高炉冷却壁的传热学分析

高炉冷却壁的传热学分析
高炉冷却壁的传热学分析

钢铁

IRON & STEEL

1999年 第34卷 第5期 No.5 Vol.34 1999

高炉冷却壁的传热学分析*

程素森 薛庆国 苍大强 杨天钧

摘 要 应用传热学理论计算分析了高炉冷却水的稳定性、冷却水的水速、冷却水管与冷却壁本体的间隙及冷却壁的高度对长寿高效高炉冷却壁寿命的影响。

关键词 高炉 冷却系统

HEAT TRANSFER ANALYSIS OF BLAST FURNACE STAVE

CHENG Susen XUE Qingguo CANG Daqiang YANG Tianjun

(University of Science and Technology Beijing)

ABSTRACT In this paper, effect of the cooling water stability, cooling water velocity, gap between cooling water pipe and stave and height of stave on the stave life is analyzed by heat transfer theory.

KEY WORDS blast furnace, cooling system

1 前言

在1994年国际炼铁会议上,霍戈文公司(Hoogven)的专家提出了下一个世纪钢铁联合企业生存的条件之一是高炉寿命达到15年。日本千叶6号高炉(容积为4500m3)到1997年底已经连续生产20年6个月,创高炉长寿的世界记录。80年代以来国外新设计的高炉寿命一般在15年以上,而我国1000m3以上高炉的中修周期目前一般为4~5年,大修周期一般为9年左右。因此,就整体而言我国高炉寿命与国外相比仍有很大差距。

高炉是一个巨大的反应器,其寿命与许多因素有关,依据我国对高炉寿命的调查结果,冷却系统的设计和制造质量是影响高炉长寿的重要因素之一。过去高炉冷却系统的设计是根据经验或破损调查,随着计算技术及传热学理论及其应用的不断发展,加之人们对冷却器认识的不断深化,应用传热学数值计算对冷却器进行结构参数优化已经成为可能。

2 冷却系统的设计

冷却系统包括冷却水及冷却器。首先,冷却水质的好坏直接关系到冷却器能否达到设计的冷却效果,关系到能否保证冷却器不被烧坏。其次,合理的冷却水水速既可以保证冷却器的冷却能力,又可以降低能耗。冷却器结构参数的合理选取既可以保护炉墙免受炉内热流冲击破坏,又可以减少炉内热量损失,降低燃料消耗。

2.1 冷却水

(1) 水质的评价

在“八五”期间,对全国高炉水质调查结果显示冷却水的稳定性(水中的钙、镁离子随着温度的升高不发生沉积,即具有良好的稳定性)与高炉寿命有直接关系[1]。长江以南因水质稳定,高炉寿命较长,而长江以北因水质不稳定,常常导致高炉寿命较短。由此可见,水中含有钙、镁离子并不一定就导致结垢,而冷却水结垢的重要原因是冷却水失去了稳定性。因此,评价水质的好坏应该从水的稳定性着手。

(2) 冷却水管结垢层厚度对冷却能力的影响

本文用到的冷却壁温度场方程、边界条件及热物性参数均见文献[2],对比的基准是冷却水水速v=1.5m/s,冷却管与冷却壁之间的间隙是0.15mm,水垢厚度为0,冷却壁高度为1400mm。

在同样的条件下,冷却水管结垢的冷却壁炉内一侧最高温度比冷却水管不结垢的冷却壁同侧最高温度提高很多。结垢层厚度为1mm时,其炉内一侧最高温度增加152℃;结垢层厚度为3mm时,其炉内一侧最高温度增加237℃;结垢层厚度为5mm时,其最高温度增加446℃。冷却壁炉内一侧温度升高是由于水垢层相当于一层绝热体,横隔在冷却水管内壁和冷却水之间,这里不仅水垢层是热阻,而且水垢层与管壁之间的接触间隙也会产生接触热阻,使得冷却水不能带走炉内传入冷却壁的热量,导致冷却壁炉内一侧温度升高。从计算结果可以看到,无论多么好的冷却器,只要冷却水稳定性差,钙、镁离子随着温度的升高发生沉积,那么它就很可能会被烧坏。

(3) 冷却水的水速对冷却效果的影响

计算条件及比较的基准同上。表1给出了水速对冷却壁炉内一侧最高温度的影响。

表 1 冷却水速对冷却壁炉内一侧最高温度的影响

Table 1 Effect of cooling water rate on the highest

temperature at the side of cooling stave in BF

冷却水水速 v/m.s-1冷却壁炉内一侧最高温度 提高值Δt/℃

1.0+6

2.0-8 2.5-13

从表1可以看到,高的冷却水速并不能够大幅度降低冷却壁炉内一侧温度,这是由于冷却水的冷却能力并不随着冷却水速大幅度的提高而提高。

冷却壁本体与冷却水的热换系数

h w=1/R=1[R1+R2+R3+R4] (1)

R1=(1/α)(d o/d i) (2)

α=(0.023v0.8λ0.6c0.4pρ0.4)/(d0.2iυ0.4) (3)

式中 R1——冷却水管内表面与水的对流换热热阻;

R2——冷却水管的导热热阻;

R3——冷却水管涂层的导热热阻;

R4——冷却水管与冷却壁本体气隙间的热阻;

α——强制对流换热系数;

d o,d i——分别为冷却水管的外径和内径;

v,λ,c p,ρ,υ——分别为冷却水的水速、导热系数、比热容、密度及粘度。

当v→∞时,有α→∞及R1→0

h w→1/[R2+R3+R4] (4)

从式(4)可见,h w趋于一定值,这意味着冷却水与冷却壁本体之间的换热系数并不随着冷却水速的增加而无限增加,同时,高的冷却水速会对冷却水管的壁面造成一定程度的冲击腐蚀。可见通过提高水速来降低冷却壁的炉内一侧温度不能达到预期效果。但是,这并不否认在高热流强度的地方使用高的水速,水速高的冷却水可以降低出水温度和清除冷却水管内表面由于局部沸腾出现的气泡层,以免在冷却水与冷却水管壁之间形成高热阻的气泡层。这也是风口区要使用高速冷却水的原因之一。

