平面向量的概念。知识梳理

平面向量的概念。知识梳理
平面向量的概念。知识梳理

平面向量的概念、线性运算及坐标运算

编稿:李霞 审稿:孙永钊

【考纲要求】

1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示.

2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义.

3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件.

【知识网络】

【考点梳理】

【高清课堂:平面向量的概念与线性运算401193知识要点】 考点一、向量的概念

1.向量:既有大小又有方向的量.通常用有向线段AB 表示,其中A 为起点,B 为终点. 向量AB 的长度|AB |又称为向量的模;

长度为0的向量叫做零向量,长度为1的向量叫做单位向量.

2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行. 平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量. 3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等.

4. 与a 长度相等,方向相反的向量叫做a 的相反向量,规定零向量的相反向量是零向量. 要点诠释:

平面向量

平面向量的概念

平面向量的坐标表示

平面向量的基本定理

平面向量的线性运算

①有向线段的起、终点决定向量的方向,AB 与BA 表示不同方向的向量; ②有向线段的长度决定向量的大小,用|AB |表示,|AB ||BA |=.

③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关. 考点二、向量的加法、减法 1.向量加法的平行四边形法则 平行四边形ABCD 中(如图),

向量AD 与AB 的和为AC ,记作:AD AB AC +=.(起点相同) 2.向量加法的三角形法则

根据向量相等的定义有:AB DC =,即在ΔADC 中,AD DC AC +=. 首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点. 规定:零向量与向量AB 的和等于AB . 3. 向量的减法

向量AB 与向量BA 叫做相反向量.记作:AB BA =-. 则AB CD AB DC -=+. 要点诠释:

①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用.

②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”. 要点三、实数与向量的积 1.定义:

一般地,实数λ与向量a 的积是一个向量,记作λa ,它的长与方向规定如下: (1)||||||λ=λ?a a ;

(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,0λ=a ;

2.运算律

设λ,μ为实数,则 (1)()()λμ=λμa a ; (2)()λ+μ=λ+μa a a ;

(3)()λ+=λ+λa b a b 3.向量共线的充要条件

已知向量a 、b 是两个非零共线向量,即//a b ,则a 与b 的方向相同或相反. 向量(0)≠a a 与b 共线,当且仅当有唯一一个实数λ,使=λb a . 要点诠释:

①向量数乘的特殊情况:当0λ=时,0λ=a ;当0=a 时,也有0λ=a ;实数和向量可以求积,但是不能求和、求差.

②平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基地的向量是不共线的向量. 考点四、平面向量的坐标运算 1.平面向量的坐标表示

选取直角坐标系的x 轴、y 轴上的单位向量i ,j 为基底,由平面向量基本定理,该平面内任一向量a 表示成x y =+a i j 的形式,由于a 与数对(x,y )是一一对应的,因此把(x,y )叫做向量a 的坐标表示. 2.平面向量的坐标运算

已知11(x ,y )=a ,22(x ,y )=b ,则 (1)1212(x x ,y y )±=±±a b (2)11(x ,y )λ=λλa 3.平行向量的坐标表示

已知11(x ,y )=a ,22(x ,y )=b ,则1221//x y x y 0?-=a b (0→

≠b ) 要点诠释:

①若11(x ,y )=a ,22(x ,y )=b ,则//a b 的充要条件不能表示成

11

22

x y x y =,因为22x ,y 有可能等于0,所以应表示为1221x y x y 0-=;同时//a b 的充要条件也不能错记为1122x y x y 0-=,

1212x x y y 0-=等.

