高中数学讲义微专题17 函数的极值

高中数学讲义微专题17  函数的极值
高中数学讲义微专题17  函数的极值

微专题17 函数的极值

一、基础知识: 1、函数极值的概念:

(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有

()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点

(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有

()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点

极大值与极小值统称为极值

2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:

(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小

(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个

(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值

(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 3、极值点的作用:

(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点

4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点?()0'0f x = 说明:①前提条件:()f x 在0x x =处可导

②单向箭头:在可导的前提下,极值点?导数0=,但是导数0=不能推出0x x =为

()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点

③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()'

0f

x =求出()'f x 的零点(此时求出的点有可能是极值点)

(2)精选:判断函数通过()'

f x 的零点时,其单调性是否发生变化,若发生变化,则该点为

极值点,否则不是极值点

(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点

6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。

7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。但要注意检验零点能否成为极值点。 8、极值点与函数奇偶性的联系:

(1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点

(2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 二、典型例题: 例1:求函数()x

f x xe -=的极值.

解:()()'

1x x x f x e xe x e ---=-=-

令()'0f

x >解得:1x < ()f x ∴的单调区间为:

()f x ∴的极大值为()1f e

=

,无极小值 小炼有话说:(1)求极值时由于要判定是否为极值点以及极大值或极小值,所以可考虑求函数的单调区间,进而在表格中加入一列极值点,根据单调性即可进行判断

(2)在格式上有两点要求:第一推荐用表格的形式将单调区间与极值点清晰地表示出来,第二在求极值点时如果只有一个极大(或极小)值点,则需说明另一类极值点不存在 例2:求函数1)1()(3

2

+-=x x f 的极值。 解:()()2

'

2312f

x x x =-?,令()'0f x >解得:0x >

()f x ∴的单调区间为:

()f x ∴的极小值为(

)00f =,无极大值

小炼有话说:本题若使用()'

0f

x =解极值点,则1x =±也满足()'0f x =,但由于函数通过

这两个点时单调性没有发生变化,故1x =±均不是极值点。对比两个方法可以体会到求极值点归根结底还是要分析函数的单调区间 例3:求函数()f x =R 上的极值

思路:利用()'

f x 求出()f x 的单调区间,进而判断极值情况

解:()'

f

x =

令()'

0f

x >解得:()()2,02,x ∈-+∞

()f x ∴的单调区间为:

()f x ∴的极小值为()()220f f -==,极大值为()0f ==小炼有话说:在本题中如果仅令()'0f x =,则仅能解得0x =这一个极值点,进而丢解。对于2x =-与2x =,实质上()f x 在这两点处没有导数,所以在()'0f x =中才无法体现出来,由此我们可以得到以下几点经验 (1)利用()'

0f

x =来筛选极值点的方法在有些特殊函数中会丢解,此类点往往是不存在导

函数的点。例如:24y x =-中的2,2x x =-=,是极值点却不存在导数

(2)在寻找极值点时,若能求出()f x 的单调区间,则利用单调区间求极值点是可靠的 例4:已知函数bx ax x x f 23)(2

3

+-=,在点1=x 处有极小值1-,试确定b a ,的值,并求出)(x f 的单调区间。

思路:()'

2

362f x x ax b =-+,由极值点()1,1-条件可得:()()'1110

f f =-???=??,两个条件可解出

,a b ,进而求出单调区间

解:()'

2362f

x x ax b =-+

在点1=x 取得极小值72

-

()()

'11113+213

36201102

a f a

b a b f b ?==-??-=-???∴?????-+==????=-??

()()()'2321311f x x x x x =--=+-,令()'0f x >,解得1

3

x <-或1x >

()f x ∴的单调区间为:

小炼有话说:关注“在点1=x 处有极小值1-”,一句话表达了两个条件,作为极值点导数等于零,作为曲线上的点,函数值为1,进而一句话两用,得到关于,a b 的两个方程。 例5:若函数()322f x x ax bx a =+++在1x =时有极值10,则a b +=_________

思路:()'2

32f x x ax b =++,依题意可得:()()2

'11101320

f a b a f a b ?=+++=??=++=??,可解得:411a b =??=-?