2.2 气隙厚度对冷却壁炉内一侧最高温度的影响

冷却水管外表面与冷却壁本体之间的气隙是由于冷却壁在制造和工作时,本体与水管的温度不同,膨胀系数不同以及使用防渗碳涂料而产生的。

与基准时的气隙厚度0.15mm相比,气隙厚度分别为0.3、0.4、0.5mm时冷却壁炉内一侧最高温度分别提高为14、29、47℃,平均每毫米提高150~180℃。可见,控制气隙大小是十分重要的。

2.3 冷却水与冷却壁本体之间的热阻分析

表2给出了按照上述条件计算的结果。

表 2 分热阻占总热阻的比例

Table 2 Individical heat resistance in proportion

to total heat resistance

各分热阻占总热阻的 比例/%

冷却水管内表面与水的对流换热热阻 5.12

冷却水管的导热热阻 1.57冷却水管与冷却壁本体气隙间的热阻87.23

冷却水管涂层的导热热阻 6.08

由表2可见,从炉内到炉外的各项热阻中,水和管壁之间的对流换热热阻及冷却水管的导热热阻不是控制热阻,由涂料造成的冷却水管与冷却壁本体之间的气隙热阻是冷却壁冷却能力的限制性环节,减少冷却水管与冷却壁本体之间的气隙对提高冷却壁的冷却能力是大有益处的。

2.4 冷却壁炉外侧和炉内侧温差对冷却壁挠度的影响

冷却壁的炉外、炉内两侧温差可能引起冷却壁发生挠度变形,按照上述条件计算,表3给出了冷却壁这一温差引起的冷却壁挠度变化。

从表3可以看到,随着炉内一侧温度的升高,冷却壁的挠度变化增大。大的挠度变形会导致冷却壁断裂。

表 3 冷却壁挠度随冷却壁炉内侧和炉外侧温差的变化

Table 3 Change of stave deflection with the

difference in temperature between the inside

and outside of stave

冷却壁炉外一侧 平均温度/℃冷却壁炉内一

侧平均温度/℃

冷却壁挠度/

mm

50393 8.72

3050510.07

3065519.91

表4给出了在相同的温差条件下与基准的冷却壁相比,冷却壁高度分别增加0.3、0.6,1.5m时,引起的挠度变化量。

表 4 冷却壁挠度随冷却壁高度的变化

Table 4 The chang of cooling stave deflection

along with the height of cooling stave

冷却壁高度的变化量

ΔH/m 冷却壁挠度/基准的 冷却壁挠度

0.3 1.47

0.6 2.04

1.5 4.92

通过对表4的分析,可以看到随着冷却壁高度的不断增加,冷却壁的挠度成倍增加。高度1.7m冷却壁的挠度是1.4m冷却壁挠度的1.47倍,而高度2.9m冷却壁的挠度是1.4m冷却壁挠度的4.92倍。由此可见,为了防止冷却壁由于挠度变化太大引起破裂,必须维持冷却壁的合理高度。

2.5 冷却水管间距对冷却壁炉内一侧温度的影响

表5计算了在热流密度(70kW/(m2.℃))相同的情况下,冷却水管间距对冷却壁炉内一侧温度的影响。

表 5 冷却水管间距对冷却壁炉内一侧温度的影响

Table 5 Effect of coolng water pipe distance on

temperature at the side of cooling stave in BF

冷却水管间距

/m 冷却壁炉内一侧 最高温度/℃

0.15364

0.20416

0.22457

0.25468

0.30520

从表5看到,随着冷却水管间距的增加,冷却壁炉内一侧最高温度升高。冷却水管间距从0.15m增加到0.3m,冷却壁炉内一侧最高温度提高160℃左右。因此,在高炉热流强度高的地方要缩小管间距。

2.6 冷却水管直径对冷却壁炉内一侧温度的影响

表6给出了在相同热流密度下冷却水管直径对冷却壁炉内一侧最高温度的影响。

表 6 冷却水管直径对冷却壁炉内一侧温度的影响

Table 6 Effect of cooling water pipe diameter on

temperature at the side of cooling stave in BF

冷却水管直径

d/m 冷却壁炉内一侧 最高温度t/℃

0.045532

0.055473

0.060451

0.065432

0.070416

从表6可以看到,随着冷却水管直径的增加,冷却壁炉内一侧最高温度在降低。冷却水管直径从0.045m增加到0.07m,冷却壁炉内一侧温度降低120℃左右。因此,在高炉热流强度高的地方要适当增大冷却水管直径。

3 结论

(1) 冷却水失去稳定性后将导致冷却水管结垢,1~5mm的垢层厚度将使冷却壁炉内一侧最高温度增加200~500℃,因此,在冷却系统的设计中应格外注意冷却水的质量。

(2) 提高冷却水水速可以在一定程度上降低冷却壁炉内一侧温度。

(3) 冷却水管与冷却壁本体之间气隙厚度产生的热阻是冷却水与冷却壁本体之间热阻的控制性环节,需要设法减少。消除的方法之一是用钻孔代替铸入水管,目前在铜冷却壁上就进行了这方面的尝试。

(4) 合理的冷却壁高度可以避免由于大幅度的挠度变化导致冷却壁破裂。

(5) 为了抵抗较强的热流冲击,要加大冷却水管的直径,缩小管间距;也即提高F1/ F2(冷却水管面积/冷却壁炉内一侧面积),建议使其达到1.2以上,特别在炉身下部及炉腰部位可以多排些水管,并实行分区冷却。

作者单位:程素森 薛庆国 苍大强 杨天钧(北京科技大学)

参考文献

 1 顾飞,姚家瑜.我国高炉冷却水调查及评价.炼铁,1996,(4):10.

 2 程素森,贺友多,吴启常.高炉凸台冷却壁温度场的计算.钢铁,1994,29(1):52.