②若11(x ,y )=a ,22(x ,y )=b ,则//a b 的充要条件是=λb a ,这与1221x y x y 0-=在本质上是没有差异的,只是形式上不同. 【典型例题】

类型一、平面向量的相关概念

例1. 下列说法中正确的是

① 非零向量a 与非零向量b 共线,向量b 与非零向量c 共线,则向量a 与向量c 共线; ② 任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点; ③ 向量a 与b 不共线,则a 与b 所在直线的夹角为锐角; ④ 零向量模为0,没有方向;

⑤ 始点相同的两个非零向量不平行; ⑥ 两个向量相等,它们的长度就相等;

⑦ 若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。 【答案】①⑥ 【解析】

① 向量共线即方向相同或相反,故非零向量间的共线关系是可以传递的; ②相等向量是共线的,故四点可能在同一直线上;

③ 向量不共线,仅指其所在直线不平行或不重合,夹角可能是直角或锐角; ④零向量不是没有方向, 它的方向是任意的; ⑤ 向量是否共线与始点位置无关;

⑥ 两个向量相等,它们的长度相等,方向相同;

⑦共线向量即平行向量,非零向量AB 与CD 是共线向量,可能A 、B 、C 、D 四点共线,也可能AB 、CD 平行。

【总结升华】

从向量的定义可以看出,向量既有代数特征又有几何特征,因此借助于向量可将代数问题与几何问题相互转化。零向量是一特殊向量,它似乎很不起眼,但又处处存在。因此,正确理解和处理零向量与非零向量之间的关系值得我们重视。对于平行向量或共线向量,它们可以在同一直线上,也可以所在直线互相平行,方向可以相同也可以相反;相等向量则必须大小相等、方向相同。

举一反三:

【变式1】判断下列各命题是否正确,并说明理由:

(1) 若|a |=|b |,则a =b ; (2) 单位向量都相等;

(3) 两相等向量若起点相同,则终点也相同; (4) 若a =b ,c =b ,则a =c ;

(5) 若|a |>|b |,则a >b ;

(6) 由于零向量方向不确定,故它不能与任意向量平行. 【答案】

(1) 错;模相等,方向未必相同; (2) 错;模相等,方向未必相同;

(3) 正确;因两向量的模相等,方向相同,故当他们的起点相同时,则终点必重合; (4) 正确;由定义知是对的; (5) 错;向量不能比较大小;

(6) 错;规定:零向量与任意向量平行. 【变式2】在复平面中,已知点A (2,1),B (0,2),C (-2,1),O (0,0). 给出下面的结论:

①直线OC 与直线BA 平行;②AB BC CA +=;③OA OC OB +=;④2AC OB OA =-. 其中正确结论的个数是( )

A .1

B .2

C .3

D .4

【答案】C

【解析】1122OC k =

=--,211022

BA k -==--,∴OC ∥AB ,①正确; ∵AB BC AC +=,∴②错误; ∵(0,2)OA OC OB +==,∴③正确;

∵2(4,0)OB OA -=-,(4,0)AC =-,∴④正确. 故选C. 类型二、平面向量的加减及其线性运算

例2. 如图,已知梯形ABCD 中,AB//CD ,且AB 2CD =,M 、N 分别是CD 、AB 的中点,设AD =a ,AB =b ,试以a 、b 为基底表示DC 、BC 、MN .

【解析】连结ND ,则

11

22AB =

=DC b ; ∵11

AB NB 22

===DC b

∴DC//NB ,DC NB = ∴1

ND AD 2

==-=-BC AN a b ; 又11DC 24

=

=DM b ∴1

DN CB DM 4

=-=-=

-MN DM b a . 【总结升华】①本题实质上是平面向量基本定理的应用,由于AD ,AB 是两个不共线的向量,那么平面内的所有向量都可以用它们表示出来.

②本题的关键是充分利用几何图形中的线段的相等、平行关系,结合平行向量、相等向量的概念,向量的线性运算,变形求解.

举一反三:

【变式1】在△ABC 中,已知D 是AB 边上一点,若2AD DB =,1

3

CD CA CB λ=+,

则λ=________.【答案】

23

【解析】由图知CD CA AD =+ ①

CD CB BD =+, ②

且20AD BD +=。

①+②×2得:32CD CA CB =+,∴1233CD CA CB =

+,∴23

λ=.

【变式2】△ABC 中,点D 在AB 上,CD 平分ACB ∠,若CB =a ,CA =b ,1=a ,2=b ,则CD =( )

A. 123

3+

a b B. 2133+a b C. 3455+a b D. 4355

+a b 【答案】B

【变式3】如图,E 为平行四边形ABCD 边AD 上一点,且1

4

AE AD =

,设AB =a ,BC =b ,若1

5

AF AC =

,BF k BE =,求k 的值.

