全水发泡聚氨酯泡沫塑料综述

全水发泡聚氨酯泡沫塑料综述
全水发泡聚氨酯泡沫塑料综述

全水发泡聚氨酯泡沫塑料综述

朱吕民

(南京四寰合成材料研究所江苏南京210013)

摘要:首先对CFC替代技术的现状进行了简要的介绍,从全水发泡软质聚氨酯泡沫塑料(包括负压发泡技术、强制冷却技术和液态CO2发泡技术)、全水发泡聚氨酯自结皮泡沫、高水量低密度高回弹聚氨酯泡沫塑料和全水发泡硬质聚氨酯泡沫塑料这几个方面详细论述了全水发泡的工艺特点,并列举了几个实例。

关键词:全水发泡;聚氨酯;泡沫塑料;CFC替代

1 前言

聚氨酯泡沫塑料是聚氨酯合成材料中占主要地位的大品种。2002年全球聚氨酯产量为860万吨;国内聚氨酯合成材料总计100多万吨,其中泡沫塑料占50%左右,以2000年统计,软质泡沫塑料约26万吨占泡沫塑料的60%,硬质泡沫塑料约18万吨占泡沫总量的40%。所以说,聚氨酯泡沫塑料是消耗CFC 和HCFC系列发泡剂的大户。

众所周知,CFC系列产品对大气臭氧层具破坏作用,形成温室效应,使全球气温回暖、皮肤癌患者增多,所以保护人类赖以生存的臭氧层已刻不容缓。

1991年我国参与了国际蒙特利尔公约,限制及禁止使用CFC-11成为我国一项政策性措施。计划到2005年,CFC-11消费减少50%,2008年削减85%,2010年实现CFC-11零消费。2001年12月我国又获蒙特利尔多边基金赠款,作为泡沫行业ODS整体淘汰计划的费用,确保2010年以前全面淘汰CFC。这是一个利好消息,将促进我国PU工业的发展,并能达到与国外先进水平接轨。

PUF用CFC-11的替代品或发泡体系新技术的开发,已成为当今世界聚氨酯工业界进行技术创新的主潮流。

归纳起来有如下几个开发研究领域:

1)HFC系列化学品的开发研究

可用于PU泡沫塑料发泡剂的HFC产品物性见表1。其中被人们看好的是HFC-245fa(1,1,1,3,5-五氟丙烷),HFC-365mfc(1,1,1,3,3-五氟丁烷)及HFC-356(1,1,1,4,4,4-六氟丁烷)三个品种。

表1 可用于PU泡沫塑料发泡剂的HFC产品物性

HFC-152a HFC-134a HFC-365mfc HFC-245fa HFC-356

分子式CH3CHF3 CH2FCF3 CH3CF2CH2CF

3 CF3CH2CHF CF3(CH2)2CF

3

相对分子质量66.05 102.0 148 134 166

沸点/℃-24.7 -26.5 40.2 15.2 24.6

20℃蒸汽压/Pa 5.15 5.72 0.47 1.24 84.1

λ(25℃) /mW·(m·K)-114.3 13.7 10.6 12.2 9.5(20℃)

爆炸极限(V/V)/% 3.8~21.8 无 3.5~9 无无

GWP(CO2=1) 140 1300 840 820 530 大气层中寿命 1.5年14天10.8年7.4年154天

HFC化合物的ODP值为零,GWP值比CFC-11的小得多,且不燃、低毒,在PUF中有较低的气体扩散速度,确保了聚氨酯泡沫塑料的导热系数λ值耐老化性好。但是其成本高,目前靠进口,业界人士难以接受。

2)聚醚、聚酯多元醇新品的开发研究

聚氨酯泡沫塑料的性能,很大程度上取决于聚醚或聚酯多元醇的结构,它是确保废除CFC-11之关键。发泡体系中合适的多元醇可使混合体系具有良好流动性以及与其它助剂的互溶性,泡孔微细结构,泡沫尺寸稳定性优良。CFC替代体系聚醚多元醇的开发趋势是合成具芳烃结构、粘度小、与水和HFC互溶性好的品种。

3)新型有机硅表面活性剂及特殊催化剂的开发研究

有机硅表面活性剂(泡沫稳定剂,俗称“硅油”)及催化剂等助剂,用量虽少,只有聚醚多元醇用量的1%左右,但其起到非常大的作用,可改善发泡料的流动性,增加软泡开孔度、降低硬泡的导热系数,应引起重视。

目前国内家电行业,由于实力雄厚,采取一步到位,实施设备改造,加强防爆、防火措施,直接采用戊烷系列的发泡剂,但是戊烷类发泡剂的特殊性,对于中小企业难以实施,戊烷类发泡剂也不能应用现场施工,如冷库、管道、车辆等喷涂保温,工艺有一定的局限性。

HCFC-141b是一种过渡性替代品,寿命不长;HFC系列品种国内没有,且价格太贵。为此,作者主张大力开发研究全水发泡体系聚氨酯泡沫塑料,以适应满足我国中小企业及各种发泡现场施工的需要。

2 全水发泡软质聚氨酯泡沫塑料

软质聚氨酯块状泡沫塑料有二类产品:一种是小企业生产的所谓“箱式”发泡的块状PU软泡,简称“箱泡”,以间歇法方式生产;另一种是连续机械发泡生产的块状泡沫。对于中、高密度PU软泡,因用水量少,泡沫中心温度不会超过170℃,不会造成泡沫燃烧及火灾问题。对于低密度块状PU海绵即泡沫密度低于18 kg/m3以下的泡沫,通常水用量超过4.5份(每100份多元醇),TDI用量超过55份,在此情况下,泡沫的散热问题就非常突出,由于泡沫内部的热量不易散发,在发泡过程中温度自动升温超过180℃,会引起泡沫自燃,导致火灾危险。

国内外解决办法有三个,即负压发泡技术、强制冷却技术和液态CO2发泡技术。

2.1 负压发泡技术

通常,泡沫发泡过程中,泡孔要承受大气压、泡沫自身重量和发泡时的气体膨胀力这三种压力。

泡沫中的泡孔受到的压力分布示意图见图1。

图1 泡孔B受压力分布

图1中,P1为大气压力,P2为泡孔内部气体膨胀而使泡孔受到的向外膨胀压力,G为此泡孔上方的泡沫体重量。

在P≥P1+G+P2下,泡沫才能上升。

在负压下,P1是一个变量,P2是受P1影响的变量。

根据我们实验:一旦在发泡时泡沫料所受的外部压力减少30%(即低于大气压力30%),泡沫塑料

的密度可以降低15%~20%;当泡沫外界压力减少50%时,泡沫密度能降低25%~30%。一般,在0.1 MPa (1 atm)下,用水量在4.3份(每100份聚醚多元醇)情况下,可制得密度为24 kg/m3左右的块泡;当外界压力降为0.05 MPa时,同样4.3份水可制得密度为16 kg/m3的块泡。值得注意的是,必须适当调整泡沫的上升及凝固时间,即延长上升时间、缓迟凝固时间,以保证泡沫在负压下有充分的发泡机会。