 3 宋阳升,杨天钧,吴懋林,等.高炉冷却能力的计算及分析.钢铁,1996,31(增刊):9.

 4 杨为国.高炉冷却壁三维温度场有限元分析(硕士学位论文).北京:北京科技大学,1997.

高炉冷却壁的传热学分析

作者:程素森, 薛庆国, 苍大强, 杨天钧, CHENG Susen, XUE Qingguo, CANG Daqiang, YANG Tianjun

作者单位:北京科技大学

刊名:

钢铁

英文刊名:IRON & STEEL

年,卷(期):1999,34(5)

被引用次数:48次

参考文献(4条)

1.顾飞;姚家瑜我国高炉冷却水调查及评价 1996(04)

2.程素森;贺友多;吴启常高炉凸台冷却壁温度场的计算 1994(01)

3.宋阳升;杨天钧;吴懋林高炉冷却壁的冷却能力的计算和分析 1996(ZK)

4.杨为国高炉冷却壁三维温度场有限元分析[学位论文] 1997

本文读者也读过(3条)

1.程素森.杨天钧高炉炉墙热负荷的传热学分析和研究[期刊论文]-钢铁研究学报2002,14(2)

2.程素森.杨天钧.薛庆国.全强长寿高炉冷却器布置方式的计算传热学分析[期刊论文]-北京科技大学学报2002,24(1)

3.石琳.程素森.张利君.SHI Lin.CHENG Su-sen.ZHANG Li-jun高炉铜冷却壁的热变形[期刊论文]-中国有色金属学报2005,15(12)

引证文献(49条)

1.XIE Ning-qiang.CHENG Shu-sen Analysis of Effect of Gas Temperature on Cooling Stave of Blast Furnace[期刊论文]-钢铁研究学报(英文版) 2010(1)

2.Analysis of temperature, stress, and displacement distributions of staves for a blast furnace[期刊论文]-矿物冶金与材料学报 2009(5)

3.石琳.程素森合金化管铸铁冷却壁内冷却水管的变形研究[期刊论文]-钢铁 2007(11)

4.钱中.吴俐俊.程惠尔.邓凯高炉冷却壁非稳态传热研究[期刊论文]-钢铁 2005(6)

5.陈建伟安钢高炉高效长寿影响因素的探讨[学位论文]硕士 2005

6.程树森.杨天钧.左海滨.孙磊.杨为国.潘奉贤高炉炉身下部及炉缸、炉底冷却系统的传热学计算[期刊论文]-钢铁研究学报 2004(5)

7.程素森.杨天钧.薛庆国.全强长寿高炉冷却器布置方式的计算传热学分析[期刊论文]-北京科技大学学报 2002(1)

8.李静.吴俐俊.周伟国高炉铸钢冷却壁冷却水管的优化研究[期刊论文]-钢铁研究 2009(1)

9.李玉.陈良玉.刘作军高炉铸铁冷却壁的传热及热应力分析[期刊论文]-机械设计与制造 2008(6)

10.潘宏伟.程树森.吴狄峰.宁晓钧.朱童斌.李小静高炉铸钢冷却壁温度和应变分布热态实验研究[期刊论文]-北京科技大学学报 2008(4)

11.石琳.程素森.冯力.沈猛冷却水管表面合金化球墨铸铁冷却壁的热应力和热变形[期刊论文]-北京科技大学学报 2007(9)

12.吴俐俊.周伟国.苏允隆.李小静高炉铸钢冷却壁最佳结构的传热学分析[期刊论文]-钢铁研究学报 2006(7)

13.钱中.程惠尔.吴俐俊基于热态实验的冷却壁传热分析[期刊论文]-钢铁研究学报 2006(5)

14.钱中.程惠尔.吴俐俊高炉铸钢冷却壁传热和结构的影响因素分析[期刊论文]-上海金属 2005(4)

15.钱中.程惠尔基于ANSYS的高炉铸钢冷却壁传热分析[期刊论文]-钢铁钒钛 2005(1)

16.苏晓军.李建江.李树贵.李吉辉.赵国民铸管式高炉铜冷却壁研制[期刊论文]-冶金能源 2002(3)

17.程素森.马祥.杨天钧冷却水水垢对冷却壁冷却能力影响的传热学分析[期刊论文]-钢铁 2002(7)

18.陈倩.袁熙志影响矿热炉铜瓦寿命的工艺条件分析与研究[期刊论文]-铁合金 2009(3)

19.石琳.程素森.冯力.沈猛冷却水管表面合金化球墨铸铁冷却壁的热态实验研究[期刊论文]-炼铁 2006(2)

20.程素森.孙磊.杨天钧正常炉况下炉衬和冷却板稳态温度场的研究[期刊论文]-钢铁 2004(2)

21.程素森.杨天钧高炉炉墙热负荷的传热学分析和研究[期刊论文]-钢铁研究学报 2002(2)

22.程素森.杨天钧影响高炉炉墙热负荷的因素分析[期刊论文]-北京科技大学学报 2002(4)

23.袁熙志.陈倩结构参数对矿热炉铜瓦传热的影响[期刊论文]-铁合金 2008(1)

24.朱清天.程树森长寿高炉炉底传热学分析[期刊论文]-钢铁研究学报 2006(9)

25.闫魁红.张建良.祁成林.左海滨.刘文文太钢4350m3高炉炉体热负荷[期刊论文]-北京科技大学学报 2010(4)

26.刘增勋.吕庆不同工况下铸铁冷却壁热负荷分析[期刊论文]-钢铁 2009(2)

27.陆祖安.吴俐俊.孙国平.周伟国异形水管对高炉冷却壁温度和应力场的影响[期刊论文]-同济大学学报(自然科学版) 2012(9)

28.吴俐俊.孙国平.陆祖安热面局部高温下高炉冷却壁智能监测试验研究[期刊论文]-钢铁 2011(5)

