惯性矩基础知识

自动驾驶技术IMU的基础知识和应用场景

自动驾驶技术IMU的基础知识和应用场景 前面我们介绍了MEMS 陀螺仪的一些基本概念,也说明了陀螺仪和加速度计是构成IMU惯性测量单元的主要部件。在查找IMU的过程中,我们经常会看到DOF,自由度的概念,今天我们就从DOF开始进一步理解IMU的基础知识和应用场景。 想象一个笛卡尔坐标系,形下图所示,具有x轴、y轴和z轴,传感器能够测量各轴方向的线性运动,以及围绕各轴的旋转运动。这就是所有惯性测量单元的根本出发点,所有惯性导航系统都是据此而构建。 这些器件带有一个三轴加速度计,显然这是指x轴、y轴和z轴。加速度计会测量线性速度的变化,也会响应重力。加速度计会根据其方向而对重力作出响应,如下图所示,这使得我们能够基于非常简单的三角公式估算其方向。利用arcsin公式,我们可以使用一个轴,而利用arctan公式,我们可以将笛卡尔坐标系中两个彼此正交的轴合并。二者的主要区别在于:arcsin方法能够测量+/- 90度,而arctan方法能够测量+/- 180度,也就是全部360度,这样您将知道您在哪一个象限。 陀螺仪对旋转角速率进行积分,您就能估算角位移。大致上说,加速度计具有很好的长期偏置稳定性和长期精度,但会对线性振动作出响应。当进行角度估计时,线性振动会表现出来,有时候需要滤波,这会给其他方面带来负担,或者有时候振动太高,超出加速度计测量范围,从而完全破坏角度估计。 因此,陀螺仪没有对线性振动的一阶响应,但因为它对输出进行积分,所以任何偏置误差都会转换为角度估计的漂移。任何系统的基本调整空间在于使用此类传感器的根本出发点。加速度计的长期稳定性更好,但易受振动影响。陀螺仪不易受振动影响,但长期稳定性较差,会导致估算更快地漂移。 IMU应用实例之工业检查系统 想象屏幕上方的灰色条是生产车间的天花板。天花板安装了某种摄像或照相设备,该设备

惯性矩的计算方法

I等.I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合 而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形( 图4 — 3) ,其面积为A .选取直角坐标系yoz ,在坐标为(y 、z) 处取一微小面积dA ,定义此微面积dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩I.微面积dA 乘以到坐标轴y 的距离的平方,沿整个截面积分为截面图形对y 轴的惯性矩I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

极惯性矩(4-6) 对y 轴惯性矩(4 -7a ) 同理,对z 轴惯性矩(4-7b) 由图4-3 看到所以有 即(4-8) 式(4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。 在任一截面图形中( 图 4 — 3) ,取微面积dA 与它的坐标z 、y 值的乘积,沿整个截面积分,定义此积分为截面图形对y 、z 轴的惯性积,简称惯积.表达式为 (4-9) 惯性矩、极惯性矩与惯性积的量纲均为长度的四次方.I,I,I恒为正值.而惯性积I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零. 当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴( 或称主形心惯轴) .截面对形心主惯性轴的惯性矩称为形心主惯性矩( 或称主形心惯矩) .例如,图4-4 中若这对yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

