离散数学,二元关系的性质

离散数学,二元关系的性质
离散数学,二元关系的性质

离散数学第四章二元关系和函数知识点总结

集合论部分 第四章、二元关系和函数 集合的笛卡儿积与二元关系有序对 定义由两个客体x 和y,按照一定的顺序组成的 二元组称为有序对,记作 实例:点的直角坐标(3,4) 有序对性质 有序性 (当x y时) 相等的充分必要条件是= x=u y=v 例1 <2, x+5> = <3y4, y>,求x, y. 解 3y 4 = 2, x+5 = y y = 2, x = 3 定义一个有序n (n3) 元组 是一个 有序对,其中第一个元素是一个有序n-1元组,即 = < , x n> 当n=1时, 形式上可以看成有序 1 元组. 实例 n 维向量是有序 n元组. 笛卡儿积及其性质 定义设A,B为集合,A与B 的笛卡儿积记作A B,即A B ={ | x A y B } 例2 A={1,2,3}, B={a,b,c} A B ={<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>, <3,a>,<3,b>,<3,c>} B A ={,,,,,, , ,} A={}, P(A)A={<,>, <{},>} 性质:

不适合交换律A B B A (A B, A, B) 不适合结合律 (A B)C A(B C) (A, B)对于并或交运算满足分配律 A(B C)=(A B)(A C) (B C)A=(B A)(C A) A(B C)=(A B)(A C) (B C)A=(B A)(C A) 若A或B中有一个为空集,则A B就是空集. A=B= 若|A|=m, |B|=n, 则 |A B|=mn 证明A(B C)=(A B)(A C) 证任取 ∈A×(B∪C) x∈A∧y∈B∪C x∈A∧(y∈B∨y∈C) (x∈A∧y∈B)∨(x∈A∧y∈C) ∈A×B∨∈A×C ∈(A×B)∪(A×C) 所以有A×(B∪C) = (A×B)∪(A×C). 例3 (1) 证明A=B C=D A C=B D (2) A C=B D是否推出A=B C=D 为什么 解 (1) 任取 A C x A y C x B y D B D (2) 不一定. 反例如下: A={1},B={2}, C=D=, 则A C=B D 但是A B.

离散数学知识点总结

离散数学知识点总结 一、各章复习要求与重点 第一章 集 合 [复习知识点] 1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集 2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图 3、序偶与迪卡尔积 本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求] 1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。 2、掌握集合的表示法和集合的交、并、差、补等基本运算。 3、掌握集合运算基本规律,证明集合等式的方法。 4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。 [本章重点习题] P5~6,4、6; P14~15,3、6、7; P20,5、7。 [疑难解析] 1、集合的概念 因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。 2、集合恒等式的证明 通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~?=-证明中的特殊作用。 [例题分析] 例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。 解 }}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A }}2,1{},2{},1{,{)(φρ=B 于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ

离散数学关系性质的C++或C语言判断实验报告

1.【实验目的】 对称: 通过算法设计并编程实现对给定集合上的关系是否为对称关系的判断,加深学生对关系性质的理解,掌握用矩阵来判断关系性质的方法 自反: 通过算法设计并编程实现对给定集合上的关系是否为自反关系的判断,加深学生对关系性质的理解,掌握用矩阵来判断关系性质的方法。 2.【实验内容】 已知关系R 由关系矩阵M 给出,要求判断由M 表示的这个关系是否为对称关 系。假定R 的关系矩阵为:?????? ? ??=1234210330124321M 3.【实验要求】 C 语言编程实现 4.【算法描述】 对称: 从给定的关系矩阵来判断关系R 是否为对称是很容易的。若M (R 的关系矩阵)为对称矩阵,则R 是对称关系;若M 为反对称矩阵,则R 是反对称关系。因为R 为对称的是等价关系的必要条件,所以,本算法可以作为判等价关系算法的子程序给出。 算法实现: (1) 输入关系矩阵M (M 为n 阶方阵); (2) 判断对称性,对于i=2,3,….,n ;j=1,2,……,i-1,若存在m ij =m ji , 则R 是对称的; (3) 判断反对称性; (4) 判断既是对称的又是反对称的; (5) 判断既不是对称的又不是反对称的; (6) 输出判断结果。