或33a b =-??

=?,但是当33

a b =-??=?时,()()2'2

36331f x x x x =-+=- 所以尽管()'10f =但

1x =不是极值点,所以舍去。经检验:4

11a b =??

=-?

符合,7a b +=- 答案:7a b +=-

小炼有话说:对于使用极值点条件求参数值时,求得结果一定要代回导函数进行检验,看导数值为0的点是否是极值点

例6:2

)()(c x x x f -=在1=x 处有极小值,则实数c 为 . 思路:()'

2234f

x x cx c =-+,

1x =为极小值点,()'21340f c c ∴=-+=,解得:1

c =或3c =,考虑代入结果进行检验:1c =时,()()()'

2341311f

x x x x x =-+=--,可得

()f x 在()1,1,3??-∞+∞ ???单调递增,在1,13??

???

单调递减。进而1x =为极小值点符合题意,而

当3c =时,()()()'

23129313f

x x x x x =-+=--,可得()f x 在()(),13,-∞+∞单调递

增,在()1,3单调递减。进而1x =为极大值点,故不符合题意舍去 1c ∴= 答案:1c =

小炼有话说:在已知极值点求参数范围时,考虑利用极值点导数值等于零的条件,但在解完参数的值后要进行检验,主要检验两个地方:① 已知极值点是否仍为函数的极值点 ② 参数的值能否保证极大值或极小值点满足题意。 例7:

(1)已知函数()3

2

34f x x ax x =-+-有两个极值点,则a 的取值范围是___________

(2)已知函数()3

2

34f x x ax x =-+-存在极值点,则a 的取值范围是_________

(1)思路:()'

2323f

x x ax =-+,若()f x 有两个极值点,则方程23230x ax -+=有两

个不等实根,从而只需0?>,即2

43603a a ?=->?<-或3a > 答案:3a <-或3a >

(2)思路:()f x 存在极值点即()'23230f x x ax =-+=有实数根,0?≥,但是当0?=即3a =±时, ()()2

'

2363310f

x x x x =+=≥,不存在极值点,所以方程依然要有两个

不等实数根,a 的范围为3a <-或3a > 答案:3a <-或3a >

小炼有话说:本题有以下几个亮点

(1)在考虑存在极值点和极值点个数时,可通过导数转化成为方程的根的问题,使得解决方法多样化,可与函数零点和两图象的交点找到关系 (2)方程()'

0f

x =根的个数并不一定等于极值点的个数,所以要判断函数在通过该点时单

调性是否发生了变化

(3)本题两问结果相同,是由导函数方程为二次方程,其0?=时,其根不能作为极值点所致。

例8:设函数x b x x f ln )1()(2

+-=,其中b 为常数.若函数()f x 的有极值点,求b 的取值范围及()f x 的极值点;

思路:()()2'

2221b x x b

f x x x x

-+=-+=,定义域为()0,+∞,若函数()f x 的有极值点,

则()'

0f

x =有正根且无重根,

进而转化为二次方程根分布问题,通过韦达定理刻画根的符号,进而确定b 的范围

解:(1)()()2'

2221b x x b f x x x x

-+=-+=,令()'

0f x =即2220x x b -+=

()f x 有极值点 ∴2220x x b -+=有正的实数根,设方程的根为12,x x ① 有两个极值点,即12,0x x >,1212480

110202

b x x b b

x x ?

??=->?

∴+=?<?

② 有一个极值点,即12=

002

b

x x b ≤?≤

∴综上所述:1,2b ?

?∈-∞ ??

?