导航系统

第1 章绪论 1.1 导航的基本概念 导航是引导运载体到达预定目的地的过程。导航分两类:(1)自主式导航,用飞行器或船舶上的设备导航,有惯性导航、多普勒导航和天文导航等;(2)非自主式导航,用于飞行器、船舶、汽车等交通设备与有关的地面或空中设备相配合导航,有无线电导航、卫星导航。在军事上,导航还要配合完成武器投射、侦察、巡逻、反潜和援救等任务。高效、高精度的导航系统更是我国这种发展中国家赶超发达国家的战略性资源和倍能器。在军用方面,随着新时期军事战略方针的转变及高新技术武器装备的发展,导航定位定向系统已经成为我军现代化建设中一项不可缺少的重要军事技术装备,其重要性表现在:它是信息战必不可少的基础设备,是建立战场统一坐标的前提,是快速、准确火力部署的保障,同时又是实现武器精确打击能力的必要条件。所以,导航定位定向系统对迅速提高我军的综合作战能力,加快数字化部队建设至关重要;在民用方面,国外的导航定位定向系统己在大地测量、定向钻并、隧道掘进、地面车辆导航、飞机进场着陆、航天航空遥感、机载重力测量、公路监测、地下油气管道监测、矿井监测、激光断面监测等方面得到广泛地的应用,并取得了巨大的经济效益。 在日常生活中我们经常接触到的导航是车载导航,车载导航属于非自主式导航,车载导航是利用车载GPS(全球定位系统)配合电子地图来进行的,汽车GPS导航系统由两部分组成:一部分由安装在汽车上的GPS接收机和显示设备组成;另一部分由计算机控制中心组成,两部分通过定位卫星进行联系。 1.2 惯性导航(INS)概述 通常说的惯性技术,是惯性器件、惯性测量、惯性导航、惯性制导和惯性稳定等技术的统称。惯性技术既是一门学科,也是一门工程技术,在陆、海、空、天各个领域有着广泛应用。惯性器件(陀螺仪和加速度计)、惯性仪表、惯性导航系统都是以牛顿力学定律为基础的。惯性导航系统通过加速度计实时测量载体运动的加速度,经积分运算得到载体的实时速度和位置信息。 惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,惯性测量和惯性敏感器技。

INS-J4光纤惯性导航系统

INS-J4光纤惯性导航系统技术指标 1 系统启动 1.1码头启动条件:提供码头位置信息,精度优于5m; 1.2码头启动时间:≤1h,启动后30分钟可保精度输出姿态信息,1小时后可保精度输出全量导航参数; 1.3海上启动条件:连续提供外部位置信息,精度优于5m,数据更新率不低于1HZ; 1.4海上启动时间:≤1h,启动后30分钟可保精度输出姿态信息,1小时后可保精度输出全量导航参数精度; 1.5海上启动舰艇机动限制时间:≤0.5h,前0.5h内舰艇匀速直航。 2 水平定位精度 2.1自主定位误差≤2.0nmile/8h(PEAK),1.0mile/8h(TRMS); 2.2和GPS组合的定位精度优于GPS精度。 3 航向精度 3.1独立惯导航向误差≤0.05。secФ(8h,RMS); 3.2和GPS组合的系统航向误差≤0.01。secФ(RMS)。 4 水平姿态精度 4.1独立惯导水平姿态误差≤0.028。(RMS);

4.2和GPS组合系统水平姿态误差≤0.0028。(RMS)。 5 垂向位移精度 5.1与GPS组合系统的垂向位移误差≤0.02m(RMS)。 6 水平速度精度 6.1独立惯导水平速度误差≤0.6Kn(RMS); 6.2组合系统水平速度误差≤0.02m/s(RMS)。 7 升沉速度精度 7.1独立惯导升沉速度误差≤0.6Kn(RMS); 7.2组合系统升沉速度误差≤0.02m/s(RMS); 8 适用范围 8.1地理范围:南北纬70度之内保精度工作; 8.2航向角速率≤40。/s; 8.3纵摇角速率≤30。/s; 8.4横摇角速率≤30。/s; 8.5航速范围:-10到60Kn; 9 环境指标 满足GJB1060-1991《舰船环境条件要求》和GJB4000-2000《舰艇通用规范》的要求。

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D §16-1 静矩和形心 平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。 静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ,(Ⅰ-1) 量纲为长度的三次方。 由此可得薄板重心的坐标为 同理有 所以形心坐标 ,(Ⅰ-2) 或 ,

由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即, ;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。 如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为 ,(Ⅰ-3) ,(Ⅰ-4) 【例I-1】求图Ⅰ-2所示半圆形的及形心位置。 【解】由对称性,,。现取平行于轴的狭长条作为微面积 所以 读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。 【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为 矩形Ⅰ:mm2 mm,mm 矩形Ⅱ:mm2 mm,mm 整个图形形心的坐标为 §16-2 惯性矩和惯性半径 惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。 ,(Ⅰ-5) 量纲为长度的四次方,恒为正。相应定义 ,(Ⅰ-6) 为图形对轴和对轴的惯性半径。

截面惯性矩计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是 ,用平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是

上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的 惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示,试求截面对其水平形心轴和竖直形心轴的惯性矩和。 解:先求形心主轴的位置 即 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是 ,;横截面积为;槽钢背到其形心轴的距离是。