自反: 从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。本算法可以作为判等价关系算法的子程序给出。 算法实现 (1)输入关系矩阵M(M为n阶方阵)。 (2)判断自反性,对于i=1,2,….,n;若存在m =0,则R不是自反 ii =1,则R是自反的;否则R既不是自反关系也不是的;若存在m ii 反自反关系。 (3)输出判断结果。 源代码 #include void z(); void r(); void main() { int d; while(d) { printf("欢迎使用关系性质的判断系统\n\n 1. 对称关系的判断 2. 自反关系的判断\n\n请输入选项:"); scanf("%d",&d); switch(d){ case 1: r();break; case 2: z();break; case 0: break; }

离散数学(二元关系)课后总结

第四章二元关系 例1 设A={0,1},B={a,b},求A?B ,B?A,A?A 。 解:A?B={<0,a>,<0,b>,<1,a>,<1,b>} B?A={,,,} A?A={<0,0>,<0,1>,<1,0>,<1,1>} 可见A×B≠B×A 例2、关于笛卡尔乘积的几个证明 1)如果A、B都是有限集,且|A|=m, |B|=n,则 |A?B |=mn. 证明:由笛卡尔积的定义及排列组合中的乘法原理,直接推得此定理。 2) A?Φ=Φ?B=Φ 3) ?对∪和∩满足分配律。 设A,B,C是任意集合,则 ⑴A?(B∪C)= (A?B)∪(A?C); ⑵A?(B∩C)= (A?B)∩(A?C); ⑶(A∪B)?C= (A?C)∪(B?C); ⑷(A∩B)?C= (A?C)∩(B?C) 证明⑴:任取∈A?(B∪C) ?x∈A ∧y∈B∪C ?x∈A ∧(y∈B∨y∈C) ?( x∈A ∧y∈B)∨(x∈A∧y∈C) ?∈A?B∨∈A?C ?∈(A?B)∪(A?C) 所以⑴式成立。 4)若C≠Φ,,则A?B?(A?C?B?C) ?(C?A?C?B). 证明: 必要性:设A?B,求证A?C?B?C 任取∈A?C ?x∈A∧y∈C?x∈B∧y∈C (因A?B) ?∈B?C 所以, A?C?B?C. 充分性:若CΦ≠, 由A?C?B?C 求证A?B 取C中元素y, 任取x∈A?x∈A∧y∈C?∈A?C ?∈B?C (由A?C?B?C ) ?x∈B∧y∈C? x∈B 所以, A?B. 所以A?B?(A?C?B?C) 类似可以证明A?B ?(C?A?C?B). 5) 设A、B、C、D为非空集合,则 A?B?C?D?A?C∧B?D. 证明: 首先,由A?B?C?D 证明A?C∧B?D. 任取x∈A,任取y∈B,所以x∈A∧y∈B ?∈A×B ?∈C×D (由A?B?C?D ) ?x∈C∧y∈D 所以, A?C∧B?D. 其次, 由A?C,B?D. 证明A?B?C?D 任取∈A×B ∈A×B ? x∈A∧y∈B ? x∈C∧y∈D (由A?C,B?D) ?∈C×D 所以, A?B?C?D 证毕.

离散数学-第七章二元关系课后练习习题及答案讲课教案

第七章作业 评分要求: 1. 合计100分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 1 设R={|x,y∈N且x+3y=12}.【本题合计10分】 (1) 求R的集合表达式(列元素法); (2) 求domR, ranR; (3) 求R?R; (4) 求R?{2,3,4,6}; (5) 求R[{3}]; 解 (1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】 (2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】 (3) R?R={<3,3>, <0,4>}【2分】 (4) R?{2,3,4,6}={<3,3>, <6,2>}【2分】 (5) R[{3}]={3}【2分】 2 设R,F,G为A上的二元关系. 证明: (1)R?(F∪G)=R?F∪R?G (2)R?(F∩G)?R?F∩R?G (3)R?(F?G)=(R?F)?G. 【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明 (1)?, ∈R?(F∪G) ??t (xRt∧t(F∪G)y) 复合定义 ??t(xRt∧(tFy∨tGy) ∪定义 ??t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律 ??t(xRt∧tFy)∨?t(xRt∧tGy) ?对∨分配律 ?x(R?F)y∨x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (2)?, x(R?(F∩G))y ??t(xRt∧t(F∩G)y) 复合定义 ??t(xRt∧(tFy∧tGy)) ∩定义 ??t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律 ??t(xRt∧tFy)∧?t(xRt∧tGy) 补充的量词推理定律 ?x(R?F)y∧x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义