(2)思路:利用第(1)问的结论根据极值点的个数进行分类讨论

方程2

220x x b -+=的两根为:212

x ±==±

① 当1

02

b <<

时,1211x x ==()f x ∴的单调区间为:

∴()f x 的极大值点为1x =-1x =+

② 当0b ≤时,1210,1x x =<=()f x ∴的单调区间为:

∴()f x 的极小值点为1x =+

综上所述:

当1

02

b <<

时,()f x 的极大值点为1x =-1x =+

当0b ≤时,()f x 的极小值点为1x =+ 小炼有话说:

(1)导函数含有参数时,其极值点的个数与参数的取值有关,一方面体现在参数的取值能否保证导函数等于0时存在方程的解,另一方面体现在当方程的解与参数有关时,参数会影响到解是否在定义域内。只有符合这两个条件的解才有可能成为极值点。这两点也是含参函数中对参数分类讨论的入手点

(2)对于二次方程而言,可利用韦达定理或者实根分布来处理极值存在问题。韦达定理主要应用于判定极值点的符号,而根分布的用途更为广泛,能够将实根分布区间与二次函数的判别式,对称轴,端点值符号联系起来。在本题中由于只需要判定根是否为正,从而使用韦达定理即可

例9:若函数()2

1

ln 12

f x x x =-

+在其定义域内的一个子区间()1,1k k -+内不是单调函数,则实数k 的取值范围_______________ 思路:()'

122f x x x =-

,令()'

102

f x x =?=.函数()f x 在()1,1k k -+内不是单调函数,所以

()1

1,12

k k ∈-+,又因为()1,1k k -+是定义域()0,+∞的子区间,所以10k -≥,综上可得:10

311

2112

k k k k -≥??

?≤

2??

????

小炼有话说:本题虽然没有提到极值点,但是却体现了极值点的作用:连续函数单调区间的分界点。所以在连续函数中,“不单调”意味着极值点位于所给区间内。

例10:设a R ∈,若函数()3,ax

f x e x x R =+∈有大于零的极值点,则( )

A. 13a <-

B. 1

3

a >- C. 3a <- D. 3a >- 思路:()'

3ax f

x ae =+,()'13030ln ax f x ae x a a ??=?+=?=

- ???,13ln 0a a ??

∴-> ???

, 由此可得:300a a -

>?< 10a ∴<,所解不等式化为:3ln 0ln1a ??

-<= ???

所以3

013a a

<-

高中数学讲义微专题76 存在性问题

微专题76 圆锥曲线中的存在性问题 一、基础知识 1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标()00,x y (2)直线:斜截式或点斜式(通常以斜率为未知量) (3)曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。 (2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法: ①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题: 例1:已知椭圆()2222:10x y C a b a b +=>>的离心率为33,过右焦点F 的直线l 与C 相交于 ,A B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为 2 2 。 (1)求,a b 的值 (2)C 上是否存在点P ,使得当l 绕F 旋转到某一位置时,有OP OA OB =+成立?若存在,求出所有的P 的坐标和l 的方程,若不存在,说明理由 解:(1)3 ::323 c e a b c a = =?=

则,a b = =,依题意可得:(),0F c ,当l 的斜率为1时 :0l y x c x y c =-?--= 2 O l d -∴= = 解得:1c = a b ∴== 椭圆方程为:22 132 x y += (2)设()00,P x y ,()()1122,,,A x y B x y 当l 斜率存在时,设():1l y k x =- OP OA OB =+ 012 012 x x x y y y =+?∴?=+? 联立直线与椭圆方程:()221236 y k x x y =-???+=?? 消去y 可得:()222 2316x k x +-=,整理可得: ()2 222326360k x k x k +-+-= 2122632k x x k ∴+=+ ()312122264223232 k k y y k x x k k k k +=+-=-=-++ 22264,3232k k P k k ?? ∴- ?++?? 因为P 在椭圆上 2 2 2 22 642363232k k k k ????∴?+-= ? ?++???? ()()()2 2 42222272486322432632k k k k k k ∴+=+?+=+ ( )2224632k k k ∴=+?= 当k = 时,):1l y x =- ,3,2 2P ?- ?? 当k = ):1l y x =- ,3,22P ? ?? 当斜率不存在时,可知:1l x = ,1, ,1,33A B ??? - ???? ?,则()2,0P 不在椭圆上

