:膨胀土;浸水;压缩;变形;膨胀率 中圈分类号:TU4儿.2文献标识码:A 1研究背景 在膨胀土地区的工程建设中,常用膨胀土作为建筑物的地基,由于膨胀土含有强亲水性黏土矿物成分如蒙脱石和伊利石,使得膨胀土吸水膨胀,失水收缩,从而引起建筑物的开裂、倾斜破坏,或使开挖体的边坡产生滑移失稳等现象,对工程建筑产生极大的危害。据统计,全世界每年由于膨胀土造成的损失可达近百亿元“]。加强对膨胀土工程特性的研究,总结探讨其内在的变形规律性,对工程建设具有十分重要的经济意义和工程实践价值。研究表明,影响膨胀土变形的因素较多,膨胀土的变形不仅与应力路径有关,而且与起始含水率和干密度有关”o。许多学者对膨胀土的结构特性、遇水作用后产生膨胀变形的机理、膨胀土的本构关系及在不同初始状态下的膨胀变形进行了深入的研究”“,从中得到了许多能很好解释膨胀土工程特性的结论,但对于在不同浸水路径下膨胀土遇水增湿而产生膨胀变形的研究却不多。针对这一点,本文在不同的浸水路径和加荷方式下,采用压缩仪对膨胀土浸水变形特性进行试验探讨。 2试验材料与方法 2.1试验试样试验土样取白安康工业开发区某工程地基膨胀土,其物理性质试验结果见表l。 表1膨胀土的物理性质试验结果 2.2试验方法“1按试验方案所需的含水率配制土料,制备试样时采用千斤顶一次压实至控制高度收稿日期:2005_01-27 基金项目:水利部“舛8”计划技术创新与转化项目(c渊8) 作者简介:李振(1969一),男,陕西华县人,工程师,主要从事岩土工程试验研究。E.md:Iidmn898@126.一 1385

砼结构胀缩变形引起结构裂缝

砼结构胀缩变形引起结构裂缝 结构裂缝在建筑上是个严肃的话题,建筑者不希望发生结构裂缝。 结构裂缝对建筑物造成的影响是很严重的,轻的影响使用,减低建筑物使用寿命,重的危及建筑物的安全,同时给使用者造成心理上负担。从而必须找出其造成裂缝原因加于防治。在建筑物施工前对这些引起裂缝的各种因素要有正确理解,要心中有数,对易出裂缝构件要作控制,针对性采取一些对策,减少一些不利因素,降低其危害程度。我们质监人员也要理解明白产生结构裂缝种种因素,从而在质监过程中对施工现场进行指导,提出问题让设计、施工、监理、业主互相配合,从设计开始到施工结束,在构造上、施工方法上、人员素质、材料选用、施工时间要求均要有一个科学的态度,有一个实事求是的精神,使工程取得一个最好的效果。 所谓结构裂缝,我们经常碰到的。例如:楼板开裂、端跨墙身45度斜裂缝、中间部位墙身垂直裂缝、窗洞口上天盘窗角开裂、下窗台窗角开裂、楼层纵向大梁断裂等。这些裂缝发生在结构上,我们称之谓结构裂缝。 结构构件用于承受荷载的,然而在未受到荷载下也出现了裂缝,显然不是由于承受荷重而出现裂缝,而是与荷载无关的因素。这种裂缝是由于结构的变形引起的。引起结构变形例如:温度变化、砼收缩、不均匀沉降等变形。不均匀沉降造成的房屋结构的开裂容易理解,这

里不再叙述。现就砼膨胀和收缩变形引起裂缝作一简单的讨论:砼的收缩和膨胀的变形所引起的裂缝随着结构的不同、所处部位的不同,构件所处季节不同而不同,这种裂缝是多姿多态,无统一的模式,从而人们往往不能一下子就熟悉它、了解它。从而判断带有主观性、随意性,随人的体验不同而不同,难于统一、正确。现把其中几种典型结构裂缝提出来进行讨论。 砼从浇筑到硬化,到使用,它一直在收缩。造成收缩的原因:砼中含有大量的空隙、粗孔及毛细孔。这些孔隙中存在水分,水分的流动影响到砼一系列的性质。当砼在干燥条件下,首先是大空隙及粗毛细孔中的自由水分蒸发。然后细孔及细微孔中水产生毛细压,砼中的水泥石受到这种压力产生变形收缩,即“毛细收缩”。待毛细水蒸发以后,进一步蒸发其分子之间的化学结合的吸附水,首先蒸发晶格间水分;其次蒸发分子层中的吸附水,这些水分蒸发引起砼中水泥石显著压缩,产生“吸附收缩”。水泥浆在水化过程中早期硬化过程也产生收缩,叫做“硬化收缩”,这种收缩亦称自生收缩。砼在空气中与气作用而产生碳化,由此引起的“碳化收缩”。这些收缩随砼中水泥活性提高,水泥量越多,其收缩变形越大。砼水灰比不同,砼孔隙率也不同,则在相同条件,水灰比越大,收缩变形也越大。 砼的收缩值是很大的。从图1中可以看到,在空气中养护,半年多一点时间, (相对收缩率)达3×10-4,一年可达4×10-4。即一年10m长的构件将要收缩4mm。随着时间推移,收缩一直在进行着,需要很长的时间才趋于稳定。见图1。

相关文档
最新文档