29.刘增勋.吕庆高炉铸铁冷却壁极限热负荷的传热分析[期刊论文]-钢铁 2008(6)

30.曾成华.付晓燕.袁熙志.宋华矿热炉把持器的传热分析[期刊论文]-铁合金 2008(5)

31.程素森.孙磊.杨天钧异常炉况高炉冷却板及炉衬非稳态温度场[期刊论文]-北京科技大学学报 2004(4)

32.郭华有限元在冶金工业中的应用[期刊论文]-冶金信息导刊 2002(3)

33.程素森.杨天钧.杨为国.全强.吴起常高炉铜冷却壁传热分析[期刊论文]-钢铁 2001(2)

34.钱亮高炉铜冷却壁炉墙监控及长寿高效生产的实现[学位论文]硕士 2006

35.付晓燕.袁熙志.宋华.宋小刚.陈英我国矿热炉电极把持器的现状和发展[期刊论文]-铁合金 2005(3)

36.曹建.袁熙志我国矿热炉矮烟罩的现状和发展[期刊论文]-铁合金 2004(5)

37.曹建矿热炉无水冷骨架矮烟罩的设计与研究[学位论文]硕士 2005

38.石琳长寿高炉铸铜和铸铁冷却壁研究[学位论文]博士 2006

39.钱世崇特大型高炉铜冷却壁优化设计[学位论文]硕士 2006

40.吴雪琦高炉密集式铜冷却板与冷却壁结合炉衬温度场研究[学位论文]硕士 2006

41.钱亮高炉铜冷却壁炉墙监控及长寿高效生产的实现[学位论文]硕士 2006

42.孙保顺邢钢4号高炉冷却水经济用量的研究[学位论文]硕士 2007

43.赵宏博长寿高炉炉缸炉底设计和侵蚀监测[学位论文]硕士 2006

44.吴俐俊基于传热分析的高炉冷却壁结构优化和智能仿真方法的研究[学位论文]博士 2005

45.曹建矿热炉无水冷骨架矮烟罩的设计与研究[学位论文]硕士 2005

46.吴俐俊.程惠尔.钱中.邓凯.苏允隆.王杰.李小静冷却水管管形变化下的高炉冷却壁传热分析[期刊论文]-钢铁 2005(5)

47.吴俐俊基于传热分析的高炉冷却壁结构优化和智能仿真方法的研究[学位论文]博士 2005

48.吴俐俊.程惠尔.钱中.邓凯.苏允隆.王杰.李小静冷却水管管形变化下的高炉冷却壁传热分析[期刊论文]-钢铁 2005(5)

49.张崇民.阎果冷却壁水管铸造过程中氧化渗碳及防护[期刊论文]-鞍山钢铁学院学报 2000(1)

本文链接:https://www.360docs.net/doc/341537324.html,/Periodical_gt199905004.aspx

高炉冷却壁

高炉冷却壁 发布: 2016-01-05 15:43 来源: 网络专业资料。高炉冷却壁高炉冷却壁摘要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术... 高炉冷却壁 摘要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术、应用及其发展概况,分析了铸铁冷却壁、钢冷却壁和铜冷却壁的特点,并探讨了高炉冷却壁的未来发展趋势。 1. 前言 高炉冷却壁是高炉内衬的重要水冷件,安装在高炉的炉身、炉腰、炉腹、炉缸等部位,不但承受高温,还承受炉料的磨损、熔渣的侵蚀和煤气流的冲刷,必须具备良好的热强度、耐热冲击、抗急冷急热性等综合性能。冷却壁能有效地防止炉壳受热和烧红,高炉内衬砖被烧蚀后主要靠渣皮保护冷却壁本身,并维持高炉的安全生产。因此,冷却壁的材质及性能好

坏决定其工作寿命乃至高炉炉身的寿命。国内外钢铁企业的生产情况证明,高炉长寿的关键之一是实现冷却壁的长寿 [1,2]。因而提高冷却壁的质量和使用寿命是高炉长寿的1个重要研究课题。 从20世纪70年代开始,西方一些发达国家对高炉冷却壁进行了大量的研究及材质的更新。目前国外先进高炉的寿命可达15年以上,有的达20年以上,最近大修的部分高炉已将长寿目标定为30年[3]。我国对冷却壁的制造、应用技术研究始于20世纪80年代中期,20多年来我国高炉冷却壁技术取得了长足的进展,但高炉冷却壁的设计研究和制作工艺与高炉长寿的目标还有一定的差距。目前我国很多高炉一代炉役无中修寿命低于10年,仅少数高炉可实现10~15年。 高炉寿命的总体水平与国外先进水平相差较大[4]。 本文旨在总结国内外高炉冷却壁的制备技术和应用现状,分析各类冷却壁的特点,探讨未来高炉冷却壁今后的发展趋势。 2. 高炉冷却壁的种类、特点及其制备技术 冷却壁是高炉的关键部件,在高温状态下工作,工作条件恶劣。其破坏形式是在高温交变热应力作用下引起开裂漏水,使高炉被迫停炉大中修。要延长冷却壁使用寿命,必须选择合理的材质。下面以高炉冷却壁的材质为主线,概述其种类、特点和制备技术。 高炉冷却壁的种类及特点 根据制造材质,高炉冷却壁有铸铁冷却壁、钢冷却壁和铜冷却壁3大类。

传热学基本概念知识点

传热学基本概念知识点 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 5效能:表示换热器的实际换热效果与最大可能的换热效果之比 6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。对流仅能发生在流体中,而且必然伴随有导热现象。对流两大类:自然对流与强制对流。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速 7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的? 蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内

部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关? 灰体的主要特征是光谱吸收比与波长无关。灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。 10气体与一般固体比较其辐射特性有什么主要差别? 气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的 11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别? 平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。 纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。 12边界层,边界层理论 边界层理论:(1)流场可划分为主流区和边界层区。只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与湍流,湍流边界层内紧靠壁面处仍有层流底层。