高中数学讲义微专题80 排列组合中的常见模型

微专题80 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只 需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。 3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步: 确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有 213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

高中数学 推理与证明 板块三 数学归纳法完整讲义(学生版).doc

学而思高中完整讲义:统计.板块一.随机抽样.学生版 题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明1111111 12()234 124 2n n n n -+-+ +=+++ -++时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题 为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “* ),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--= ++++N n a a a a a a n n ,在验证n=1时,左边计算所得的式子是( ) A. 1 B.a +1 C.2 1a a ++ D. 4 2 1a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+????N n n ,从“k 到k+1”左端需乘的代数式是( ) 典例分析

高中数学讲义微专题98 含新信息问题的求解

微专题98 含新信息问题的求解 一、基础知识: 所谓“新信息背景问题”,是指题目中会介绍一个“课本外的知识”,并说明它的规则,然后按照这个规则去解决问题。它主要考察学生接受并运用新信息解决问题的能力。这类问题有时提供的信息比较抽象,并且能否读懂并应用“新信息”是解决此类问题的关键。在本文中主要介绍处理此类问题的方法与技巧 1、读取“新信息”的步骤 (1)若题目中含有变量,则要先确定变量的取值范围 (2)确定新信息所涉及的知识背景,寻找与所学知识的联系 (3)注意信息中的细节描述,如果是新的运算要注意确定该运算是否满足交换律 (4)把对“新信息”的理解应用到具体问题中,进行套用与分析。 2、理解“新信息”的技巧与方法 (1)可通过“举例子”的方式,将抽象的定义转化为具体的简单的应用,从而加深对新信息的理解 (2)可用自己的语言转述“新信息”所表达的内容,如果能够清晰描述,那么说明对此信息理解的较为透彻。 (3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律 (4)如果“新信息”是书本知识上某个概念的推广,则要关注此信息与原概念的不同之处,以及在什么情况下可以使用原概念。 二、典型例题 例1:设,P Q 是两个集合,定义集合{}|P Q x x P x Q -=∈?且,如果{}2|log 1P x x =<,{}|21Q x x =-<,则P Q -等于( ) A. {}|01x x << B. {}|01x x <≤ C. {}|12x x ≤< D. {}|23x x ≤< 思路:依{}|P Q x x P x Q -=∈?且可知该集合为在P 中且不属于Q 中的元素组成,或者可以理解为P 集合去掉P Q 的元素后剩下的集合。先解出,P Q 中的不等式。:P 2log 102x x

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高中数学讲义微专题40 利用函数性质与图像解不等式

微专题40利用函数性质与图像解不等式 高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算。相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大。本章节以一些典型例题来说明处理这类问题的常规思路。 一、基础知识: (一)构造函数解不等式 1、函数单调性的作用:()f x 在[],a b 单调递增,则 []()()121212,,,x x a b x x f x f x ?∈ (单调性与零点配合可确定零点左右点的函数值的符号) 3、导数运算法则: (1)()()() ()()()()' ' 'f x g x f x g x f x g x =+ (2)()()()()()()()' ''2 f x f x g x f x g x g x g x ??-= ??? 4、构造函数解不等式的技巧: (1)此类问题往往条件比较零散,不易寻找入手点。所以处理这类问题要将条件与结论结合着分析。在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。两者对接通常可以确定入手点 (2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。在构造时多进行试验与项的调整 (3)此类问题处理的核心要素是单调性与零点,对称性与图像只是辅助手段。所以如果能够确定构造函数的单调性,猜出函数的零点。那么问题便易于解决了。 (二)利用函数性质与图像解不等式: 1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系。通常可作草图帮助观察。例如:()f x 的对称轴为1x =,且在()1,+∞但增。则可以作出草图