对于连续平顶块状海绵,“负压发泡”的设备投资大,中小企业难以承受,但对于“箱式发泡”,其投资成本不会太大。

建议:建一个圆筒型真空房,形似“真空干燥箱”,再添一台抽气量大的真空泵,以保证在30 s内达到所需的真空度。

2.2 强制冷却技术

本技术的特点是保证软质泡沫塑料体的中心温度不超过170℃,避免自燃及火灾的发生。

强制冷却的目的是在采用高含水量条件下生产出低密度海绵时,保证泡沫体内部温度不超过临界温度170℃。图2为不同水量的PU软泡发泡过程中泡沫中心温度的变化情况。

图2 强制冷却系统对海绵中心温度之作用

从图2看出,强制冷却可明显降低泡沫内部温度。在操作上,这种方法是可行的。只要控制好发泡时间不超过30 min,将大块泡沫移入强制冷却室,使泡沫继续熟化,即可达到目的。

该技术很适合国内大中小企业,投资改造费用少,上马快,但聚醚生产厂家一定要配合工作,研制出符合高水量低密度PU软泡专用品种。

意大利的Enichem研究中心开发出系列聚醚多元醇适用于高水量低密度PU柔软级、超软级、软级泡沫品牌,其商品名为Tercaflex 9912及PU POL 9917。其柔软级PU软泡物性见表2。

表2 柔软级聚醚型聚氨酯软泡物性

泡沫编号16S 18S 21S 25S 30S 40S

配方(质量份)

PU POL 9917 13 13 13 13 13 13

Gledion FG 3505 ——87 87 87 87

Tercaflex 9912 87 87 ————

水 5.3 5.0 4.6 3.9 3.2 3.2

TDI-80指数98 98 100 100 103 103

续表2 柔软级聚醚型聚氨酯软泡物性

泡沫编号16S 18S 21S 25S 30S 40S

泡沫密度/kg·m-316.5 17.3 20.3 24.8 30.3 40.1

拉伸强度/kPa 88 94 103 123 108 98

断裂伸长率/% 271 288 316 320 303 280

75%压缩永久变形/% 6.1 5.5 4.6 3.1 2.0 1.9

40%压痕硬度/N 65 81 82 85 95 99

40%压缩应力/kPa 1.55 1.75 1.83 1.95 2.05 2.25

落球回弹率/% 36 39 40 41 45 50

空气渗透率/nL·min-1200 145 138 125 115 99

作者认为:为了适用于强制冷却技术的高水量PU软泡体系,聚醚多元醇的相对分子质量必须超过3000,以消除因高水量所引起脲键增加而导致的泡沫回弹变差、伸长率降低、手感恶化的缺陷。同时在聚醚结构中引入氧化乙烯链节(EO)的含量要高,以保证聚醚与大量水的互溶。

2.3 液态CO2发泡技术

液态二氧化碳(LCD)发泡技术,早期由意大利康隆集团公司开发,称之为“CarDio”技术,一年之后,德国拜耳集团公司的亨内基机械公司也相继开发成功,称之为“NovaFlex”技术,该技术之所以引起业界兴趣,是因为CO2不仅有可替代软泡中的二氯甲烷(MC)及CFC-11等辅助发泡剂的功能,而且液态CO2的成本只有MC的四分之一,发泡效率却高3倍多。国外,康隆公司和亨内基公司都已在“Maxfoam”发泡机组上进行适当的调整改造,生产出泡沫密度约为14 kg/m3的平顶连续泡沫(泡沫宽2.2m、高1.2m)和模塑泡沫等。CarDio法泡沫比以往的Maxfoam泡沫有较柔软的手感、高度的开孔结构及良好的回弹性。

在软泡配方方面,高效率表面活性剂的选用,胺类催化剂与锡催化剂的优化组合,是生产商品级CO2发泡PU泡沫的保证。通常,在液态CO2发泡技术中,锡催化剂的用量比MC发泡技术的少。4份液态CO2相当于13份MC所起到的作用,而水量要适当增加一些,以保证泡沫的硬度。

生产不同密度的泡沫所用水量和液态CO2的用量关系见表3。

表3 生产不同密度的泡沫所用水量和液态CO2的用量关系

泡沫密度kg/m3

(质量份)

CO2

(质量份)

等效的MC

(质量份)

13.3 4.8 6.5 20.0

15.2 4.5 5.0 15.3

16.0 4.5 4.0 12.5

17.3 3.9 4.3 13.1

27.7 2.5 2.0 6.2

3 全水发泡聚氨酯自结皮泡沫

自结皮泡沫又称整皮泡沫,它是广泛应用于汽车、家具等行业的整皮PU泡沫塑料,以往是利用CFC-11等低沸物的汽化温度的差异以及反应压力而形成表面微密层与内芯泡沫层的,一旦全部用水为发泡剂,难以制得厚层表皮。

然而,我们也可以利用聚氨酯成型过程中的二个特点制得厚皮制品:

·采用特殊催化剂,使PU物料体系在接触模具的表面层在水发泡之前先形成微密厚层,内部再与水反应生成CO2成泡。

·利用不同异氰酸酯的反应活性差异,达到链增长速度大于发泡速度。采用不同工艺,在生产制品过程中先在模具表面涂上一层厚度约1 mm的不发泡软质泡沫组合料,然后注入全水发泡高回弹组合料,就可制得表面光滑、美观,具各种花纹的整皮PU泡沫塑料制品,如汽车方向盘、保险杆扶手、头枕等。

采用如下配方也可制得泡沫表层厚度在0.5~0.8mm、拉伸强度较大的整皮泡沫。

聚醚多元醇70份

聚醚二元醇22.5份

乙二醇7.5份

咪唑类催化剂 1.5份

叔胺醚类催化剂0.5份

有机金属催化剂0.04份

水0.45份

色料 1.0份

改性MDI预聚体/聚合MD1 指数 1.05

上述配方经反应注射成型工艺,可制得皮层厚度为0.5~0.8mm,皮层拉伸强度为2.7 MPa的泡沫。

再则,利用无机化合物含结晶水的特点,也可以制得自结皮泡沫。其道理之一是,当达到一定的温度,结晶水从无机物中分离出来,与异氰酸酯反应。这样就可利用这宝贵的一点时间差,形成致密表皮。

实例1:

配方:

聚醚多元醇A 100份

一缩乙二醇10份

咪唑类催化剂0.7份

叔胺醚类催化剂0.72份

有机金属催化剂0.01份

硼砂若干

液化MD1/聚合MD1掺合物,异氰酸酯指数 1.05

工艺参数:

乳白时间15 s

上升时间30 s

脱模时间:3min

泡沫物性:

自由发泡泡沫密度0.22g/cm3

表层泡沫密度0.62g/cm3

表层硬度(刚脱模时) 邵A67

最终表层硬度邵A 78

4 高水量低密度高回弹聚氨酯泡沫塑料

高回弹(HR)泡沫塑料通常以水为发泡剂。用水量在3%的情况,泡沫密度在55~60 kg/m3水平。在采用高含水量制低密度高回弹泡沫时,将出现一系列问题:模塑制品表皮脱落,粗糙,泡沫回弹降低,压缩变定差,手感不好等。所以,一般的办法是添加物理发泡剂CFC-11或HCFC-141b等。在保证高回弹泡沫物性的前提下,不用其它助发泡剂,制低密度(即密度≤40 kg/m3)的HR泡沫塑料是有难度的。

国外有二个途径:负压模塑发泡技术,液态CO2模塑技术。

江阴友邦聚氨酯公司采用高分子量高活性聚醚以及特殊助剂,使组合聚醚中的用水量从4.8份增加到6份,制得的HR泡沫塑料的密度从38 kg/m3降低到25 kg/m3。