高炉冷却壁安装方案

目录 1.编制依据 ............................................................................................................................... - 2 - 2. 工程简介 .................................................................................................................................... - 2 - 2.1 工程概况........................................................................................................................... - 2 - 2.2 工程特点........................................................................................................................... - 2 - 3. 施工部署及施工准备 ................................................................................................................ - 3 - 3.1施工平面规划.................................................................................................................... - 3 - 3.1.1冷却壁安装前后技术要求............................................................................................. - 3 - 3.1.2冷却壁安装钢平台......................................................................................................... - 3 - 3.2施工进度计划.................................................................................................................... - 3 -4.施工方法.................................................................................................................................... - 4 - 4.1施工部位及注意事项........................................................................................................ - 4 - 4.2冷却壁固定.......................................................................................... 错误!未定义书签。 5. 资源计划 .................................................................................................................................... - 5 - 5.1吊机选择............................................................................................................................ - 5 - 5.2施工小型机具使用计划.................................................................................................... - 5 - 5.3劳动力................................................................................................................................ - 7 - 6 质量管理...................................................................................................................................... - 7 - 6.1 质量管理体系................................................................................................................... - 7 - 6.2 质量控制标准................................................................................................................... - 7 - 6.3 质量保证措施................................................................................................................... - 7 - 7. 安全管理 .................................................................................................................................... - 8 - 7.1 安全管理体系................................................................................................................... - 8 - 7.2 安全管理目标................................................................................................................... - 8 - 7.3 安全保证措施................................................................................................................... - 8 - 8.文明施工 .................................................................................................................................... - 10 - 9.环境保护措施 ............................................................................................................................ - 10 -10.全应急救援预案 ................................................................................................................... - 11 - 10.1应急救援指挥小组........................................................................................................ - 11 - 10.2 紧急救护....................................................................................................................... - 11 - 10.3 发生高空坠落事故应急措施....................................................................................... - 12 -施工进度计划表............................................................................................................................ - 13 -施工场地平面规划图 ................................................................................................................... - 13 -

传热学考研知识点总结 (1)

传热学考研知识点总结 对流换热是怎样的过程,热量如何传递的?如下是小编整理的传 热学考研知识点总结,希望对你有所帮助。 传热学考研知识点总结§1-1 “三个W” §1-2 热量传递的三种基本方式§1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。本 章重点: 1.传热学研究的基本问题物体内部温度分布的计算方法热量 的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方 式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。黑体热辐射公式:实际物体热辐射:

传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点 1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。 2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论? 5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么? §2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热 §2-4伸展体的一维稳态导热

本标准代替YBT4073-1991高炉用铸铁冷却壁

ICS 77.180 YB H 99 中华人民共和国黑色冶金行业标准 YB/T4073—×××× 代替YB/T4073—1991 高炉用铸铁冷却壁 Cast iron staves for Blast Furnace (报批稿) ××××-××-××发布××××-××-××实施中华人民共和国国家发展和改革委员会发布

前言 本标准代替YB/T4073-1991《高炉用铸铁冷却壁》。 本标准与YB/T4073-1991标准有如下一些重要差别: ——本标准增加了铸铁冷却壁材质、品种及性能的主要技术参数。 ——侧重厚大断面、高韧性球墨铸铁冷却壁的特性,以附铸试块及实物性能为主,增加附录B《冷却壁解剖检验》的技术要求。 ——本标准强调了铸铁冷却壁铸入冷却水管的防渗碳处理、检验,增加了附录A《冷却水管防渗碳检验》的技术要求。 ——完善了冷却壁产品检验和验收规则。 本标准的附录A是规范性附录,附录B为资料性附录。 本标准由中国钢铁工业协会提出。 本标准由冶金机电标准化技术委员会归口。 本标准起草单位:鞍钢重型机械有限责任公司(原鞍钢集团机械制造公司) 本标准主要起草人:姜言埠、谢长发、宋恩余。 本标准所代替标准的历次版本发布情况为:YB/T4073-1991。

高炉用铸铁冷却壁 1 范围 本标准规定了高炉用铸铁冷却壁(灰铸铁、球墨铸铁冷却壁)的技术要求、试验方法、检验规则、质量证明书、标志、包装及运输。 本标准适用于各种容积的炼铁高炉用铸铁冷却壁。如有特殊要求,可在图样或专用技术文件中另行规定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 223.5 钢铁及合金化学分析方法还原型硅钼酸盐光度法测定酸溶硅含量 GB/T 223.46 钢铁及合金化学分析方法火焰原子吸收光谱法测定镁量 GB/T 223.49 钢铁及合金化学分析方法萃取分离- 偶氮氯膦mA分光光度法测定稀土总量 GB/T 223.58 钢铁及合金化学分析方法亚砷酸钠-亚硝酸钠滴定法测定锰量 GB/T 223.62 钢铁及合金化学分析方法乙酸丁脂萃取光度法测定磷量 GB/T 223.68 钢铁及合金化学分析方法管式炉内燃烧后碘酸钾滴定法测定硫含量 GB/T 223.69 钢铁及合金化学分析方法管式炉内燃烧气体容量法测定碳含量GB/T 228金属材料室温拉伸试验方法(eqv ISO 6892:1998) GB/T 229 金属夏比缺口冲击试验方法(eqv ISO 148:1983;ISO 83:1976) GB/T 231.1 金属布氏硬度试验第1部分:试验方法(eqv ISO 6506—1:1999) GB/T 699 优质碳素结构钢 GB/T 1348 球墨铸铁件 GB 3087 低中压锅炉用无缝钢管 GB/T 6060.1—1997 表面粗糙度比较样块铸造表面(eqv ISO 2632/Ⅲ:1979) GB/T 6414—1999 铸件尺寸公差与机械加工余量(eqv ISO 8062:1994) GB/T 7216 灰铸铁金相(neq ISO 945:1975) GB/T 8163 输送流体用无缝钢管(neq ISO 559:1991) GB/T 9439 灰铸铁件 GB/T 9441 球墨铸铁金相检验 JB/T 7945 灰铸铁力学性能试验方法 3 产品分类 3.1 按铸铁冷却壁结构形式分类:光面型冷却壁、镶砖型冷却壁、捣料型冷却壁。 3.2 按铸铁冷却壁冷却水管分类:单排管冷却壁、双排管冷却壁、多排管冷却壁。 3.3 按铸铁冷却壁本体材质分类:灰铸铁冷却壁、球墨铸铁冷却壁。 4 技术要求 4.1 高炉用铸铁冷却壁的本体材质可采用灰铸铁、球墨铸铁,如需方另有要求可协商确定。力学性能应符合表1、表2的规定,冲击值见表3。 4.2 高炉用铸铁冷却壁的金相组织应达到表4要求。