惯性导航系统发展综述报告

惯性导航系统发展综述报告 学号:姓名: 摘要:本文介绍了惯性导航系统的主要组成、基本原理、分类以及优缺点。列举了惯性导航系统在当前的主要应用领域及发展趋势。 关键词:惯性导航系统、陀螺仪、加速度计、GPS、组合导航 一.引言 美国《防务新闻》网站报道称,美军正在研制新型导航定位设备,以替代现在广泛使用的GPS卫星定位导航系统。GPS之所以被美军诟病,主要是由于该系统过于依赖脆弱的天基卫星系统。卫星在战时极易被干扰、破坏,或受到网络攻击,自身安全性难以得到有效保证。为有效解决GPS安全性问题和美军对精确定位、导航、授时服务的需求之间难以调和的矛盾,美军开始积极寻求GPS 的替代品。据称,基于现代原子物理学最新成就的微型惯性导航技术是未来代替GPS的一个重要的技术解决方案。 惯性导航系统是人类最早研发明的导航系统之一。早在1942年德国在V-2火箭上就率先应用了惯性导航技术。从2009年,美国国防部先进研究项目局就深入进行新一代微型惯性导航技术的研发与测试工作。据悉,这种新一代导航系统主要通过集成在微型芯片上的三个原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。 美军也对该系统的未来发展充满信心。安德瑞·席克尔认为,就像30年前人们没有预想到GPS会发展到目前如此程度一样,在未来20年新一代微型惯性导航系统的发展程度也是无可限量的。 从此报道中可以看出研究惯性导航技术的重要作用。 二.惯性导航系统的概念 惯性导航(inertial navigation)是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到

飞机导航基础知识

飞机导航基础知识 7.1航向 即飞机机头的方向(航向角是由飞机所在位置的经线北端顺时针测量到航向线的角度); 航向角的大小由飞机纵轴的水平投影线与地平面上某一基准线之间的夹角来度量。 【基准线:为真子午线(地理经线)的叫真航向; 基准线:为磁子午线(地理磁线)的叫磁航向; 基准线:为真子午线(地理磁场与金属机体磁场的合成磁场的水平分量)的叫罗航向】 7.2方位角 以经线北端为基准,顺时针转到水平面上某方向线的夹角。 分为电台方位角、飞机磁方位角、相对方位角 7.3航迹与航迹角 飞机重心在地面投影点移动的轨迹,叫航迹。 以飞机经线北端顺时针转至航迹的角度饺子航迹角。 7.4偏流角 当有侧风时,飞机的实际航迹就会与飞机的航向不一致; 航向线与航迹线之间的夹角称为偏流角;航迹线偏向航向的右侧叫正偏流角,反之为负偏流角。 7.5偏航距离 从飞机实际位置到飞机航段两个航路点连线间的垂直距离。 7.6地速 飞机在地面投影点移动的速度,即飞机相对于地面的水平移动速度。 7.7空速 飞机相对于周围空气的运动速度。 7.8风速与风向 指飞机当前位置处于相对地面的大气运动速度和方向; 空速、地速与风速三者之间的关系: 地速(Sg)=空速(Sa)+风速(Sw) 7.9航路点 飞机的飞行目的地、航路上可用于改变航向、高度、速度等或向空中交通管制中心报告的明显位置,叫做航路点。 7.10侧滑角 飞机所在位置的空速于飞机纵轴平面的夹角

无线电导航与导航参量 无线电导航的实现----接收和处理无线电信号: 导航台位置精确已知 接收并测量无线电信号的电参量 电参量与导航参量的对应关系---根据有关的电波传播特性,电参量转换成导航需要的、接收点相对于该导航台坐标的导航参量。 导航参量—表示飞机位置与基准点(一般为导航台)之间关系的一些参数。 典型导航参数:位置、高度、方向、距离、距离差等 位置线的定义 在无线电导航中,通过无线电导航系统 测得的电信号中的某一电参量(如幅度、 频率、相位及时间延迟等),可获得相应 的导航参量,对接收点而言,某导航参 量(如方向、高度、距离、距离差等) 为定值的点的轨迹线叫做位置线。 几何定位方法——用几何线或面相交来完成定位的方法 无线电定位普遍采用的一种方法 是无线电导航原理的一个重要组成部分 空间导航与平面导航 飞机导航—严格讲都是空间导航问题 空间导航的定位喜爱通过位置面相交来实现 飞机的空间导航问题可以转化为平面导航问题 在远距离导航中,飞机的高度同它到最近导航台的距离相比较是很小的,可以近似按平面导航来处理; 即使是近距离导航,飞机是装有数据计算机和有高度数据输入的情况下,可以通过计算修正来测得飞机的地平面位置。 位置线的类型:直线、圆、等高线、双曲线。 相应地,可以吧导航系统划分为: #侧向系统,如VOR、ADF的位置线是直线; #测距系统,如DME的位置线是平面上的圆; #测高系统,如LRRA(以地心为圆心的圆);