离散数学符号表

《离散数学》符号表 ? 全称量词(任意量词) ? 存在量词 ├ 断定符(公式在L 中可证) ╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算 ∧ 命题的“合取”(“与”)运算 ∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 ? 命题的“双条件”运算的 B A ? 命题A 与B 等价关系 B A ? 命题A 与B 的蕴涵关系 * A 公式A 的对偶公式 wff 合式公式 iff 当且仅当 V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然” ◇ 模态词“可能” φ 空集 ? 属于(?不属于) A μ(·) 集合A 的特征函数 P (A ) 集合A 的幂集 A 集合A 的点数 n A A A ??? (n A ) 集合A 的笛卡儿积 R R R =2 )(1R R R n n -= 关系R 的“复合” 0? 阿列夫零 ? 阿列夫

? 包含 ? 真包含 ∪ 集合的并运算 ∩ 集合的交运算 - (~) 集合的差运算 ⊕ 集合的对称差运算 m + m 同余加 m ? m 同余乘 〡 限制 R x ][ 集合关于关系R 的等价类 A /R 集合A 上关于R 的商集 )(A R π 集合A 关于关系R 的划分 )(A R π 集合A 关于划分π的关系 ][a 元素a 产生的循环群 R a ][ 元素a 形成的R 等价类 r C 由相容关系r 产生的最大相容类 I 环,理想 )/(n Z 模n 的同余类集合 ) (mod k b a ≡ a 与b 模k 相等 )(R r 关系R 的自反闭包 )(R s 关系R 的对称闭包 +R ,)(R t 关系R 的传递闭包 *R ,)(R rt 关系R 的自反、传递闭包 .i H 矩阵H 的第i 个行向量 j H . 矩阵H 的第j 个列向量 CP 命题演绎的定理(CP 规则) EG 存在推广规则(存在量词引入规则) ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则)

二元关系(离散数学)

第二章二元关系 习题2.1 1. a)R = {<0, 0>, <0, 2>, <2, 0>, <2, 2>} b)R = {<1, 1>, <4, 2>} 2. R1? R2 = {<1, 2>, <2, 4>, <3, 3>, <1, 3>, <4, 2>} R1? R2 = {<2, 4>} dom R1= {1, 2, 3} dom R2= {1, 2, 4} ran R1= {2, 3, 4} ran R2= {2, 3, 4} dom (R1? R2) = {1, 2, 3, 4} ran (R1? R2) = {4} 3. 证明:(根据定义域和值域的定义进行证明) 因为 x ∈ dom (R1? R2) 当且仅当有y ∈ B使得 ∈ (R1? R2) 当且仅当有y ∈ B使得 ∈ R1或 ∈ R2 当且仅当有y ∈ B使得 ∈ R1或有y ∈ B使得 ∈ R2 当且仅当x ∈ dom (R1) 或x ∈ dom (R2) 当且仅当x ∈ dom (R1) ? dom (R2) 所以,dom (R1? R2) = dom (R1) ? dom (R2) 。 因为 若x ∈ ran (R1? R2),则有x ∈ A使得 ∈ (R1? R2) ; 有x ∈ A使得 ∈ R1且 ∈ R2 ; 有x ∈ A使得 ∈ R1且有x ∈ A使得 ∈ R2 ; x ∈ ran (R1) 且x ∈ ran (R2); x ∈ ran (R1) ? ran (R2)。 所以,ran (R1? R2) ? ran (R1) ? ran (R2)。 4. L = {<1, 2>, <1, 3>, <1, 6>, <2, 3>, <2, 6>, <3, 6> }; D = {<1, 1>, <1, 2>, <1, 3>, <1, 6>, <2, 2>, <2, 6>, <3, 3>, <3, 6>, <6, 6> };

离散数学-第七章二元关系课后练习习题及答案

离散数学-第七章二元关系课后练习习题及答案

第七章作业 评分要求: 1. 合计100分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 1 设R={|x,y∈N且x+3y=12}.【本题合计10分】 (1) 求R的集合表达式(列元素法); (2) 求domR, ranR; (3) 求R?R; (4) 求R?{2,3,4,6}; (5) 求R[{3}]; 解 (1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】 (2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】 (3) R?R={<3,3>, <0,4>}【2分】 (4) R?{2,3,4,6}={<3,3>, <6,2>}【2分】 (5) R[{3}]={3}【2分】 2 设R,F,G为A上的二元关系. 证明:

理定律 ?x(R?F)y∧x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (3)?, ∈R?(F?G) ??s (∈R∧∈(F?G)) ?定义 ??s (∈R∧?t (∈F∧∈G))) ?定义 ??s?t(∈R∧∈F∧∈G) 辖 域扩张公式 ??t?s((∈R∧∈F)∧∈G)存在量词交换 ??t(?s(∈R∧∈F)∧∈G)辖域收缩公式 ??t(∈(R?F)∧∈G) 复合定义 ?∈(R?F)?G 复合定义 得证 3 设F={|x-y+2>0∧x-y-2<0}是实数集R上的二元关系, 问F具有什么性质并说明理由. 【本题合计10分:每种性质2分----答对得1分,

离散数学1

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业. 要求:将此作业用A4纸打印出来,并在03任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿). 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= , A B A?B= .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为.3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, ∈ R? x ∈ > y 且 =且 ∈ < {B , , x A y A y B x } 则R的有序对集合为. 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y y x∈ = < > ∈ x , , x , 2 {B y A 那么R-1=. 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有个. 8.设A={1, 2}上的二元关系为R={|x∈A,y∈A, x+y =10},则R的自反闭包为. 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含等元素. 10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g? f)= .

离散数学复习要点

《离散数学》期末复习提要 《离散数学》是中央电大“数学与数学应用专业”(本科)的一门选修课。该课程使用新的教学大纲,在原有离散数学课程的基础上削减了教学内容(主要是群与环、格与布尔代数这两章及图论的后三节内容),使用的教材为中央电大出版的《离散数学》(刘叙华等编)和《离散数学学习指导书》(虞恩蔚等编)。 离散数学主要研究离散量结构及相互关系,使学生得到良好的数学训练,提高学生抽象思维和逻辑推理能力,为从事计算机的应用提供必要的描述工具和理论基础。其先修课程为:高等数学、线性代数;后续课程为:数据结构、数据库、操作系统、计算机网络等。 课程的主要内容 1、集合论部分(集合的基本概念和运算、关系及其性质); 2、数理逻辑部分(命题逻辑、谓词逻辑); 3、图论部分(图的基本概念、树及其性质)。 学习建议 离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。 教学要求的层次 各章教学要求的层次为了解、理解和掌握。了解即能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。 一、各章复习要求与重点 第一章集合 [复习知识点] 1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集 2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、De Morgan 律等),文氏(Venn)图 3、序偶与迪卡尔积 本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]

1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。 2、掌握集合的表示法和集合的交、并、差、补等基本运算。 3、掌握集合运算基本规律,证明集合等式的方法。 4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。 [本章重点习题] P5~6,4、6; P14~15,3、6、7; P20,5、7。 [疑难解析] 1、集合的概念 因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。 2、集合恒等式的证明 通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~?=-证明中的特殊作用。 [例题分析] 例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。 解 }}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A }}2,1{},2{},1{,{)(φρ=B 于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ 例2 设{}{}Φ=,,,,b a b a A ,试求: (1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。 解 (1){}{}{ }Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{ }Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~???=??? 证明

010_离散数学

湖南师范大学硕士研究生入学考试自命题考试大纲 考试科目代码:考试科目名称:离散数学 一、试卷结构 1) 试卷成绩及考试时间 本试卷满分为100分,考试时间为180分钟。 2)答题方式:闭卷、笔试 3)试卷内容结构 集合论40% 数理逻辑40% 图论20% 4)题型结构 a: 填空题,5小题,每小题5分,共25分 b: 计算题,3小题,每小题10分,共30分 c: 证明题,3小题,每小题15分,共45分 二、考试内容与考试要求 1、集合论 考试内容 集合及其表示集合的运算与性质二元关系的概念二元关系的五种性质关系矩阵与关系图关系的各种运算与性质关系闭包与性质相容关系等价关系序关系部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数特征函数集合的基数与性质 考试要求 (1)理解集合的表示、二元关系的概念、部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数的概念; (2)掌握集合的运算与性质、关系的五种性质、关系的运算与性质、关系闭包与性质、相容关系、等价关系、序关系. (3)了解特征函数集合的基数与性质.