【解析】

11

()55

AF AC =

=+a b ① 又1

()()4BF k BE k AE AB k ==-=b -a

而BF AF =-a ,∴(1)4

k

AF k =-a +b ②

由①②解得4

5

k =.

【变式4】若O E F ,,是不共线的任意三点,则以下各式中成立的是( )

A .EF OF OE =+

B .EF OF OE =-

C .EF OF OE =-+

D .EF OF O

E =--

【答案】B

【变式5】已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD =

B.2AO OD =

C.3AO OD =

D.2AO OD =

【答案】A

【解析】因为D 为BC 边中点,所以由平行四边形法则可知:2OB OC OD +=,

又2OB OC OA +=-,所以OD OA AO =-=. 例3.设两个非零向量a ,b 不共线,

(1)若,2,3().===AB a +b BC a +8b CD a -b 求证:A ,B ,D 三点共线. (2)试确定实数k ,使k a +b 和k a +b 共线. 【解析】(1)证明:

,2,3(),===AB a +b BC a +8b CD a -b

23()5()5∴=+=+==BD BC CD a +8b a -b a +b AB ;

,∴AB BD 共线,

它们有公共点B ,∴A ,B ,D 三点共线.

(2)

k a +b 和k a +b 共线,∴存在实数λ,使()k k λ=a +b a +b ,

即()(1)k k λλ-=-a b ,

a ,

b 是不共线的两个非零向量, 210,10.k k k λλ∴-=-=∴-=

1k ∴=±.

【总结升华】

①证明三点共线问题,可以用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.

②向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数与方程思想的运用.

举一反三:

【变式1】已知平面内有一点P 及一个△ABC ,若PA PB PC AB ++=,则( ) A .点P 在△ABC 外部 B .点P 在线段AB 上 C .点P 在线段BC 上 D .点P 在线段AC 上 【答案】D

【解析】∵PA PB PC AB ++=,∴0PA PB PC AB ++-=,即0PA PB BA PC +++=,

∴0PA PA PC ++=,2PA CP =,∴点P 在线段AC 上.

【变式2】若a 、b 是两个不共线的向量,AB 2k =a +b ,BC =+a b ,2CD =-a b ,已知A 、C 、D 三点共线,求实数k 的值.

【答案】7k =-

【解析】(2)()AC AB BC k =+=+a +b a +b 3(1)k =+a +b ,2CD =-a b ,

A,C,D 三点共线,,AC CD ∴共线, 令AC CD λ=,λ不为零,

∴3(1)(2)k λ+=-a +b a b 2λλ=-a b ,

∴3,12.k λλ=??+=-?

∴7k =-

【变式3】已知向量a 、b 不共线,(),k k =∈=c a +b R d a -b ,如果c ∥d ,那么( )

A .k=1且c 与d 同向

B .k=1且c 与d 反向

C .k=―1且c 与d 同向

D .k=―1且c 与d 反向 【答案】D

【解析】∵c ∥d 且a 、b 不共线,∴存在唯一实数λ使c =λd ,

∴()k λ=a +b a -b ∴1k λλ=??=-?,∴1

1k λ=-??=-?

,故选D.

【高清课堂:平面向量的概念与线性运算401193例2】

【变式4】已知向量,a b ,且2,56,72,AB a b BC a b CD a b =+=-+=-则一定共线的( ) (A ) A、B 、D (B ) A 、B 、C

(C ) B 、C 、D (D )A 、C 、D 【答案】A

类型三、平面向量的基本定理、坐标表示及综合应用

例4、(Ⅰ)(2016 全国I 高考)设向量a →

=(x ,x +1),b →

=(1,2),且 a b →→

⊥,则x = . (Ⅱ)(2016 全国II 高考)已知向量a →

=(m ,4),b →

=(3,-2),且a →

∥b →

,则m =___________. 【答案】(Ⅰ)23

-

(Ⅱ)-6

【解析】(Ⅰ)a →

=(x ,x +1),b →

=(1,2), 因为a b →→

⊥,所以x +(x +1)2=0, 即3x +2=0,解得x =23

-

.