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y ==整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1)2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 1 1 11S (I-3) 截面图形的形心坐标为 ∑∑=== n i i n i i i A x A x 1 1 , ∑∑=== n i i n i i i A y A y 1 1 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3) (2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形

形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。 (1)圆截面对其圆心的极惯性矩,如式(2—7) (2—2.7) (2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8) (2—2.8)

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation) ,捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系

统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作为测量基准,它不再采用机电平台,惯性平台的功能由计算机完成,即在计算机内建立一个数学平台取代机电平台的功能,其飞行器姿态数据通过计算机计算得到,故有时也称其为"数学平台",这是捷联惯导系统区别于平台式惯导系统的根本点。由于惯性元器件有固定漂移率,会造成导航误差,因此,远程导弹、飞机等武器平台通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位置参数。如采用指令+捷联式惯导、GPS+惯导(GPS/INS)。美国的战斧巡航导弹采用了GPS+INS +地形匹配组合导航。 惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。对捷联惯导系统而言,平台的作用和概念体现在计算机中,它是写在计算机中的方向余弦阵。直接安装在载体上的惯性元件测得相对惯性空间的加速度和角加速度是沿载体轴的分量,将这些分量经过一个坐标转换方向余弦阵,可以转换到要求的计算机坐标系内的分量。如果这个矩阵可以描述载体和地理坐标系之间的关系,那么载体坐标系测得的相对惯性空间的加速度和角速度,经过转换后便可得到沿地理坐标系的加速度和角速度分量,有了已知方位的加速度和角速度分量之后,导航计算机便

惯性矩的计算方法

I等. I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式 (4-4) (4-5) 式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩 公式 The Standardization Office was revised on the afternoon of December 13, 2020

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3)

(2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

GPS基础知识

GPS原理及应用 一、概述 GPS全球卫星定位系统(Navigation Satellite Timing and Ranging/Global Positioning System)是美国国防部为满足军事部门对海上、陆上和空中进行高精度导航和定位要求而建立的。它具有全球性、全天候、实时连续的三维导航和定位能力,以及良好的抗干扰性和保密性,是世界上新一代卫星导航与定位系统,已成为美国导航技术现代化的重要标志。 GPS导航定位系统不仅用于军事上各种兵种和武器的导航定位,而且在民用上也有着越来越广泛的应用。如智能交通系统中的车辆导航、车辆管理和救援,民用飞机和船只导航和姿态测量,大气参数测试,地震和地球板块运动监测,地球动力学研究,大地测量等。GPS测量定位技术以其自动化程度高、定位速度快、成本低、不受天气因素影响、测点间无须通视、不建觇标等优越性和仪器轻巧、操作方便、定位测量精度高等优点,被广泛应用于我国测绘行业和各种工程建设的测量中,带来了我国测绘技术的一场深刻变革,使我国测绘行业步入了现代化的时代。 二、GPS的导航原理及系统组成 GPS导航原理是GPS利用到达时间(TOA)测距原理来确定用户的位置。这种原理需要测量信号从位置已知的发射源(例如雾号角、无线电信标或卫星)发出至到达用户接收机所经历的时间。 全球定位系统(GPS)由卫星星座、地面控制/监测网络和用户接收设备三个段组成。空间段:即卫星星座,用户根据该星座的卫星进行测距测量。控制段(CS):维护卫星和维持其正常功能,包括将卫星保持在正确的轨道位置和检测卫星子系统的健康与状况。用户段:由用户接收设备组成,每个用户设备通常称为GPS接收机,用于处理从卫星发射的L波段信号,进而确定用户位置、速度和时间(PVT)。