高炉冷却壁

高炉冷却壁 摘要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术、应用及其发展概况,分析了铸铁冷却壁、钢冷却壁和铜冷却壁的特点,并探讨了高炉冷却壁的未来发展趋势。 1. 前言 高炉冷却壁是高炉内衬的重要水冷件,安装在高炉的炉身、炉腰、炉腹、炉缸等部位,不但承受高温,还承受炉料的磨损、熔渣的侵蚀和煤气流的冲刷,必须具备良好的热强度、耐热冲击、抗急冷急热性等综合性能。冷却壁能有效地防止炉壳受热和烧红,高炉内衬砖被烧蚀后主要靠渣皮保护冷却壁本身,并维持高炉的安全生产。因此,冷却壁的材质及性能好坏决定其工作寿命乃至高炉炉身的寿命。国内外钢铁企业的生产情况证明,高炉长寿的关键之一是实现冷却壁的长寿[1,2]。因而提高冷却壁的质量和使用寿命是高炉长寿的1个重要研究课题。 从20世纪70年代开始,西方一些发达国家对高炉冷却壁进行了大量的研究及材质的更新。目前国外先进高炉的寿命可达15年以上,有的达20年以上,最近大修的部分高炉已将长寿目标定为30年[3]。我国对冷却壁的制造、应用技术研究始于20世纪80年代中期,20 多年来我国高炉冷却壁技术取得了长足的进展,但高炉冷却壁的设计研究和制作工艺与高炉长寿的目标还有一定的差距。目前我国很多高炉一代炉役无中修寿命低于10年,仅少数高炉可实现10~15年。高

炉寿命的总体水平与国外先进水平相差较大[4]。 本文旨在总结国内外高炉冷却壁的制备技术和应用现状,分析各类冷却壁的特点,探讨未来高炉冷却壁今后的发展趋势。 2. 高炉冷却壁的种类、特点及其制备技术 冷却壁是高炉的关键部件,在高温状态下工作,工作条件恶劣。其破坏形式是在高温交变热应力作用下引起开裂漏水,使高炉被迫停炉大中修。要延长冷却壁使用寿命,必须选择合理的材质。下面以高炉冷却壁的材质为主线,概述其种类、特点和制备技术。 2.1. 高炉冷却壁的种类及特点 根据制造材质,高炉冷却壁有铸铁冷却壁、钢冷却壁和铜冷却壁3大类。 2.1.1. 铸铁冷却壁 20世纪50年代初,我国高炉采用的是原苏联设计的冷却壁,冷却壁本体是一般铸铁,如HT150,HT200,内铸蛇形冷却水管,镶砖为粘土砖。20世纪70年代,我国的第二代冷却壁本体材质为低铬铸铁…引,冷却水管的进水管在下,水流垂直向上,排水管在上方,冷却壁镶砖为粘土砖。武钢、鞍钢、首钢的高炉在此期间均有应用。20世纪80年代,我国的第三代冷却壁本体采用铸态高韧性铁素体球墨铸铁,典型材质为QT400—18和QT400—20,冷却水管与第二代基本相同,镶砖采用嵌砌的方式。

传热学基础知识

传热学基础知识 本文由淹死的鱼张冰贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 传热学基本知识 摘要:本节主要介绍导热,对流换热,辐射换热及稳定传热的基本概念,基本计算方法等内容。 2.1稳定传热的基本概念 2.1.1温度场 温度场:是某一时刻空间中各点温度分布的总称。一般来说,温度场是空间坐标和时间的函数,即 t = f (x, y, z,η ) 式 t ?温;中度 x, y, z ?空坐;间标 η?时。间上式表示物体内部在x,y,z三个方向和在时间上均发生变化的三维非稳态温度场。如果温度场不随时间变化,则上式变为:t = f (x, y, z) 该式所表达的内容是温度场内各点的温度不随时间变化,这样的温度场就是稳态温度场,它只是空间坐标函数。 此外,如果温度场内温度的变化仅与两个或一个坐标有关,则称为二维或一维稳态温度场。随时间变化为非稳态温度场,不随时间变化为稳态温度场。 2.1.2等温面于等温线 等温面:同一时刻在温度场中所有温度相同的点连接构成的面。等温

线:不同的等温面与同一平面相交所得到一簇曲线。同一时刻两个不同等温线不会彼此相交。在任意时刻,标绘出物体中所有等温面(线),即描绘了物体内部温度场。 2.1.3温度梯度 事实证明两个等温线之间的变化以垂直于法线方向上温度的变化率最大,这一温度最大变化率称为温度梯度。用grad t来表示。即: ?t ?t =n ?n→0 ?n ?x 式 n ?法方上单向;中线向的位量?t 示发方温的向数?表沿现向度方倒。?n gradt = n lim gradt = i ?t ?t ?t + j +k ?x ?y ?z 温度梯度在直角坐标系中可表示为: 式 i, j和分是 , y和轴向单向。中 k 别 x z 方的位量温度梯度的负值,称为温度降度。 2.1.4导热定律 单位时间内通过单位给定界面的导热量,称为热流量,记作q,单位W/m2. 傅立叶定律(导热基本定律): q = ?λgradt 上式表明,热流量是一个向量(热流向量),它与温度梯度位于等温面同一法线上,但是指向温度降低的方向,上式中的负号就表示热流量和温度梯度的方向相反,永远顺着温度降低的方向。适用于连续均匀和各向同性材料的稳态和非稳态导热过程。 2.1.5导热系数 导热系数的定义式:导热系数在数值上等于温度降低 1 / m 时单位时间每单位导热面积的导热量。℃ 2 单位是。导热系数是材料固有的