介绍2个配方实例如下:

实例2:

高活性多元醇100份

特殊多元醇 2.0份

水 4.8份

胺催化剂0.42份

特殊催化剂 1.2份

助剂A 1.0份

MDI/聚合MDI 异氰酸酯指数 1.0

在47~53℃模具内发泡,4 s后脱模,泡沫性能为:

泡沫密度38.5 kg/m3

回弹率63%

拉伸强度0.133 MPa

50%压缩变定 4.9%

实例3:

高活性聚醚多元醇(羟值35mgKOH/g) 50份

自制聚合物多元醇(羟值25 mgKOH/g) 50份

水 6 份

交联剂1 1.5份

DEOA 1.2份

催化剂1 0.2份

催化剂2 0.3份

A-1 0.1份

硅油稳定剂 1.5份

TDI-80/20 69.7份

工艺参数:

乳白时间11 s

上升时间75 s

泡沫密度25 kg/m3

外观表面平整,无脱落

5 全水硬质聚氨酯泡沫塑料

全水聚氨酯硬泡是各大公司竞相开发的一个方向,通过聚醚多元醇(聚酯多元醇)改性,异氰酸酯新品种的开发及相关助剂(如有机硅表面稳定剂、催化剂等)的配套,在全水发泡的聚氨酯硬泡物性和工艺方面已达到相当高的水平。

值得注意的是,CO2从PU硬泡的泡孔中向外扩散的速度将比空气进入泡沫孔的速度快10倍,这不仅引起全水泡沫收缩,更严重的是含CO2气体的硬质泡沫塑料的导热系数老化性能差。曾有人研究过,用金属材料或不同的聚合物薄膜覆盖在全水发泡聚氨酯硬泡外,对泡沫塑料的导热系数的老化速度有很大的改善,提高了泡沫塑料的长期使用稳定性。

全水发泡制得的低密度聚氨酯硬泡,由于发泡体系中水量较大,造成泡沫发脆,强度、尺寸稳定性和绝热性变差。目前,国外几个大公司的全水发泡聚氨酯硬泡组合料在国内应用于管道的,密度均大于45 kg/m3,有的密度为60 kg/m3;国内几个大公司生产的组合料所生产的泡沫密度也分别在40~50 kg/m3、55~80 kg/m3等。

如果全水发泡使泡沫的密度低于30 kg/m3,且泡沫不脆,物性稳定,导热系数稳定,这是各企业所追求的。

现推荐一个符合以上要求的实例,供同仁参考。

实例4:

本实例所制得的泡沫,芯密度在16~32 kg/m3,尺寸稳定性、导热系数均好的全水PU硬泡。

配方:

TDA/EO/PO聚醚多元醇30份

聚氧化丙烯多元醇(粘度73 mPa·s)20份

聚氧化丙烯多元醇(粘度150 mPa·s)20份

多官能度聚醚多元醇(M/f=115)30 份

催化剂1 0.4份

催化剂2 0.4份

表面活性剂0.1份

水若干

多异氰酸酯指数109

调节水量,分别制得16~32 kg/m3的PU硬泡,泡沫28天后的体积变化率为-0.2%,10天后导热系数为21.2 mW/(m·K)。

作者曾开发了一种无氟硬泡用聚醚多元醇KF-655,并在某企业建成了年产1500~2000 t/a的生产装置。KF-655是高羟值、低粘度聚醚多元醇,其羟值在(480±20) mgKOH/g,粘度(25℃)为1000 mPa·s左右,由于其与环戊烷发泡剂相溶性好,应用于冰箱、冰柜生产线。采用该聚醚所制备的全水发泡聚氨酯硬泡,已应用于管道及夹心板,当自由发泡泡沫密度≤30 kg/m3时,导热系数可低于25 mW/(m·K)。

6 结束语

综上所述,以水为发泡剂制备聚氨酯软泡、自结皮泡沫、硬泡等系列产品,是完全可行的。但必须根据应用对象的不同,对聚醚多元醇、多异氰酸酯、表面活性剂以及催化剂等进行相应改性,调整配方与工艺条件,才能生产出合格的全水发泡PU泡沫制品。

参考文献

1 朱吕民,周斌. 见:聚氨酯中国98国际会议论文集.上海.1998.159~165

2 朱吕民.聚氨酯合成材料.南京:江苏科学技术出版社,2002. 366~374

3 Williams D. In: Polyurethanes EXPO 2002. 2002.135~143

4 UK Pat. Appli, GB 2232990 A

5 Alboay A等.见:第二届聚氨酯中国’98国际会议”论文集. 81~88

6 Zipfel L等.In: Proceedings of the Polyurethane World Congress. 1997.176

Review on All-Water-Blown Polyurethane Foams

Zhu Lumin

(Nanjing Sihuang Material Institute , Jiangsu Nanjing 210013)

Abstract: The status of CFC replacement techniques is first simply introduced. The technical features of all-water-blown polyurethane systems are described from some aspects, include flexible foam (vacuum foaming, liquid carbon dioxide foaming and forced cooling technique), integral skin polyurethane foam, high water low density HR foam, and rigid foam. Some examples are cited.

Keywords: all-water foaming; polyurethane; foam; CFC substitution

作者简介:

朱吕民高级工程师,1962年毕业于天津大学,1962年至1997年在江苏省化

工研究所从事PU方面研究,1997年至今任南京四寰合成材料研究所所长,终

生享受国务院特殊津贴。曾主持完成国家“六五”、“七五”攻关项目,撰写学

术论文38篇,合著《聚氨酯泡沫塑料》、《聚氨酯树脂》,独著《聚氨酯合成材

料》等书。

水通道蛋白在肾脏纤维化中作用研究进展

Pharmacy Information 药物资讯, 2017, 6(2), 55-61 Published Online May 2017 in Hans. https://www.360docs.net/doc/3318191503.html,/journal/pi https://https://www.360docs.net/doc/3318191503.html,/10.12677/pi.2017.62010 文章引用: 张旻澄, 李霁, 于锋. 水通道蛋白在肾脏纤维化中作用研究进展[J]. 药物资讯, 2017, 6(2): 55-61. The Role of Aquaporins in Renal Fibrosis Mincheng Zhang, Ji Li, Feng Yu * Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing Jiangsu Received: May 6th , 2017; accepted: May 23rd , 2017; published: May 26th , 2017 Abstract Renal fibrosis is a common pathological characteristic that usually appears during the process of chronic kidney diseases (CKD), which is a kind of progressive damage and almost irreversible. Renal fibrosis induces kidney dysfunction and finally causes renal failure. Epithelial Mesenchymal Transition (EMT) is a pathological process that the epithelial cells lose their original characteristic and express the feature of fibroblast. Renal epithelial mesenchymal transition plays a critical role in renal fibrosis and regulates the process of renal fibrosis. Aquaporin (AQP) is a kind of water channel protein that highly expressed in kidney, which is involved in water transport and the formation of osmotic pressure in kidney. The expression of AQPs changes when renal fibrosis oc-curs. Many renal diseases cause imbalance of water transport, so AQPs in kidney may take part in the regulation of various renal diseases, especially renal fibrosis. This article reviews the function and mechanism between various kinds of AQPs and renal fibrosis. At last, we make an outlook on AQPs as the potential target of the EMT process in renal fibrosis. Keywords Renal Fibrosis, Epithelial Mesenchymal Transition, Aquaporin 水通道蛋白在肾脏纤维化中作用 研究进展 张旻澄,李 霁,于 锋* 中国药科大学基础医学与临床药学学院临床药学教研室,江苏 南京 收稿日期:2017年5月6日;录用日期:2017年5月23日;发布日期:2017年5月26日 *通讯作者。