惯性矩的定义和计算公式

惯性矩的定义 ●区域惯性矩-典型截面I ●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩 ●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和 应力的形状特性。 ●面积惯性矩-英制单位 ●inches4 ●面积惯性矩-公制单位 ●mm4 ●cm4 ●m4 ●单位转换 ● 1 cm4 = 10-8 m4 = 104 mm4 ● 1 in4 = 4.16x105 mm4 = 41.6 cm4 ●示例-惯性单位面积矩之间的转换 ●9240 cm4 can be converted to mm4 by multiplying with 104 ●(9240 cm4) 104 = 9.24 107 mm4 ●区域惯性矩(一个区域或第二个区域的惯性矩) ● ●绕x轴弯曲可表示为 ●I x = ∫ y2 dA (1) ●其中

●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2) ●绕y轴弯曲的惯性矩可以表示为 ●I y = ∫ x2 dA (2) ●其中 ●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩 ●典型截面II的面积惯性矩 ●实心方形截面 ● ●实心方形截面的面积惯性矩可计算为 ●I x = a4 / 12 (2) ●其中 ● a = 边长(mm, m, in..) ●I y = a4 / 12 (2b) ●实心矩形截面

《惯性导航系统》学习指南

学习指南 《惯性导航系统》课程包括惯性导航基础、惯性元件、惯性平台、平台式惯导原理、捷联式惯导原理等5个单元的内容。由于本门课程具有:涉及知识面宽,与物理学、工程力学、控制科学、材料学、计算机科学等知识联系紧密;教学内容丰富,数学公式复杂,空间关系抽象,逻辑推理和形象思维要求高的课程特点,导致课程在教学过程易于出现教师难教、学生难学的现象。为帮助大家学好本门课程,我们给出学习建议,供大家参考。 一、课程前后关系 1.前置课程 本门课程是电气工程及其自动化和自动化等专业的专业基础课,根据专业人才培养方案和课程自身的知识体系结构,学习本门课程需要具备《物理学》、《理论力学》、《电机学》、《电路原理》、《模拟数字电路》、《自动控制原理》和《陀螺原理》等相关课程的专门知识,这些知识是学好本门课程的重要基础。 2.后续课程 本门课程的后续课程主要有《飞行控制系统》、《组合导航系统》、《机载航电设备》等。学好本门课程可以为上述课程的学习打下良好的学习基础。 二、主讲教材与参考教材 1.主讲教材 本门课程的主讲教材是2008年9月国防工业出版社出版的空军航空机务体系统编教材《惯性导航》。该教材从惯性导航基础、惯性元件、惯性平台、平台式惯导原理、捷联式惯导原理五个知识模块,系统阐述了惯性导航基本概念、基本原理和基本结构。

教材针对惯性导航理论抽象、复杂的特点,特别加强了空间概念、坐标系转换和惯导几何位置关系的物理解释,惯性导航方程、力学编排方程、误差方程、对准方程等复杂公式推导过程的物理本质分析,以便于读者加深对惯性导航内涵和实质的理解。 2.参考教材 本门课程为广大读者提供了大量辅助参考资料,参考资料包括参考教材、学位论文、学术论文三个类别。这些参考资料有助于读者全面了解惯性导航及相关领域的知识结构,惯性导航理论和技术的发展方向。以下给出的是主要参考教材清单。 (1)《惯性导航与组合导航》,张宗麟,北京,航空工业出版社,2000年8月 (2)《惯性导航》,秦永元,北京,科学出版社,2006年5月(3)《捷联惯性导航技术》(英)David H.Titterton,北京,国防工业出版社,2007年12月 (4)《惯性器件与惯性导航系统》,邓志红,北京,科学出版社2012年6 月 (5)《光纤陀螺仪》,(法)Hrtve G. Lefevre,北京,国防工沛出版社,2002年1月 (6)《陀螺原理》,许江宁,北京,国防工业出版社,2005年1月 (7)《无陀螺捷联式惯性导航系统》,史震,哈尔滨,哈尔滨工程大学出版社,2007年8月 (8)《惯性导航与组合导航基础》,刘智平,北京,国防工业出版社,2013年6月 (9)《惯性技术》,邓正隆,哈尔滨,哈尔滨工业大学出版社,2006年2月 (10)《惯性仪器测试与数据分析》,严恭敏,北京,国防工业