高中数学完整讲义——复数

题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A.1?? B .2???C.1或2?? D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B. C. D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A.()15,? B .()13,??C.() 15, D.() 13, 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A.12i + ? ?B.12i - ???C .1- ? D.3 【例7】计算:0!1!2!100!i +i +i + +i = (i 表示虚数单位) 2 (1)(1)z x x i =-+-x 1-011-1典例分析 复数

【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ①若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ①z 是虚数的一个充要条件是z z +∈R ; ①若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ①z ∈R 的一个充要条件是z z =. ①1z =的充要条件是1 z z =. A .1 B.2? C .3? D.4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限? B.第二象限 ?C.第三象限 D.第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限? B .第二象限 C.第三象限?? D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 ? B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin2cos2z i =+对应的点位于( ) A .第一象限?? B.第二象限?? C.第三象限? ?D .第四象限

高中数学完整讲义——复数

高中数学讲义 题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B . C . D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A .()15, B .()13, C .(1 D .(1 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A .12i + B .12i - C .1- D .3 【例7】计算:0!1!2! 100!i +i +i + +i = (i 表示虚数单位) 2(1)(1)z x x i =-+-x 1-011-1典例分析 复数

高中数学讲义 【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B .z 的对应点Z 在第四象限 C .z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ③z 是虚数的一个充要条件是z z +∈R ; ④若a b , 是两个相等的实数,则()()i a b a b -++是纯虚数; ⑤z ∈R 的一个充要条件是z z =. ⑥1z =的充要条件是1 z z =. A .1 B .2 C .3 D .4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin 2cos 2z i =+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

高二数学函数的极值

高二数学函数的极值 1.32课题:函数的极值(1) 教学目的: 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程: 一、复习引入: 1. 常见函数的导数公式:

;;;;;;; 2.法则1 法则2 ,法则33.复合函数的导数: (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内0,那么函数 y=f(x) 在为这个区间内的减函数 5.用导数求函数单调区间的步骤:①求函数f(x)的导数 f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间 二、讲解新课: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数 f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对 x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数 f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: ()极值是一个局部概念由定义,极值只是某个点的函数值 与它附近点的函数值比较是最大或最小并不意味着它在函数

高中数学讲义微专题55 数列中的不等关系

第55炼 数列中的不等关系 一、基础知识: 1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点 2、如何判断数列的单调性: (1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性。由于n N * ∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N * ∈得到数列的单调性 (2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) 3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的 {}{},n n a b 是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识 来进行处理。比如:含n 的表达式就可以看作是一个数列的通项公式;某数列的前n 项和n S 也可看做数列{}12:,,,n n S S S S L 等等。 4、对于某数列的前n 项和{}12:,,,n n S S S S L ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定。进而把问题转化成为判断n a 的符号问题 二、典型例题 例1:已知数列{}1,1n a a =,前n 项和n S 满足()130n n nS n S +-+= (1)求{}n a 的通项公式 (2)设2n n n n c a λ?? =- ??? ,若数列{}n c 是单调递减数列,求实数λ的取值范围 解:(1)()113 30n n n n S n nS n S S n +++-+=? =