全水发泡体系的聚氨脂泡沫塑料

全水发泡聚氨酯泡沫塑料综述 朱吕民 (南京四寰合成材料研究所江苏南京210013) 摘要:首先对CFC替代技术的现状进行了简要的介绍,从全水发泡软质聚氨酯泡沫塑料(包括负压发泡技术、强制冷却技术和液态CO2发泡技术)、全水发泡聚氨酯自结皮泡沫、高水量低密度高回弹聚氨酯泡沫塑料和全水发泡硬质聚氨酯泡沫塑料这几个方面详细论述了全水发泡的工艺特点,并列举了几个实例。 关键词:全水发泡;聚氨酯;泡沫塑料;CFC替代 1 前言 聚氨酯泡沫塑料是聚氨酯合成材料中占主要地位的大品种。2002年全球聚氨酯产量为860万吨;国内聚氨酯合成材料总计100多万吨,其中泡沫塑料占50%左右,以2000年统计,软质泡沫塑料约26万吨占泡沫塑料的60%,硬质泡沫塑料约18万吨占泡沫总量的40%。所以说,聚氨酯泡沫塑料是消耗CFC 和HCFC系列发泡剂的大户。 众所周知,CFC系列产品对大气臭氧层具破坏作用,形成温室效应,使全球气温回暖、皮肤癌患者增多,所以保护人类赖以生存的臭氧层已刻不容缓。 1991年我国参与了国际蒙特利尔公约,限制及禁止使用CFC-11成为我国一项政策性措施。计划到2005年,CFC-11消费减少50%,2008年削减85%,2010年实现CFC-11零消费。2001年12月我国又获蒙特利尔多边基金赠款,作为泡沫行业ODS整体淘汰计划的费用,确保2010年以前全面淘汰CFC。这是一个利好消息,将促进我国PU工业的发展,并能达到与国外先进水平接轨。 PUF用CFC-11的替代品或发泡体系新技术的开发,已成为当今世界聚氨酯工业界进行技术创新的主潮流。 归纳起来有如下几个开发研究领域: 1)HFC系列化学品的开发研究 可用于PU泡沫塑料发泡剂的HFC产品物性见表1。其中被人们看好的是HFC-245fa(1,1,1,3,5-五氟丙烷),HFC-365mfc(1,1,1,3,3-五氟丁烷)及HFC-356(1,1,1,4,4,4-六氟丁烷)三个品种。 表1 可用于PU泡沫塑料发泡剂的HFC产品物性 HFC-152a HFC-134a HFC-365mfc HFC-245fa HFC-356 分子式CH3CHF3 CH2FCF3 CH3CF2CH2CF 3 CF3CH2CHF CF3(CH2)2CF 3 相对分子质量66.05 102.0 148 134 166 沸点/℃-24.7 -26.5 40.2 15.2 24.6 20℃蒸汽压/Pa 5.15 5.72 0.47 1.24 84.1 λ(25℃) /mW·(m·K)-114.3 13.7 10.6 12.2 9.5(20℃) 爆炸极限(V/V)/% 3.8~21.8 无 3.5~9 无无 GWP(CO2=1) 140 1300 840 820 530 大气层中寿命 1.5年14天10.8年7.4年154天 HFC化合物的ODP值为零,GWP值比CFC-11的小得多,且不燃、低毒,在PUF中有较低的气体扩散速度,确保了聚氨酯泡沫塑料的导热系数λ值耐老化性好。但是其成本高,目前靠进口,业界人士难以接受。

水通道蛋白的发现

人类对水通道蛋白的研究 自然界很多包括人类在内的各种生物都是由细胞组成的。细胞如同一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。早年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。而很久以前人们就知道人体重量的70%是水,水是构成生物体最重要的物质之一。水是构成人体的重要物质,那么水是如何进入细胞的呢一直以来,人们都以为水分子进入细胞膜是靠自由扩散,但后来研究中发现细胞膜的主要成分是蛋白质和磷脂,其中磷脂双分子层构成细胞的结构骨架,而水是很难通过脂溶性物质的,那么水是很难进入细胞的,而细胞中含有大量水分那么那么水分子是如何进入细胞的呢 早在100多年前,人们就猜测细胞中存在特殊的输送水分子的通道。20世纪50年代中期,科学家发现,细胞膜中存在着某种通道只允许水分子出入,人们称之为水通道。因为水对于生命至关重要,可以说水通道是最重要的一种细胞膜通道。尽管科学家发现存在水通道,但水通道到底是什么却一直是个谜。 20世纪80年代中期,美国翰霍普金斯大学医学院的科学家彼得·阿格雷研究了不同的细胞膜蛋白,经过反复研究,他发现一种被称为水通道蛋白的细胞膜蛋白就是人们寻找已久的水通道。为了验证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了这种蛋白的细胞进行了对比试验,结果前者能够吸水,后者不能。为进一步验证,他又制造了两种人造细胞膜,一种含有水通道蛋白,一种则不含这种蛋白。他将这两种人造细胞膜分别做成泡状物,然后放在水中,结果第一种泡状物吸收了很多水而膨胀,第二种则没有变化。这些充分说明水通道蛋白具有吸收水分子的功能,就是水通道。2000年,阿格雷与其他研究人员一起公布了世界第一张水通道蛋白的高清度立体照片。照片揭示了这种蛋白的特殊结构只允许水分子通过。水通道的发现开辟了一个新的研究领域。目前,科学家发现水通道蛋白广泛存在于动物植物和微生物中,它的种类很多,仅人体内就有11种。它具有十分重要的功能,比如在人的肾脏中就起着关键的过滤作用。通常一个成年人每天要产生170升的原尿,这些原尿经肾脏肾小球中的水通道蛋白的过滤,其中大部分水分被人体循环利用,最终只有约1升的尿液排出人体。。阿格雷于2003年被授予诺贝尔化学奖。诺贝尔奖评选委员会说,这是个重大发现,开启了细菌、植物和哺乳动物水通道的生物化学、生理学和遗传学研究之门。 水通道蛋白的发现 1988年,Agre等从人类红细胞膜上纯化分离分子量为32x10 的Rh多肽时,偶然鉴定到一种新的分子量为28x10 的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中?,把它称为类通道整合膜蛋白(channel—like integralmembrane protein,CHIP28)。随后,在1991年Agre和Preston成功克隆得到了CHIP28的eDNA.通过分析其编码的氨基酸序列,发现CHIP28含有6个跨膜区域、2个N一糖基化位点、且N端和C端都位于膜的胞质一侧。另外,对比CHIP28与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major in—trinsie protein,NIP)的DNA序列,发现二者具有高度同源性。由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28可能也具有类似功能‘。1992年,Preston等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。非洲爪蟾的卵母细胞对水具有极低的渗透性,当向其中显微注射体外转录的CHIP28的RNA后,卵母细胞在低渗溶液中迅速膨胀,并于5 min内破裂这一现象表明注射CHIP28的RNA后卯母细胞膜的水通透性有了明显提高。为了进一步通讯作者确定CHIP28的功能.将提纯的CHIP28构建在蛋白磷脂体中,构建后的蛋白磷脂体对水的通透性增长了50倍.但对尿素却不具备通透性[ 。这些结果最终证实了CHIP28为水通道蛋白,后来它被命名