(Ⅱ)因为a →

∥b →

,则-2m =12,解得m =-6.

【总结升华】考查向量的坐标运算及平行垂直的坐标表示是考试命题的主要方式之一,准备掌握公式,灵活运用.

举一反三:

【变式1】(2015春 拉萨期末)已知向量()1,2a =,()1,4b =-

(1)若()()23ka b a b +-,求k 的值.

(2)若()()23ka b a b +⊥-,求k 的值.

【解析】(1)

()1,2a =,()1,4b =-

()2k 2,28ka b k +=-+,()34,10a b -=-

()()23ka b a b +-

()()1024280k k ∴---+=

解得:26k =

(2)当()()

23ka b a b +⊥-时,

()()4210280k k --+=解得112

k =-

【变式2】设向量a=(1,2),b=(2,3)。若向量a b λ+与向量c=(―4,―7)共线,则λ=________. 【答案】2

【解析】(2,23)a b λλλ+=++, ∵()//a b c λ+,∴7(2)4(23)2λλλ-+=-+?=. 故填2. 【变式3】如图,在△ABC 中,AD ⊥AB ,3BC BD =,||1AD =,

则AC AD ?=________.

【答案】3

【解析】 建系如图所示: 令B (x B ,0),C (x C ,y C ),D (0,1),

∴(,)C B C BC x x y =-,(,1)B BD x =-,3BC BD =,

∴3()3C B B C x x x y ?-=-??=??,∴(13)3

C B C x x y ?=-??=??, ((13),3)B AC x =-,(0,1)A

D =,则3AC AD ?=.

【变式4】若平面向量a 、b 满足1+=a b ,+a b 平行于x 轴,(2,1)=b ,则a =________. 【答案】(―1,1)或(―3,1)

【解析】设a =(x ,y ),则+a b =(x+2,y ―1),

由题意得221(2)(1)1110y x y x y =?++-=????=--=??

或1

3y x =??=-?.

∴a =(―1,1)或(―3,1).

【高清课堂:平面向量的概念与线性运算401193例3】

【变式5】若直线02=+-c y x 按向量)1,1(-=a 平移后与圆52

2=+y x 相切,则c 的值为( ) A .8或-2 B .6或-4 C .4或-6 D .2或-8

【答案】A

例5.A ,B ,C 是不共线三点,点O 是A ,B ,C 确定平面内一点,若222

||||||OA OB OC ++取最小

值时,O 是△ABC 的( )

A .重心

B .垂心

C .内心

D .外心 【答案】A

【解析】设O (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)

则222

||||||S OA OB OC =++

222222

112233()()()()()()x x y y x x y y x x y y =-+-+-+-+-+-

222212312332()x x x x x x x x =-+++++2222

12312332()y y y y y y y y +-+++++

22

1231233()3()33

x x x y y y x y k ++++=-

+-+ 则当1233x x x x ++=且123

3

y y y y ++=时,min S k =,故选A.

【总结升华】关注三角形的“心”,包括三角形的重心、垂心、外心、内心和旁心.

举一反三:

【变式1】在ABC ?中,点O 满足OA AB OA AC ?=?,则点O 在ABC ?的( )上 A.角平分线 B. 中线 C.中垂线 D. 高 【答案】D ;

【解析】∵OA AB OA AC ?=?,∴0OA AB OA AC ?-?=,

即()0OA AB AC ?-=,∴0OA CB ?=, ∴OA CB ⊥,所以点O 在ABC ?的高上.

【变式2】平面△ABC 及一点O 满足AO AB BO BA ?=?,BO BC CO CB ?=?,则点O 是△ABC 的( )

A .重心

B .垂心

C .内心

D .外心

【答案】选D.

【解析】由AO AB BO BA ?=?得()0AB AO BO ?+=

∴()()0OB OA OB OA -+= 即22

||||OB OA =

∴||||OB OA =,

同理||||OB OC =,故选D.