(完整版)上海高中数学-复数讲义

复数 一、知识点梳理: 1、 i 的周期性: 4 4n+1 4n+2 4n+3 4n i =1 ,所以, i =i, i =-1, i =-i, i =1 n Z 4n 4n 1 4n 2 4n 3 i i i i C a bi |a,b R 叫做复数集。 N Z Q R C. 3、复数相等: a bi c di a c 且b=d ; a bi 0 a 0且b=0 实数 (b=0) 4、复数的分类: 复数 Z a bi 一般虚数 (b 0,a 0) 虚数 (b 0) 纯虚数 (b 0,a 0) 虚数不能比较大小,只有等与不等。即使是 3 i,6 2i 也没有大小。 uur uur 5、复数的模:若向量 OZ 表示复数 z ,则称 OZ 的模 r 为复数 z 的模, z |a bi| a 2 b 2 ; 8、复数代数形式的加减运算 复数 z 1与 z 2的和: z 1+z 2=( a +bi )+( c +di )=( a +c )+( b +d )i . a, b, c, d R 复数 z 1与 z 2的差: z 1- z 2=( a +bi )-( c +di )=( a - c )+( b -d )i . a, b, c, d R 复数的加法运算满足交换律和结合律 数加法的几何意义: 复数 z 1=a +bi ,z 2=c +di a, b,c, d R ;OZ = OZ 1 +OZ 2 =( a ,b )+( c , d )=( a +c ,b +d ) =( a +c )+( b +d )i uurur uuuur uuuur 复数减法的几何意义:复数 z 1- z 2的差( a - c )+( b -d )i 对应 由于 Z 2Z 1 OZ 1 OZ 2 ,两个 复数的差 z -z 1 与连接这两个向量终点并指向被减数的向量对应 . 9. 特别地, z u A u B ur z B - z A. , z u A u B ur AB z B z A 为两点间的距离。 |z z 1 | |z z 2 |z 对应的点的轨迹是线段 Z 1Z 2的垂直平分线; |z z 0| r , z 对应 的点的 2 、复数的代数形式: a bi a,b R , a 叫实部, b 叫虚部,实部和虚部都是实数。 积或商的模可利用模的性质( 1) z 1 L z n z 1 z 2 L z n ,(2) z 1 z 1 z 2 z 2 z 2 6、复数的几何意义: 复数 z a bi a,b R 一一对应 复平面内的点 Z(a,b) 一一对应 uur 复数 Z a bi a,b R 平面向量 OZ , 7、复平面: 这个建立了直角坐标系来表示复数的坐标平面叫其中 x 轴叫做实轴, y 轴叫做虚轴 ,实轴上的点都表示实数; 除了原点外, 虚轴上的点都表示纯虚数

高考数学讲义微专题14函数的切线问题(含详细解析)

微专题14 函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

高中数学完整讲义——概率-随机事件的概率1.事件及样本空间

版块一:事件及样本空间 1.必然现象与随机现象 必然现象是在一定条件下必然发生某种结果的现象; 随机现象是在相同条件下,很难预料哪一种结果会出现的现象. 2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果. 一次试验是指事件的条件实现一次. 在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件; 在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C L ,,,来表示随机事件,简称为事件. 3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果. 所有基本事件构成的集合称为基本事件空间,常用Ω表示. 版块二:随机事件的概率计算 1.如果事件A B ,同时发生,我们记作A B I ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义 一般地,在n 次重复进行的试验中,事件A 发生的频率 m n ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A . 从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并 互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B , 都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =U . 若C A B =U ,则若C 发生,则A 、B 中至少有一个发生,事件A B U 是由事件A 或B 所包含的基本事 知识内容 板块一.事件及样本空间

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

【2020高考资料夹】高中数学完整讲义:集合.板块三.集合的运算.学生版

1 题型一 集合的基本运算 【例1】若{}|1,I x x x =-∈Z ≥,则I N e= . 【例2】已知全集{(,)|R ,R}I x y x y =∈∈,{(1,1)}P =,表示I P e. 典例分析 板块三.集合的运算

2 【例3】若集合{1,1}A =-,{|1}B x mx ==,且A B A =U ,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或0 【例4】若{}{}{},,|,A a b B x x A M A ==?=,求B M e. 【例5】已知2{|43,}A y y x x x ==-+∈R ,2{|22,}B y y x x x ==--+∈R ,则A B I 等于 ( ) A .? B .{1,3}- C .R D .[1,3]-

3 【例6】若{}{}21,4,,1,A x B x ==且A B B =I ,则x = . 【例7】若集合{}{} 22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有( ) A .M N M =U B .M N N =U C .M N M =I D .M N =?I 【例8】已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-I ,求实数a 的 值.