水资源平衡分析

一、水资源平衡分析 1、某土地整理项目采用井灌,项目区总灌溉面积1500h㎡,区内人口1.5万,大小牲畜2.5万头,全部采用低压管道输水管该后,冬小麦种植面积1200h㎡,夏玉米种植面积1150 h㎡,棉花150h㎡,另外种植部分蔬菜。水源以浅层地下水为主,灌区周边主要承受北部边界地下水补给,南部边界有少量排出,东部边界无地下水补给和排出,南北部边界长Lns=5.2㎞,北界水力坡度Jn=0.005,南界水力坡度Js=0.0015,东西边各长Lew=3㎞;地下水埋深大于8m;该区多年平均降雨量P=650mm;灌区范围内为沙壤土,含水层厚度h含=25m,渗透系数K=30m/d。试在灌溉设计保证率为75%下对该井灌区进行水量供需平衡分析与计算。 解:根据已知条件、前面所述表格及公式计算如下: (1)可供水量计算 1.降雨入渗补给量W1 根据项目区范围内土质及地下水埋深,降雨入渗补给系数K取 0.15,补给面积A=5.2×3=15.6k㎡,其计算过程如下: W1=0.001KPA =0.001×0.15×650×15.6×106 =121.68(万m3)

2.侧向补给量W2 W2=365Kh含Lns(Jn-Js) =365×25×30×5200×(0.005-0.0015) =498.23(万m3) 3.灌溉回归补给量W3 地下水埋深大于8米,可忽略不计。 因此,可供水量为W供=W1+W2+W3 =619.91(万m3) (2)需水量计算。由《中国主要农作物需水量等值线图》查得该井灌区所在区域在灌溉设计保证率为75%下冬小麦、夏玉米、棉 花的净灌溉定额分别为300mm、55mm、165mm,蔬菜净灌溉定额 每年按800mm计算。 1.灌溉用水量。灌溉水利用系数£取0.9,算得灌溉用水量表 作物面积(hm2)净灌溉定额(mm)灌溉用水量(万m2)冬小麦 1200 300 400.00 夏玉米 1150 55 70.28 棉花 250 165 45.83 蔬菜 50 800 44.44 合计 560.55 2.工业用水。该项目区无工业,所以为0. 3.居民生活及家畜家禽用水。生活用水按人均日用水量40L,大小 牲畜日用水量平均35L,则居民生活及家畜家禽用水53.8万m3.

全水发泡聚氨酯硬泡的开发

全水发泡聚氨酯硬泡的开发 宋聪梅童俊罗振扬 (江苏省化工研究所江苏南京210024) 摘要:探讨了影响全水发泡泡沫性能的相关因素,研制了具有良好流动性的全水发泡聚氨酯硬泡组合聚醚。依此制备的硬质聚氨酯泡沫塑料具有良好的尺寸稳定性、优异的粘接性能和较低的导热系数,已达到或超过汽车、建筑行业对全氟泡沫的要求,具有广阔的市场前景。 关键词:聚氨酯;硬质泡沫塑料;全水发泡;聚醚多元醇 硬质聚氨酯泡沫塑料是一种很重要的合成材料,具有优异的物理机械性能和耐化学性能,尤其是导热系数低,是一种优质的隔热材料,广泛应用于冰箱、冷柜及汽车行业、建筑行业。但是由于氯氟烃(CFC)发泡剂对大气臭氧层有破坏作用,为了维护生态环境,国际公约已经对其生产和使用做出了严格的限制和规定。因此,聚氨酯工业面临的一个重要任务就是选择CFC的代用品,减少和停止CFC的应用。10多年来,以零或低ODP值的发泡剂替代氯氟烃是聚氨酯泡沫塑料行业最重大的课题,促使泡沫塑料生产技术发生重大变化。 在聚氨酯硬泡中,常用的CFC-11替代发泡剂主要有HCFC-141b为代表的HCFC类发泡剂、以戊烷为代表的烃类发泡剂以及水发泡剂[1]。以水作发泡剂,实际上是以水和异氰酸酯反应生成的CO2气体作发泡剂,其臭氧破坏效应ODP值为零,无毒副作用,因此水是最具吸引力的CFC-11最终替代物。而且,全水泡沫制备工艺简便,对设备的要求很低,可沿用CFC-11体系的设备,具有广阔的市场前景。但是,全水发泡体系与CFC-11体系相比存在许多不足,诸如组合聚醚粘度比较大,泡沫与基材的粘接性差、导热系数偏高等,从而限制了全水发泡聚氨酯泡沫的推广和应用[2]。 针对全水发泡体系的特点,我们通过聚醚分子结构的调整、助剂的选择,开发了低粘度的聚醚及具有良好流动性的组合聚醚,以此制备的聚氨酯泡沫塑料具有良好的尺寸稳定性、粘接性和较低的导热系数。 1 实验部分 1.1 主要原料 PE600系列聚醚多元醇,自制;聚醚多元醇A,金陵石化公司化工二厂;聚醚多元醇TNR410,天津第三石油化工厂;复合催化剂,自制;泡沫稳定剂AK-8805等,南京德美世创化工有限公司;泡沫稳定剂B-8462、B-8433等,德国高施米特公司;多异氰酸酯(PAPI),日本聚氨酯工业公司。 1.2 设备与仪器 2.5L多功能组合式聚合釜;微量水份分析仪;旋转式粘度计;恒温水浴箱;电动搅拌器,Glas-Craft 公司的高压喷涂发泡机。 1.3 手工发泡 将聚醚多元醇、泡沫稳定剂、催化剂、水等混合均匀,作为A组分;以多异氰酸酯作为B组分。发泡时,调节A料、B料及模具的温度,按配方称取A、B料,混合后搅拌5~10 s,立即倒入模具使其自由发泡,同时依次测定乳白、纤维、脱粘时间,待泡沫完全熟化后测定相关性能。 1.4 组合聚醚典型配方 组合聚醚:混合多元醇100份;泡沫稳定剂 1.5~2.5份;复合催化剂 2.0~5.0份;水 3.0~4.0份。 异氰酸酯指数 1.0~1.1 发泡时的工艺参数(室温20℃)为:乳白时间10~20 s,固化时间20~35 s。 249

水通道蛋白综述与展望

水通道蛋白水通道-从原子结构到临床医学 生物膜的透水性在生理学上是一个长期存在的问题,但负责此类蛋白质的蛋白质仍然未知,直到发现水通道蛋白1(AQP1)水通道蛋白。AQP1由渗透梯度驱动的水选择性渗透。人类AQP1的原子结构最近被定义。四聚体的每个亚基含有允许水分子单文件通过但中断氢键通过质子所需的单独水孔。已经鉴定了至少10种哺乳动物水通道蛋白,并且它们被水(水通道蛋白)或水加甘油(水甘油聚糖)选择性渗透。表达位点与临床表型密切相关,从先天性白内障到肾源性尿崩症。在植物,微生物,无脊椎动物和脊椎动物中发现超过200个水通道蛋白家族成员,并且它们对这些生物体的生理学的重要性正在被揭开。 在20世纪20年代发现脂质双层提供了当沐浴在较低或较高pH或含有毒性浓度的Ca2 +或其他溶质的细胞外液中时细胞如何维持其最佳细胞内环境的解释。从1950年代开始发现离子通道,交换剂和共转运体为溶质的跨膜运动提供了分子解释。然而,长期以来,假定水的输送是由于通过脂质双层的简单扩散。来自具有高膜渗透性的多个实验系统的观察,例如两栖膀胱和哺乳动物红细胞,表明通过脂质双层的扩散不是水跨越膜的唯一途径。虽然提出了各种解释,但直到10年前发现AQP1才能知道分子水 - 特异性转运蛋白(Preston 等,1999)。