【变式3】平面内ABC ?及一点O 满足

||||AO AB AO AC AB AC ??=,||||

CO CA CO CB

CA CB ??=

,则点O 是ABC ?的( )

(A )重心 (B )垂心 (C )内心 (D )外心 【答案】C

【解析】对于

||||AO AB AO AC

AB AC ??=

的理解,其中AB AB e AB

=,即为AB 方向上的单位向量.

【变式4】在ABC ?中,点O 满足0OA OB OC ++=,则点O 在ABC ?的( )上 A.角平分线 B. 中线 C.中垂线 D. 高 【答案】B ;

【解析】如图,以OB 、OC 为邻边作平行四边形BDCO ,

则OB OC OD OA +==-,

则点A 、O 、D 三点共线,而且在平行四边形BDCO 中,点E 为BC 的中点, 所以AE 为ABC ?的中线

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

第一节平面向量的概念及运算性质

第一节平面向量的概念及其线性运算 [知识能否忆起] 一、向量的有关概念 1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模. 2.零向量:长度等于0的向量,其方向是任意的. 3.单位向量:长度等于1个单位的向量. 4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. 5.相等向量:长度相等且方向相同的向量. 6.相反向量:长度相等且方向相反的向量. 二、向量的线性运算 平行四边形法则 1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=|λ||a|; ②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0. 2.运算律:设λ,μ是两个实数,则: ①λ(μa)=(λμ)a;②(λ+μ)a=λ a+μ a;③λ(a+b)=λa+λb. 四、共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.

[小题能否全取] 1.下列命题正确的是( ) A .不平行的向量一定不相等 B .平面内的单位向量有且仅有一个 C .a 与b 是共线向量,b 与c 是平行向量,则a 与c 是方向相同的向量 D .若a 与b 平行,则b 与a 方向相同或相反 解析:选A 对于B ,单位向量不是仅有一个,故B 错;对于C ,a 与c 的方向也可能相反,故C 错;对于D ,若b =0,则b 的方向是任意的,故D 错,综上可知选A. 2.如右图所示,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 2 解析:选C 由题图可得a -b =BA =e 1-3e 2. 3.(教材习题改编)设a ,b 为不共线向量,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,则下列关系式中正确的是( ) A .AD =BC B .AD =2B C C .A D =-BC D .AD =-2BC 解析:选B AD =AB +BC +CD =a +2b +(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b )=2BC . 4.若菱形ABCD 的边长为2,则|AB -CB +CD |=________. 解析:|AB -CB +CD |=|AB +BC +CD |=|AD |=2. 答案:2 5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )], 所以????? λ=-k , 1=3k ,解得??? k =1 3 ,λ=-13. 答案:-1 3 共线向量定理应用时的注意点 (1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两 向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

(整理)5平面向量基础知识.

平面向量基础知识 第一课时:向量的概念 向量的定义(两要素) 向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性 向量是矢量的抽象、数量是标量的抽象 向量的表示 几何表示 (几何中用点表示位置、用射线表示方向 起点到终点) 用有向线段表示向量使向量具有几何直观性 有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变) 向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关 符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”) 用符号表示向量使向量具有代数的属性 坐标表示 用坐标表示向量使向量具有算术的属性 向量的模及其表示 写法与读法 (“外套”) 模特殊的向量 零向量 定义、表示0、方向 单位向量 定义 方向的惟一性 与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k 位置特殊的向量 位置向量 起点为坐标原点的向量 方向关系特殊的向量与表示 平行向量(共线向量 “平行向量”与“共线向量”是等意词) 垂直向量 相等向量 平移变换用之 相反向量 反向变换用之 零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量 判断: 1、若两向量相等,则它们的起点与终点相同 2、AB BA =- 3、若a ∥b ,b ∥c ,则a ∥c 4、若AB CD =,则AB CD 5、若a 与b 不共线,则a ≠0,b ≠0 6、若AB ∥CD ,则A 、B 、C 、D 四点共线 7、若AB ∥AC ,则A 、B 、C 三点共线 8、若AB=CD ,则AB CD = ∥ =