材料力学--计算机计算惯性矩和抗弯截面系数方法(精)

材料力学—计算机计算惯性矩和抗弯截面系数方法 1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。 图1 2 创建面域 面域创建的方式主要有两种: (1)reg命令。输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。会建立两个面域(外围边框和内部边框); (2)bo命令。在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。也会建立两个面域(外围边框和内部边框)。 图2 3 面域差集计算 将建立的两个面域进行差集计算。在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。 4 查询计算 (1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”; (2)选择刚创建的面域并回车,弹出如图3所示的文本对话框; 图

3 (3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。截面惯性矩、惯性积、主力矩。 5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算 (1)从主力矩与质心的X-Y方向可以得出: Ix=188.5mm4, Iy=188.5mm4 (2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs坐标原点移动到截面形心,如图4; 图4 (3)命令行输入massprop并回车,弹出如图5所示的文本对话框; 图5 (4)可得:截面对形心轴的惯性矩Ix=188.5mm4、Iy=188.5mm4,惯性积Ixy=0(由图5可知,形心轴y轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。 由图5可知,截面图形边界框值为x:-4—4、y:-4—4, 抗弯截面系数计算如下: Wx1=Ix/ymax=188.5/4=47.13mm3 Wx2= Ix/ymin=188.5/4=47.13mm3 Wy1= Iy/xmax=188.5/4=47.13mm3 Wy2= Iy/ymin=188.5/4=47.13mm3 6 相同的计算方法就可以计算各种复杂截面的零件的惯性矩和抗弯截面系数,只是在计算中要注意截面面域的选择要正确,截面差集要准确。

惯性矩计算方法

抗弯惯距和抗扭惯距的计算 2009-10-20 09:54 计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介:1、首先在CAD中画出如下图的图形;2、用region命令将图形转化成内外两个区域;3、用subtract命令求内外区域的差集;4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米;5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 第二种方法:采用桥博计算截面惯距 操作简介:本人使用的是桥博3.03,大家可以新建一个项目组,在新建项目上右键选择截面设计,选择C:\Program Files\TongHao\DoctorBridge30\EXAMPLES\Tool\DbDebug2.sds,当前任务类型选择截面几何特征,在截面描述中清除当前截面(包括附加截面还有主截面里面的钢筋),选择“斜腹板单箱单室”(大家在可根据自己计算的截面选择相应的截面,如果桥博内置的截面没有的话,可以选用从CAD中导入,CAD导入将在后面的教程中介绍)输入截面相应的数据(附图) 输出结果附后 <<桥梁博士>>---截面设计系统输出 文档文件: C:\Program

截面惯性矩计算(借鉴资料)

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。 解:知半圆形截 面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回

15-4(I-11) 试求图示各组 合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩和。

解:先求形心主轴的位置 即 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴 的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是, ;横截面积为;槽钢背到其形心轴的距离 是。 根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是 ; 若 即 等式两边同除以2,然后代入数据,得

惯性矩计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图 形的几何性质 一.重点及难点: (一).截面静矩和形心 1?静矩的定义式 如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即 dS y =xdA dSx 二 ydA 整个图形对y 、z 轴的静矩分别为 S y = A XdA (I ) Sx ydA 、A 2. 形心与静矩关系 设平面图形形心C 的坐标为y C , z C S x S y y - , x ( I-2) A A 推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。 推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。 3. 组合图形的静矩和形心 设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为 图I-1 则 0

S y = " S yi = ' A i X i i 4 i 4 n n S x = ' S xi = ' A i y i i 4 i 4 截面图形的形心坐标为 、' A i X i 4. 静矩的特征 (1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2)静矩有的单位为m 3 (3)静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 ⑷ 若已知图形的形心坐标。则可由式(1-1)求图形对坐标轴的静矩。 若已 知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。 (二)■惯性矩惯性积惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A '2dA (1-5) 图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6) 惯性矩的特征 (1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴 定义的。 (2)极惯性矩和轴惯性矩的单位为m 4 (1-3) 、A i y i (1-4)

相关文档
最新文档