现在人们普遍同意扩散和通道介导的水分运动都存在。通过所有生物膜以相对较低的速度发生扩散。水通道蛋白水通道发现于上皮细胞的一部分10至100倍的水渗透能力。值得注意的是,水通道蛋白水通道的选择性非常高,甚至质子(H3O +)被排斥。在大多数组织中,扩散是双向的,因为水进入细胞并从细胞释放,而水通道蛋白介导的体内水流则由渗透或液压梯度引导。扩散的化学抑制剂是未知的,扩散发生在高Ea(Arrhenius活化能)。相比之下,大多数哺乳动物水通道蛋白受汞的抑制,Ea等同于大量溶液中水的扩散(?5 kcal mol_1)。 水通道蛋白的发现说明了偶发性在生物学研究中的重要性,并且引起了上游流体运输过程中水如何穿过生物膜的范式的完全转变。这个话题对正常生理学以及影响人类的多种临床疾病的病理生理学非常重要。水通道蛋白在几乎每一种生物体中被鉴定出来,包括高等哺乳动物,其他脊椎动物,无脊椎动物,植物,真细菌,原细菌和其他微生物,表明这种新认可的蛋白质家族参与了整个自然界的不同生物过程。 一、发现AQP1 红细胞Rh血型抗原不知道参与水运(Heitman&Agre,2000),但是Rh的研究导致了水通道蛋白的偶

水资源平衡分析报告

水资源平衡分析 国家投资实施的土地开发整理项目,为了提高耕地质量,绝大多数都规划了灌溉工程。为此,这样的项目区地形图灌区必须进行水资源的平衡分析。 灌区的水资源平衡分析,包含着水质、水量和水位等方面内容,水位的来用水平衡分析比较简单,经过对地形与取用水位相互关系的分析,结合取水工程的设置,划定出自流区和扬水区(扬程大小)即可。这里侧重讨论水量平衡分析的内容。 灌区的水土资源平衡分析是根据水源来水过程和灌区用水过程进行的,这两个过程是逐年变化的,在规划设计时必须先确定用哪个年份的水源来水过程和灌区用水过程进行平衡计算,这个特定的水文年份叫设计典型年,简称设计年,而设计年又是根据灌溉设计标准确定的。 一、灌溉设计标准 选择设计年所依据的标准称为灌溉设计标准。它综合反映了水源对灌区用水的保证程度,关系到灌溉工程的规模、投资和效益。 国标(GB50288-99)规定,设计灌溉工程时,应首先确定灌溉设计保证率,南方小型水稻灌区的灌溉工程也可按抗旱天数进行设计。 (一)灌溉设计保证率 1.定义:指灌区用水量在多年期间能够得到充分满足的机率,一般用得到满足的年数占总年数的百分率表示。它综合反映了用水和

来水两方面的情况。 将多年(长系列)的年灌溉用水量按大小顺序排列,用数理统计方法计算并绘制年灌溉用水量频率曲线,在此曲线上选用的频率值即为灌溉设计保证率值。 如灌溉设计保证率P=80%,则表示频率P=80%对应的灌溉用水量出现的机会为P=80%,意味着每百年中有80年这样的年灌溉用水量可以得到保证,只有20年供水不足或中断,换一种说法(用重现期的语言)就是相当于平均每五年出现一次(五年一遇)供水不足或中断的情况。 2.灌溉用水保证率的确定 ①国标(GB50288-99)规定: 注:1、作物经济价值较高的地区,宜选用表中较大值;作物经

全水发泡型组合聚醚的研制

全水发泡型无氟组合聚醚的研制 芮敬功 (南京红宝丽股份有限公司 江苏高淳 211300) 摘 要:采用含有苯环结构的化合物作为原料,合成了系列聚醚多元醇,并通过选择适当的催化剂、泡沫稳定剂等助剂,研制出的全水组合聚醚适用于不同成型工艺。它们具有适宜的粘度,与异氰酸酯反应,可制得性能优良的硬质泡沫塑料。 关键词:全水发泡;聚氨酯;硬质泡沫塑料;异氰酸酯;Mannich聚醚 目前,我国淘汰F11的行动计划正在有序推进,各种替代F11技术也日趋成熟。在聚氨酯硬泡中,常用的CFC-11替代发泡剂主要有HCFC-141b、烷烃类以及水发泡剂。 采用水作发泡剂,其实是靠水和异氰酸酯反应生成的CO2作为发泡剂,它的臭氧破坏效应ODP值为零,且无毒、无副作用,是最具环保意义的最终替代物。用水作为发泡剂生成的泡沫称为全水聚氨酯泡沫,本文简称全水泡沫,它在制备时毋须对设备进行改造,投资成本低,越来越受到人们的重视。然而,全水发泡技术与其它替代体系发泡技术相比存在许多不足,诸如组合料粘度比较大,成型时流动性较差,粘接性较差,导热系数偏高等缺点,从而限制了全水泡沫的推广和应用。 针对上述情况,南京红宝丽公司开发了系列聚醚多元醇,辅以选择的助剂,研制出H7XX系列全水型组合聚醚,它们具有适宜的粘度,成型时流动性较好,泡沫性能优良,可广泛应用在绝热要求不是十分严格的领域。如管道、汽车、建筑与喷涂等保温场合。 现着重对不同领域的典型配方研制作一阐述。 1 实验部分 1.1 主要原料 酚类起始剂,工业级,纯度99.8%,台湾产;甲醛,工业级,纯度37%;二异丙醇胺,纯度98%,自产;环氧丙烷(PO),工业级,国产;后处理剂ADO,浙江上虞产; 叔胺类催化剂,MA,自配;三聚类催化剂MC,自制; 泡沫稳定剂,B8433、B8461、B8462,德固萨公司产;LK221,康普顿公司产; 聚醚H215,粘度70~100 mPa·s,自制;聚醚H305U,粘度650~700 mPa·s,自制;聚醚H800A,羟值800 mgKOH/g,自制;聚醚H120,羟值120 mgKOH/g,自制; 异氰酸酯,牌号44V20L,Bayer公司产。 1.2 设备与仪器 聚合釜(2L、50L),山东威海金星有限公司;万能试验机SPL-10KN型,日本岛津公司;环境试验箱,HYGROS 250型,意大利ACS公司。微量水分分析仪,CA-20型,日本产;旋转式粘度计,NDJ-1