9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套) 两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样) 向量的类型:自由向量、滑动向量、固定向量 第二课时:向量的加法 向量加法的定义 向量加法处理方法:三角形法则、平行四边形法则 (当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的) 向量加法的特征:尾首相接,首尾相连(与接点的位置无关) 向量的和拆分 封闭折线的和向量 △ABC 中,G 是重心?GA +GB +GC =0 求和向量时需要把向量具体化、几何化 向量加法的运算律:交换律、结合律 向量加法的性质 1、两个向量的和为一个向量 2、若两个向量平行,则它们的和向量与它们也平行 3、若两个向量不平行,则它们的和向量与它们也不平行 4、||a |-|b ||≤|a +b |≤|a |+|b |, 当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立. 第三课时:向量的减法 向量减法的定义 向量减法是向量加法的逆运算 向量减法处理方法:三角形法则、平行四边形法则 向量减法的特征:首首相聚,被减被指(与起点的位置无关) 向量的差拆分 向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量 求差向量时需要把向量具体化、几何化 向量减法的性质 1、两个向量的差为一个向量 2、若两个向量平行,则它们的差向量与它们也平行 3、若两个向量不平行,则它们的差向量与它们也不平行 4、||a |-|b ||≤|a -b |≤|a |+|b |, 当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: ) AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 ) (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量的基本概念

平面向量得实际背景及基本概念 1、向量得概念:我们把既有大小又有方向得量叫向量。 2、数量得概念:只有大小没有方向得量叫做数量。 数量与向量得区别: 数量只有大小,就就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 3.有向线段:带有方向得线段叫做有向线段。 4.有向线段得三要素:起点,大小,方向 5、有向线段与向量得区别; (1)相同点:都有大小与方向 (2)不同点:①有向线段有起点,方向与长度,只要起点不同就就就是不同得有向线段 比如:上面两个有向线段就就是不同得有向线段。 ②向量只有大小与方向,并且就就是可以平移得,比如:在①中得两个有向线 段表示相同(等)得向量。 ③向量就就是用有向线段来表示得,可以认为向量就就是由多个有向线段连接而成 6、向量得表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段得起点与终点字母:; 7、向量得模:向量得大小(长度)称为向量得模,记作||、 8、零向量、单位向量概念: 长度为零得向量称为零向量,记为:0。长度为1得向量称为单位向量。 9、平行向量定义: ①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、即:0 ∥a 。 说明:(1)综合①、②才就就是平行向量得完整定义; (2)向量a、b、c 平行,记作a∥b ∥c 、 10、相等向量 长度相等且方向相同得向量叫相等向量、 说明:(1)向量a与b相等,记作a =b ;(2)零向量与零向量相等; (3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有.. A(起点) B (终点) a

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

平面向量基础知识点总结 (1)

平面向量知识点总结 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB u u u r (几何表示法); ②用字母a r 、b r 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r 作为基底。任作一个向量a ,由平 面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r ,),(y x 叫做向量a 的(直 角)坐标,记作(,)a x y r ,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i r (1,0) ,j r (0,1) ,0(0,0) r 。a r ),(11y x A ,),(22y x B , 则 1212,y y x x ,AB 3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.| |a 就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .共线向量与平行向量 关系:平行向量就是共线向量. 性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a b u r r u r r r r 0,与同向方向---0,与反向长度--- 1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r ) 5.相等向量和垂直向量: ①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2 性质:0a b a b r u r r r g

平面向量的概念。知识梳理

平面向量的概念、线性运算及坐标运算 编稿:李霞 审稿:孙永钊 【考纲要求】 1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示. 2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义. 3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件. 【知识网络】 【考点梳理】 【高清课堂:平面向量的概念与线性运算401193知识要点】 考点一、向量的概念 1.向量:既有大小又有方向的量.通常用有向线段AB 表示,其中A 为起点,B 为终点. 向量AB 的长度|AB |又称为向量的模; 长度为0的向量叫做零向量,长度为1的向量叫做单位向量. 2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行. 平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量. 3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等. 4. 与a 长度相等,方向相反的向量叫做a 的相反向量,规定零向量的相反向量是零向量. 要点诠释: 平面向量 平面向量的概念 平面向量的坐标表示 平面向量的基本定理 平面向量的线性运算