中天7号高炉冷却壁八年零破损

摘要立足8年炉龄的中天钢铁7号高炉,采取一定长寿技术和管理措施,对中天钢铁7号高炉炉役后期在强化冶炼与高炉长寿方面所做的工作进行了总结分析,通过采用精料、加钛矿护炉、优化操作制度以及合理维护等操作技术措施,7号高炉在炉役后期实现了稳定顺行生产,延长了高炉寿命,单位炉容产铁量超过10000 t/m3,各项技术经济指标不断改善。关键词高炉长寿炉役后期 中天钢铁7号高炉始建于2011年,于12月16日顺利开炉,容积850m3,20个风口送风,炉前东西场两边各一铁口,炉缸使用的是北京瑞尔非金属材料有限公司提供的大块单元式风口组合砖,整体式陶瓷杯壁(带密闭隔热夹层),双向错台的陶瓷杯垫砖,见图1。上料系统采用斜桥小车上料,无料钟旋转溜槽多环布料;炉前东西出铁场均采用摆动沟罐位,冲渣系统采用环保底滤法,保证高炉出尽渣铁;高炉本体冷却采用工业水开路循环;鼓风机AV50—14,热风炉为顶然式,送风采用两烧一送原则。 截止2020年2月份已连续正常生产八年多时间,期间无特殊炉况发生,通过操作维护和加

强炉体监护工作高炉投产八年来无冷却壁烧损,打破了高炉炼铁生产过程中发生冷却壁烧损的历史,创造了“中天骄傲”。高炉利用系数已达3.8t/(m3·d)以上,燃料比520kg/t以下。截止目前,7号高炉在一代炉龄无大、中修情况下单位炉容产铁量突破1.06万吨,参照目前高炉长寿标准,7号高炉已经成功跨入世界钢铁企业长寿高炉行列,并且在全国同等立级高炉中多项技术经济指标名列前茅,尽管已处于炉役后期,仍然保持着稳定高产的生产状态。其中多年来主要经济指标如表1所示。由表中可以看出7号高炉各项指标在稳定不断进步。2020年因新型冠状肺炎疫情的影响,公司决定7号高炉2月3日降料面停炉,为后续开炉快速达产于3月5日开始炉内扒料,通过测量观察风口以上冷却壁镶砖基本还保留,炉缸除了东西铁口橡角区侵蚀到碳砖表面,其它侧壁区域陶瓷杯完整存在,见图2。停炉时风口组合砖状况至停炉时所有风口无变形,上翘现象;停炉时陶瓷杯壁砖的状况铁口中心线以上位置,陶瓷杯壁砖侵蚀最大位置,剩余杯壁厚度200mm,包括铁口上方的二层陶瓷杯壁砖。停炉时陶瓷杯垫状的状况由于停炉前高炉运行良好,高炉本体各处温度平稳,按照熔损计算,炉底陶瓷杯垫砖侵蚀度低,因此本次停炉后不准备对炉缸底部进行处理,辩证的说明高炉炉缸没有安全隐患,高炉还可延续生产。 1 操作制度

国电集团招聘考试2-8-热能工程与动力类专业知识点--传热学知识点讲义整理解剖

传热学知识点 1.传热学:研究热量传递规律的科学。 2.热量传递的基本方式:热传导、热对流、热辐射。 3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。(纯粹的导热只能发生在不透明的固体之中。) 4.热流密度:通过单位面积的热流量(W /m 2)。 5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。热对流只发生在流体之中,并伴随有导热现象。 6.自然对流:由于流体密度差引起的相对运功c 7.强制对流:出于机械作用或其他压差作用引起的相对运动。 8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。 9.辐射:物体通过电磁波传播能量的方式。 10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。 11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。 12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。 13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ?。 14.单位面积上的传热热阻:k R k 1= 单位面积上的导热热阻:λ δλ=R 。 单位面积上的对流换热热阻:h R 1= λ 对比串联热阻大小就可以找到强化传热的主要环节。 15.导热系数λ 是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。对于各向异性的材料,还与方向有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。 16.表面换热系数h

高炉冷却壁的传热学分析

钢铁 IRON & STEEL 1999年 第34卷 第5期 No.5 Vol.34 1999 高炉冷却壁的传热学分析* 程素森 薛庆国 苍大强 杨天钧 摘 要 应用传热学理论计算分析了高炉冷却水的稳定性、冷却水的水速、冷却水管与冷却壁本体的间隙及冷却壁的高度对长寿高效高炉冷却壁寿命的影响。 关键词 高炉 冷却系统 HEAT TRANSFER ANALYSIS OF BLAST FURNACE STAVE CHENG Susen XUE Qingguo CANG Daqiang YANG Tianjun (University of Science and Technology Beijing) ABSTRACT In this paper, effect of the cooling water stability, cooling water velocity, gap between cooling water pipe and stave and height of stave on the stave life is analyzed by heat transfer theory. KEY WORDS blast furnace, cooling system 1 前言 在1994年国际炼铁会议上,霍戈文公司(Hoogven)的专家提出了下一个世纪钢铁联合企业生存的条件之一是高炉寿命达到15年。日本千叶6号高炉(容积为4500m3)到1997年底已经连续生产20年6个月,创高炉长寿的世界记录。80年代以来国外新设计的高炉寿命一般在15年以上,而我国1000m3以上高炉的中修周期目前一般为4~5年,大修周期一般为9年左右。因此,就整体而言我国高炉寿命与国外相比仍有很大差距。 高炉是一个巨大的反应器,其寿命与许多因素有关,依据我国对高炉寿命的调查结果,冷却系统的设计和制造质量是影响高炉长寿的重要因素之一。过去高炉冷却系统的设计是根据经验或破损调查,随着计算技术及传热学理论及其应用的不断发展,加之人们对冷却器认识的不断深化,应用传热学数值计算对冷却器进行结构参数优化已经成为可能。 2 冷却系统的设计 冷却系统包括冷却水及冷却器。首先,冷却水质的好坏直接关系到冷却器能否达到设计的冷却效果,关系到能否保证冷却器不被烧坏。其次,合理的冷却水水速既可以保证冷却器的冷却能力,又可以降低能耗。冷却器结构参数的合理选取既可以保护炉墙免受炉内热流冲击破坏,又可以减少炉内热量损失,降低燃料消耗。 2.1 冷却水