4 【例9】设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B U I . 【例10】设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .? D .{}1,0,1- 【例11】已知全集是R ,{|37},{|210}A x x B x x =<=<<≤,求R ()A B U e,R ()A B I e

高中数学函数的极值典型例题

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

高一数学基础知识讲义全套

第一讲 集合 知识要点一: 集合的有关概念 ⑴某些指定的对象集在一起就成为一个集合,这些研究对象叫做元素。 ⑵集合中元素的特性:?? ? ??的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素 注意:这三条性质对于研究集合有着很重要的意义, 经常会渗透到集合的各种题目中,同学们应当重视。 ⑶元素与集合的关系:①如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈ ②如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ? (注意:属于或不属于(?∈,)一定是用在表示元素与集合间的关系上) ⑷集合的分类:集合的种类通常分为:有限集(集合含有有限个元素)、无限集(集合含有无限个元素)、空集(不含任何元素的集合,用记号?表示) ⑸集合的表示: ①集合的表示方法: 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。例:{ }2,1=A 描述法:在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。例:{} 4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。 图示法(即维恩图法):用平面内一条封闭曲线的内部表示一个集合。 ②特定集合的表示:自然数集(非负整数集)记作N ;正整数集记作()+N N * ;整数集记 作Z ;有理数集记作Q ;实数集记作R 。(这些特定集合外面不用加{}) 高考要求:理解集合的概念,了解属于关系的意义,掌握相关的术语符号,会表示一些 简单集合。 例题讲解: 夯实基础 一、判断下列语句是否正确

高中数学讲义微专题21 多元不等式的证明

微专题21 多元不等式的证明 多元不等式的证明是导数综合题的一个难点,其困难之处如何构造合适的一元函数,本章节以一些习题为例介绍常用的处理方法。 一、基础知识 1、在处理多元不等式时起码要做好以下准备工作: (1)利用条件粗略确定变量的取值范围 (2)处理好相关函数的分析(单调性,奇偶性等),以备使用 2、若多元不等式是一个轮换对称式(轮换对称式:一个n 元代数式,如果交换任意两个字母的位置后,代数式不变,则称这个代数式为轮换对称式),则可对变量进行定序 3、证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法。 二、典型例题: 例1:已知()()2 ln ,()f x x g x f x ax bx ==++,其中()g x 图像在()() 1,g 1处的切线平行于 x 轴 (1)确定a 与b 的关系 (2)设斜率为k 的直线与()f x 的图像交于()()()112212,,,A x y B x y x x <,求证: 21 11k x x << 解:(1)()2 ln g x x ax bx =++ ()' 1 2g x ax b x ∴= ++,依题意可得: ()()'112021g a b b a =++=?=-+ (2)思路:21212121ln ln y y x x k x x x x --= =--,所证不等式为 212211 1ln ln 1 x x x x x x -<<- 即 21221211ln x x x x x x x x --<<,进而可将21 x x 视为一个整体进行换元,从而转变为证明一元不等式

高中数学竞赛讲义(全套)

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。 4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不

高中数学讲义微专题17 函数的极值

微专题17 函数的极值 一、基础知识: 1、函数极值的概念: (1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点 (2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点 极大值与极小值统称为极值 2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小 (2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 (3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 3、极值点的作用: (1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点

4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点?()0'0f x = 说明:①前提条件:()f x 在0x x =处可导 ②单向箭头:在可导的前提下,极值点?导数0=,但是导数0=不能推出0x x =为 ()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点 ③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()' 0f x =求出()'f x 的零点(此时求出的点有可能是极值点) (2)精选:判断函数通过()' f x 的零点时,其单调性是否发生变化,若发生变化,则该点为 极值点,否则不是极值点 (3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点 6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。 7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。但要注意检验零点能否成为极值点。 8、极值点与函数奇偶性的联系: (1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点 (2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 二、典型例题: 例1:求函数()x f x xe -=的极值. 解:()()' 1x x x f x e xe x e ---=-=- 令()'0f x >解得:1x < ()f x ∴的单调区间为:

相关文档
最新文档