①有向线段的起、终点决定向量的方向,AB 与BA 表示不同方向的向量; ②有向线段的长度决定向量的大小,用|AB |表示,|AB ||BA |=. ③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关. 考点二、向量的加法、减法 1.向量加法的平行四边形法则 平行四边形ABCD 中(如图), 向量AD 与AB 的和为AC ,记作:AD AB AC +=.(起点相同) 2.向量加法的三角形法则 根据向量相等的定义有:AB DC =,即在ΔADC 中,AD DC AC +=. 首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点. 规定:零向量与向量AB 的和等于AB . 3. 向量的减法 向量AB 与向量BA 叫做相反向量.记作:AB BA =-. 则AB CD AB DC -=+. 要点诠释: ①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用. ②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”. 要点三、实数与向量的积 1.定义: 一般地,实数λ与向量a 的积是一个向量,记作λa ,它的长与方向规定如下: (1)||||||λ=λ?a a ; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,0λ=a ; 2.运算律 设λ,μ为实数,则 (1)()()λμ=λμa a ; (2)()λ+μ=λ+μa a a ;

平面向量知识点归纳

平面向量 一.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如: 2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向 量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); ④三点A B C 、、共线? AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如 下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若 AB DC = ,则A B C D 是平行四边形。(4)若A B C D 是平行四边形,则AB DC = 。(5)若,a bb c == ,则a c = 。 (6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的 任一向量可表示为(),a xi y j x y =+= ,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。 如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有 一对实数1λ、2λ,使a =1λe 1+2λe 2。如 (1)若(1,1),a b == (1,1),(1,2)c -=- ,则c = ______(答:1322 a b - ); (2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213(2,3),(,)24 e e =-=- (答:B ); (3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b == ,则BC 可用向量,a b 表示为 _____(答:2433 a b + ); (4)已知ABC ?中,点D 在BC 边上,且?→??→ ?=DB CD 2,?→ ??→??→?+=AC s AB r CD ,则s r +的值是___ (答:0) 四.实数与向量的积:实数 λ与向量的积是一个向量,记作λ,它的长度和方向规定如下: ()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反, 当λ=0时,0a λ= ,注意:λ≠0。

平面向量基础练习题

平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 . 平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 .

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

平面向量基础知识点+思维导图练习

思维导图——平面向量

知识点默写——平面向量 1、平面向量: 2、向量的模:,记作 3、(1)零向量:;(2)单位向量: ;(3)相反向量(负向量):; 4、相等向量: ,记作 5、平行向量(共线向量): 6、 向量的加法( ) 向量的减法( ) 7、数乘向量:实数λ与向量a 的积是一个向量,记作 .数乘向量的含义: 8、 (1)||a λ= (2)当0λ>时,a λ 的方向与a 的方向,长度为a 的 倍;当0λ<时, a λ 的方向与a 的方向,长度为a 的倍;当0λ=或0a = 时, a λ= . a b a 2a 12 a a - 2a - 12 a -

9、向量运算满足的运算律(1)加法交换律:;(2)加法结合律: ; (3)数乘向量运算律:()a λμ= ,()a λμ+= , ()a b λ+= , 10、(1)平面向量的坐标表示 在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j ,根据平行四边形法则,对平面上任一向量a ,有且只有一对实数x ,y ,使得a xi y j =+ ,我们把(,)x y 叫做向量a 在平面直角坐标系xOy 中的坐标,记作 . (2)设点11(,)A x y ,点22(,)B x y ,则向量AB 的坐标为 ,记作AB = . (3)向量(,)a x y = ,则向量的模||a = .(3)若原点(0,0)O ,(,)A x y ,则OA = . (4)设向量11(,)a x y = ,向量22(,)b x y = ,则a b += ,a b -= . (5)若11(,)a x y = ,λ为实数,则a λ= . 11、若1122(,),(,)a x y b x y == ,则//a b ? ;若1122(,),(,)a x y b x y == ,则a b ⊥? ; 12、化简:BD AB AC +-= .

相关文档
最新文档