2、数理逻辑 考试内容 命题与命题的真值五个基本联结词命题符号化合式公式真值表合式公式的类型等价式、蕴含式的证明范式和判定问题求主范式的方法变元、谓词和量词量词的辖域、前束范式合式公式的解释、求合式公式在给定解释下真值的方法 考试要求 (1)理解命题与命题的真值、联结词、合式公式与真值表、变元、谓词和量词等概念. (2)掌握合式公式的类型、等价式、蕴含式的证明、求主范式的方法、合式公式的解释、以及求在给定解释下真值的方法. (3)了解量词的辖域、前束范式. 3、图论 考试内容 图的基本概念路与回路和连通性图的矩阵表示欧拉图和哈密顿图平面图对偶图与着色树与生成树根树及其应用 考试要求 (1)理解图、路、回路和连通性等基本概念. (2)掌握一些特殊图类的性质,树的特征与应用. 三、参考书目 [1] 左孝凌等,《离散数学》,上海科技文献出版社,1982年 [2] 王兵山、张强、毛晓光,《离散数学》,国防科技大学出版社,1998年 [3] 耿素云、屈宛玲,《离散数学》,高等教育出版社,2003年

离散数学二元关系知识点总结

二元关系 《关系》 定义1 A X B 的子集叫做A 到B 的一个二元关系 A 1 X A2 X A3…Xa n (n>1)的子集叫做A 1 X A2 XA3…X n 上的一个n 元关系。 A n = A X A X… X A(n>1)的子集叫做A 上的n 元关系。 定义2 设R 是X n t=1Ai 的子集,如果R = Φ,则称R 为空关系,如果R = X n t=1Ai 。则称R 为全域关系。 定义3 设R1是X n t=1Ai 上的n 元关系,R2是X m t=1Bi 上的m 元关系。那么R1 = R2,当且仅当n = m , 且对一切i ,1<=i<=n ,Ai = Bi ,并且R1和R2是相等的有序n 重组集合。 《二元关系》 中缀记法: ∈ R ,可以写成x3Ry1,读作x3和y1有关系R 。 A 叫做关系R 的前域, B 叫做关系R 的陪域。 D(R) = {x | ?y ( ∈ R)}叫做关系R 的定义域。 R(R) = {y | ?x ( ∈ R)}叫做关系R 的值域。 《关系矩阵和关系图》 矩阵:表达有限集合到有限集合的二元映射。 定义1 给定集合A = {a 1, a2, …, an}和B = {b1, b2, …, bn},及一个A 到B 的二元关系R ,使 r ij = {1,如果aiRbj 0,如果ai ?Rbj 则称M R = [rij]矩阵是R 的关系矩阵。 有向图(或关系图):表达集合A 上的二元关系。 小圆圈叫图的结点(node ) 带箭头的狐叫弧或边。自回路。 有向图的图示。

离散数学关系部分经典练习及答案

离散数学关系部分综合练习 一、单项选择题 1.设集合A = {1, a },则A 的幂集P (A ) = ( ). A .{{1}, {a }} B .{?,{1}, {a }} C .{?,{1}, {a }, {1, a }} D .{{1}, {a }, {1, a }} 2.若集合A 的元素个数为10,则其幂集的元素个数为( ). A .1024 B .10 C .100 D .1 7.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={|x +y =10且x , y ∈A },则R 的性质为( ). A .自反的 B .对称的 C .传递且对称的 D .反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b ∈A , 且a +b = 8},则R 具有的性质为( ). A .自反的 B .对称的 C .对称和传递的 D .反自反和传递的 9.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有( )个. A .0 B .2 C .1 D .3 10.设集合A ={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>}, S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>}, 则S 是R 的( )闭包. A .自反 B .传递 C .对称 D .以上都不对 11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如图一所示,若A 的子集B = {3 , 4 , 5}, 则元素3为B 的( ). A .下界 B .最大下界 C .最小上界 D .以上答案都不对 12.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( ). A .8、2、8、2 B .无、2、无、2 C .6、2、6、2 D .8、1、6、1 13.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, , },R 3={, },则( )不是从A 到B 的函数. A .R 1和R 2 B .R 2 C .R 3 D .R 1和R 3 5 图一

相关文档
最新文档