水通道蛋白

水通道蛋白 水通道蛋白(Aquaporin),又名水孔蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,就像是“细胞的水泵”一样。 水通道是由约翰霍普金斯大学医学院的美国科学家彼得·阿格雷所发现,他与通过X射线晶体学技术确认钾离子通道结构的洛克斐勒大学霍华休斯医学研究中心的罗德里克·麦金农共同荣获了2003年诺贝尔化学奖。 水分子经过Aquaporin时会形成单一纵列,进入弯曲狭窄的通道内,内部的偶极力与极性会帮助水分子旋转,以适当角度穿越狭窄的通道,因此Aquaporin的蛋白构形为仅能使水分子通过之原因 水通道蛋白的发现 编辑 Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜蛋白28(channel-forming inte—gral membrane protein,CHIP28),1991年完成了其cDNA克隆(Verkman,2003)。但当时并不知道该蛋白的功能,在进行功能鉴定时,将体外转录合成的CHIP28 mDNA 注入非洲爪蟾的卵母细胞中,发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min 内破裂。为进一步确定其功能,又将其构于蛋白磷脂体内,通过活化能及渗透系数的测定及后来的抑制剂敏感性等研究,证实其为水通道蛋白。从此确定了细胞膜上存在转运水的特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。 水通道蛋白分类 编辑 AQP0 AQP0最初称之为主体内在蛋白(major intrinsic protein,MIP),在晶状体纤维中细胞中表达丰富,与晶状体的透明度有关.AQpo的突变可能导致晶状体水肿和白内障。小鼠缺乏AQPO将患先天性白内障[61]。 AQP1 AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一 种主要蛋白。它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。AQP1蛋白也存在于

视神经脊髓炎与其特异性抗体——抗水通道蛋白4抗体(综述)

视神经脊髓炎与其特异性抗体——抗水通道蛋白4抗体(综述) 作者:梁松岚, 王维治, 梁庆成 作者单位:哈尔滨医科大学附属第二医院神经内科,黑龙江,哈尔滨,150086 刊名: 中国神经免疫学和神经病学杂志 英文刊名:CHINESE JOURNAL OF NEUROIMMUNOLOGY AND NEUROLOGY 年,卷(期):2008,15(2) 参考文献(11条) 1.Lennon VA;Kryzer TJ;Pittock SJ IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water[外文期刊] 2005(04) 2.Lennon VA;Wingerchuk DM;Kryzer TJ A serum autoantibody marker of neuromyelitis optica 2004 3.Takata K;Matsuzaki T;Tajika Y Aquaporins:water channel proteins of the cell membrane 2004(01) 4.Pittock SJ;Weinshenker BG;Lucchinetti CF Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression[外文期刊] 2006(7) 5.Vernant JC;Cabre P;Smadja D Recurrent optic neuromyelitis with endocrinopathies:a new syndrome[外文期刊] 1997(01) 6.Roemer SF;Parisi JE;Lennon VA Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis[外文期刊] 2007(05) 7.Misu T;Fujihara K;Kakita A Loss of aquaporin 4 in lesions of neuromyelitis optica:distinction from multiple sclerosis[外文期刊] 2007(05) 8.Takahashi T;Fujihara K;Nakashima I Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO:a study on antibody titre[外文期刊] 2007(05) 9.Weinshenker BG;Wingerchuk DM;Vukusic S Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis[外文期刊] 2006(03) 10.Paul F;Jarius S;Aktas O Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica[外文期刊] 2007(04) 11.Matsuoka T;Matsushita T;Kawano Y Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese[外文期刊] 2007(05) 本文读者也读过(10条) 1.王慧娟抗水通道蛋白-4抗体对MS与NMO鉴别诊断价值的研究进展[学位论文]2008 2.陈敏水通道蛋白-4与视神经脊髓炎[期刊论文]-中国实用神经疾病杂志2011,14(13) 3.肖琴华.涂江龙.熊友生水通道蛋白4与视神经脊髓炎[期刊论文]-中国临床神经科学2008,16(4) 4.孙巧松.刘俊秀.丰岩清.国宁.陈曦.赖蓉.黄帆.SUN Qiao-song.LIU Jun-xiu.FENG Yan-qing.GUO Ning.CHEN Xi .LAI Rong.HUANG Fan中国人视神经脊髓炎疾病谱NMO-IgG/anti-AQP4抗体检测方法学的比较[期刊论文]-中山大学学报(医学科学版)2010,31(6) 5.宋德禄.钟勇.Song Delu.Zhong Yong水通道蛋白4在视神经脊髓炎发病机制中的研究进展[期刊论文]-眼科研究2009,27(7) 6.尤小凡.胡文立水通道蛋白4与视神经脊髓炎的发病机制[期刊论文]-中华神经科杂志2010,43(4) 7.武雷.黄德晖.吴卫平水通道蛋白4抗体在视神经脊髓炎发病机制中的作用[期刊论文]-中国神经免疫学和神经病学杂志2011,18(6)

浅谈水资源供需平衡

浅谈水资源供需平衡分析 摘要:在当今资源紧张的大背景下,利用有限的资源创造出尽可能多的价值是人们不断追求的目标。而作为基础性资源之一的水资源,它不仅是环境组成的基本要素,更是一种支持生态系统正常运转的不可代替的重要自然资源,然而,从近几年我国较为严重的洪涝灾害和干旱灾害来看,有限的水资源要想得到充分的利用,必须处理好供需之间的平衡问题,这在城市供水系统中更是与人们的生活密切相关的,因此,我们有必要对水资源的供需平衡做基本的分析和预测,从而使有限的水资源得到充分的利用。 关键字:水资源供需平衡充分利用 一、基本概述 所谓水资源供需平衡就是指可供水量与实际需水量间的关系,而水资源供需平衡分析则指的是,在一定的行政、经济(流域)范围内,各个时期的需水量总和与供水量总和的供求关系分析。它是在流域规划和水资源综合评价分析的基础上,以水资源的供需现状、国民经济发展和社会发展与国土整治规划为依据,运用一定的数学模型和分析方法,测算今后各个时期的用水量和需水量,制定综合平衡、供需协调的水资源长期供求计划和水资源开源节流的总体规划。 具体来讲,水资源的可供给量与其开发的程度和技术水平有关;而实际需水量与工业发展程度、人民正常生产生活水平以及利用水资源的技术等有关。因此,在不同时期,可供水量与实际需水量是在不断变化的,而两者之间的关系也是可变的。供需关系基本表现出3种情况:①供大于需。这说明可利用的水资源还有一定的被进一步利用的潜力;②供等于需。这是一种比较理想的供需状态,说明水资源的开发利用程度与同一阶段人们的生产、生活需要相适应;③供小于需。说明水资源量的短缺,需进一步寻求增加供应量的方法,及时采取开源节流等措施,以缓解供需矛盾。由此我们可以看出,水资源供需之间的平衡只是相对而言的,两者之间的不平衡现象是始终存在的,如果想要利用尽可能少的资源取得尽可能大的效益,我们就需不断研究分析、变动调整供需关系,为制定水资源宏观决策及合理分配与调度奠定基础。 二、水资源供需平衡分析的基本原则 水资源供需平衡分析是一个涉及面很广的一个问题,它不仅要研究供水量与需水量,而且还要结合当地的实际情况,充分分析社会、经济、环境等多方面的因素,因此,在进行水资源供需平衡分析时有用一定的原则做引导。 ⑴流域和地区相结合 通常在研究水资源时都是以流域为基本研究对象的,这也是研究可供水量的起点。而需水量的研究则是要结合所研究区域的经济、社会、环境等的发展情况,具有一定的地区分布特点。然而,我国的经济或行政区域通常与流域分布是不一致的,因此,在进行水资源平衡分析时,要将两者尽可能的统一,划好分区,把小区和大区,区域和流域结合起来。实际上,我国在进行水资源评价时,就已经做到过这一点。在进行具体的水资源供需平衡分析时,要结合以前水资源评价时的经验,使两者充分衔接。如果牵涉到跨流域调水(如南水北调),则更是要注意大小区域的结合,流域与地区的结合。 ⑵近期与远期相结合