传热学知识点资料讲解

常用的相似准则数:①努谢尔特:Nu=aL/λ分子是实际壁面处的温度变化率,分母是原为l的流体层导热机理引起的温度变化率反应实际传热量与导热分子扩散热量传递的比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力和粘性力相对大小。Re是判断流态的。③格拉小夫准则Gr=gβ△tL3/V2 Gr的大小表明浮升力和粘性力的的相对大小,Gr表明自然流动状态兑换热的影响。 ④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率的相对大小。 辐射换热时的角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式和回热式,按传热表面的结构形式分为管式和板式间壁式热交换器按两种流体相互间的流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。Α大的物体被加热时,各处温度能较快的趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 4效能:表示换热器的实际换热效果与最大可能的换热效果之比 5对流换热是怎样的过程,热量如何传递的? 对流换热:指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热和沸腾换热,影响凝结换热和沸腾换热的因素? 蒸汽与低于饱和温度的壁面接触时,将汽化潜热传递给壁面的过程称为凝结过程。 如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。 按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层,因此,不凝结气体层的存在增加了传递过程的阻力。 影响凝结换热的因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热的因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热和沸腾换热的原则? 强化凝结换热的原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热的原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

高炉冷却壁的制备技术及其进展

高炉冷却壁的制备技术及其进展 范晓明1,胡寿玉1,余光明2,金 凯2,钟 毅2,范宝柱2 (1.武汉理工大学材料科学与工程学院,湖北武汉430070;2.武汉钢铁(集团)公司机械制造有限责任 公司,湖北武汉430083;) 摘 要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术、应用及其发展概况,分析了铸铁冷却壁、钢冷却壁和铜冷却壁的特点,并探讨了高炉冷却壁的未来发展趋势。 关键词:高炉;冷却壁;铸铁;钢;铜 中图分类号:T G 321.4 文献标识码:A 文章编号:100121447(2007)0420051204 Manufacture technology and progress of cooling staves for blast f urnace FAN Xiao 2ming 1,HU Shou 2yu 1,YU Guang 2ming 2,J IN Kai 2,ZHON G Y i 2,FAN Bao 2zhu 2 (1.School of Materials Science and Engineering of W HU T ,Wuhan 430070,China ;2.Machinery Manufact uring Co.Lt d.of WISCO ,Wuhan 430083,China ) Abstract :Cooling stave is an important equip ment of blast f urnace and has an effect on blast f urnace life directly.In t he paper ,t he manufact ure technology ,application and e 2volution of different cooling staves of blast f urnace are summarized home and abroad.The characteristics of cast iron stave ,steel stave and copper stave are analyzed and t he develop ment t rends of cooling stave in f ut ure are also discussed.K ey w ords :blast f urnace ;cooling stave ;cast iron ;steel ;copper 作者简介:范晓明(1957-),男,湖北洪湖人,教授,主要从事合金材料研究. 高炉冷却壁是高炉内衬的重要水冷件,安装在高炉的炉身、炉腰、炉腹、炉缸等部位,不但承受高温,还承受炉料的磨损、熔渣的侵蚀和煤气流的冲刷,必须具备良好的热强度、耐热冲击、抗急冷急热性等综合性能。冷却壁能有效地防止炉壳受热和烧红,高炉内衬砖被烧蚀后主要靠渣皮保护冷却壁本身,并维持高炉的安全生产。因此,冷却壁的材质及性能好坏决定其工作寿命乃至高炉炉身的寿命。国内外钢铁企业的生产情况证明,高炉长寿的关键之一是实现冷却壁的长寿[1,2]。因而提高冷却壁的质量和使用寿命是高炉长寿的1个重要研究课题。 从20世纪70年代开始,西方一些发达国家对高炉冷却壁进行了大量的研究及材质的更新。目前国外先进高炉的寿命可达15年以上,有的达20年以上,最近大修的部分高炉已将长寿目标定为30年[3]。我国对冷却壁的制造、应用技术研 究始于20世纪80年代中期,20多年来我国高炉冷却壁技术取得了长足的进展,但高炉冷却壁的设计研究和制作工艺与高炉长寿的目标还有一定的差距。目前我国很多高炉一代炉役无中修寿命低于10年,仅少数高炉可实现10~15年。高炉寿命的总体水平与国外先进水平相差较大[4]。 本文旨在总结国内外高炉冷却壁的制备技术和应用现状,分析各类冷却壁的特点,探讨未来高炉冷却壁今后的发展趋势。 1 高炉冷却壁的种类、特点及其制备技术 冷却壁是高炉的关键部件,在高温状态下工作,工作条件恶劣。其破坏形式是在高温交变热应力作用下引起开裂漏水,使高炉被迫停炉大中修。要延长冷却壁使用寿命,必须选择合理的材质。下面以高炉冷却壁的材质为主线,概述其种类、特点和制备技术。 ? 15?2007年 8月第35卷第4期钢铁研究 Research on Iron &Steel Aug.2007 Vol.35 No.4

最新传热学知识点

传热学主要知识点 1. 热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。 2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。 3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W 6. 热辐射的特点。 a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。 7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 (w) )(∞-=''t t h q w 2 /) (m w t t Ah A q w ∞-=''=φ

相关文档
最新文档