水资源平衡研究分析

水资源平衡分析

————————————————————————————————作者:————————————————————————————————日期:

水资源平衡分析 国家投资实施的土地开发整理项目,为了提高耕地质量,绝大多数都规划了灌溉工程。为此,这样的项目区地形图灌区必须进行水资源的平衡分析。 灌区的水资源平衡分析,包含着水质、水量和水位等方面内容,水位的来用水平衡分析比较简单,经过对地形与取用水位相互关系的分析,结合取水工程的设置,划定出自流区和扬水区(扬程大小)即可。这里侧重讨论水量平衡分析的内容。 灌区的水土资源平衡分析是根据水源来水过程和灌区用水过程进行的,这两个过程是逐年变化的,在规划设计时必须先确定用哪个年份的水源来水过程和灌区用水过程进行平衡计算,这个特定的水文年份叫设计典型年,简称设计年,而设计年又是根据灌溉设计标准确定的。 一、灌溉设计标准 选择设计年所依据的标准称为灌溉设计标准。它综合反映了水源对灌区用水的保证程度,关系到灌溉工程的规模、投资和效益。 国标(GB50288-99)规定,设计灌溉工程时,应首先确定灌溉设计保证率,南方小型水稻灌区的灌溉工程也可按抗旱天数进行设计。 (一)灌溉设计保证率 1.定义:指灌区用水量在多年期间能够得到充分满足的机率,一般用得到满足的年数占总年数的百分率表示。它综合反映了用水和

来水两方面的情况。 将多年(长系列)的年灌溉用水量按大小顺序排列,用数理统计方法计算并绘制年灌溉用水量频率曲线,在此曲线上选用的频率值即为灌溉设计保证率值。 如灌溉设计保证率P=80%,则表示频率P=80%对应的灌溉用水量出现的机会为P=80%,意味着每百年中有80年这样的年灌溉用水量可以得到保证,只有20年供水不足或中断,换一种说法(用重现期的语言)就是相当于平均每五年出现一次(五年一遇)供水不足或中断的情况。 2.灌溉用水保证率的确定 ①国标(GB50288-99)规定: 灌水方法地区作物种类灌溉设计保证 率(%) 地面灌溉 干旱地区或水 资源紧缺地区 以旱作为主50-75 以水稻为主70-80 半湿润、半干旱 地区或水资源 不稳定地区 以旱作为主70-80 以水稻为主75-85 湿润地区或水 资源丰富地区 以旱作为主75-85 以水稻为主80-95 喷灌、微灌各类地区各类作物85-95 注:1、作物经济价值较高的地区,宜选用表中较大值;作物经

国内外水资源学研究进展综述

中国水资源学研究进展综述 刘志丹1 (1.河南大学环境与规划学院,河南开封475004) 摘要:对国内外水资源学研究进行了综述,在对国际水文水资源研究发展趋势及热点和前沿问题进行阐释的基础上,结合中国水文水资源研究现状及水问题解决的实践需求,论述了中国水文水资源研究的学科体系的构成,并在总结我国自然资源经济研究现状的基础上,结合国外资源经济学研究的进展,对我国自然资源经济学研究做出了基本展望。明确了中国水文水资源研究方向,即需要进一步强化水循环及伴生过程演变机理识别与定量模拟方面的基础研究[1],完善水资源评价、配置、调度、水权分配、水价定价理论和技术等方面的应用基础研究,服务于节水型社会建设、水环境保护与水生态修复、水资源综合管理、防灾减灾与应急管理、民生水利及现代水利建设与管理等实践需求。 关键词:水文水资源学;发展趋势;热点问题;研究体系 Abstract : On the basis of identifying water problems at home and abroad,This paper summary advances in water resources studies at home and abroad. Based on describing the development trend of international hydrology and water resources and hot issues and frontier problems,and combining with research status of hydrology and water resources and practical demands on solving water problems in China,we discuss the subject system of hydrology and water resources in China,and analyze the important research directions. Under the influences of environmental change and strong human activities,water cycle shows obviously the natural-artificial characters on all aspects of dynamics,structure and parameters. Prototype observation and numerical simulation become a critical study method in these fields. Hydrology and water resources research needs further strengthening on the basic research of mechanism identification and quantitative simulation of the water cycle and associated processes ,improving on the application basic research of assessment,allocation and regulation of water resources,water right distribution,and water pricing theory and technology,to serve water-saving society establishment,water environmental protection and ecological construction,integrated water resources management,disaster prevention and mitigation and emergency treatment,drinking water safety,hydraulic engineering construction,and other practical needs. Key words:hydrology and water resources ; natural-artificial dualistic mode ; development trend ; hot issues ; research system 一、前言 1. 水资源的重要性. 水资源是自然环境的基础,是维持生态系统的控制性要素,同时又是战略性经济资源,为综合国力的有机组成部分。山无水不秀,城无水不美,田无水不收;水是自然界中不可缺少的控制性因素之一。水环境是人类生存和发展的基础[2]。然而, 随着经济社会的快速发展和城市化进程的不断加快,人类在充分享受现代文明的同时, 各类用水不断增加, 使水资源的供需矛盾日益突出。水和土地是支持一个地区社会经济和生态环境的基础资源,其丰裕程度和组合条件决定了该地区社会经济发展和生态环境演变的基本格局水土资源的组合

水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用 刘彦成 (渭南师范学院环境与生命科学系陕西渭南 714000)摘要:水通道蛋白(aquaporin,AQP) 是一种对水专一的通道蛋白。具有介导水的跨膜转运和调节体内水代谢平衡的功能。水通道蛋白调节失控与水平衡紊乱等一系列疾病密切相关。 关键词:细胞膜;水通道蛋白(AQP);跨膜转运;疾病;调节 Abstract:The pass of water protein (aquaporin, AQP) is one kind of adding water single-minded channel protein.Has lies between leads the water the cross membrane transportation and the adjustment body domestic waters metabolism balance function.Pass of water protein adjustment out of control and level balance disorder and so on a series of disease close correlation. Key word:Cell membrane pass of water protein (AQP) cross membrane transportation disease adjusts 1 水通道蛋白的发现 1.1 细胞膜的运输方式 细胞是构成生物的基本单位,细胞与细胞之间则是通过细胞膜来沟通和实现基本的生命活动。细胞膜的主要成分为磷脂和蛋白质,其结构为磷脂双分子层,磷脂双分子层上有糖蛋白,糖蛋白所在一侧为细胞外侧。物质跨膜运输可分为自 图1 细胞膜的立体结构 由扩散(不需能量、载体),协助扩散(不需要能量、需载体),主动运输(要能量、需载体)三种。还有一些大分子物质是通过胞吞、胞吐方式通过细胞膜,它们需要能量、不要载体。另外还有一种很主要的方式就是通道蛋白。 1.2 生物膜水通道的发现【1】 长期以来对于水的运输方式研究者普遍认为主要有两种:即简单的扩散方式和借助离子通道通过磷脂双分子层。 近些年研究者发现某些细胞在低渗溶液中对水的通透性很高, 很难用简单扩散来解释。如将红细胞移入低渗溶液后,很快吸水膨胀而溶血,而水生动物的

相关文档
最新文档