工业硝酸

工业硝酸
工业硝酸

硝酸化学品安全技朮说明书

第一部分:化学品名称

化学品中文名称:硝酸

化学品英文名称:nitric acid

中文名称2:

英文名称2:

CAS No.:7697-37-2

技朮说明书编号﹕MF038

分子式:HNO3

分子量:63.01

环境危害:

燃爆危险:本品助燃,具强腐蚀性、强刺激性,可致人体灼伤。

第四部分:急救措施

皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:用水漱口,给饮牛奶或蛋清。就医。

第五部分:消防措施

危险特性:强氧化剂。能与多种物质如金属粉末、电石、硫化氢、松节油等猛烈反应,甚至发生爆炸。与还原剂、可燃物如糖、纤维素、木屑、棉花、稻草或废纱头等接触,引起燃

烧并散发出剧毒的棕色烟雾。具有强腐蚀性。

有害燃烧产物:

灭火方法:消防人员必须穿全身耐酸碱消防服。灭火剂:雾状水、二氧化碳、砂土。

第六部分:泄漏应急处理

应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。从上风处进入现场。尽可能切断泄漏源。防

止流入下水道、排洪沟等限制性空间。小量泄漏:将地面洒上苏打灰,然后用大量水

冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。喷雾状水冷却和

稀释蒸汽、保护现场人员、把泄漏物稀释成不燃物。用泵转移至槽车或专用收集器内,

回收或运至废物处理场所处置。

第七部分:操作处置与储存

操作注意事项:密闭操作,自动化。

第八部分:接触控制/个体防护

职业接触限值

MAC(mg/m3):未制定标准

TLVTN:OSHA 2ppm,5mg/m3; ACGIH 2ppm,5.2mg/m3

TLVWN:ACGIH 4ppm,10mg/m3

监测方法:

工程控制:密闭操作,注意通风。尽可能机械化、自动化。提供安全淋浴和洗眼设备。

呼吸系统防护:可能接触其烟雾时,佩戴自吸过滤式防毒面具(全面罩)或空气呼吸器。紧急事态抢救或撤离时,建议佩戴氧气呼吸器。

眼睛防护:呼吸系统防护中已作防护。

身体防护:穿橡胶耐酸碱服。

手防护:戴橡胶耐酸碱手套。

其它防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。单独存放被毒物污染的衣服,洗后备用。保持良好的卫生习惯。

第九部分:理化特性

主要成分:含量: 工业级一级≥98.2%; 二级≥97.2%。

外观与性状:纯品为无色透明发烟液体,有酸味。

pH:

熔点(℃):-42(无水)

沸点(℃):86(无水)

相对密度(水=1):1.50(无水)

相对蒸气密度(空气=1):2.17

饱和蒸气压(kPa):4.4(20℃)

避免接触的条件:

聚合危害:

分解产物:

第十一部分:毒理学资料

急性毒性:LD50:无资料

LC50:无资料

亚急性和慢性毒性:

刺激性:

致癌性:

第十二部分:生态学资料

生态毒理毒性:

生物降解性:

其它有害作用:该物质对环境有危害,应特别注意对水体和土壤的污染。

第十三部分:废弃处置

废弃物性质:加入纯碱-硝石灰溶液中,生成中性的硝酸盐溶液,用水稀释后排入废水系统。废弃处置方法:

废弃注意事项:

第十四部分:运输信息

危险货物编号:81002

UN编号:2031

包装标志:

包装类别:O52

条例实施细则(化劳发[1992] 677号),工作场所安全使用化学品规定([1996]劳部发

423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了

相应规定;常用危险化学品的分类及标志(GB 13690-92)将该物质划为第8.1 类酸性

腐蚀品。

第十六部分:其它信息

参考文献:

填表日期﹕2008/10/30 (02版)

填表部门:

资料审核单位:

修改说明:

生效日期:2008/11/1

硝酸工艺流程简介

1. 双加压法稀硝酸生产工艺流程 1.1工艺流程示意图如图1-1: 1、2—液氨蒸发器,3—辅助蒸发器,4—氨过热器,5—氨过滤器,6—空气过滤室,7—空压机,8—混合器,9—氧化炉、过热器、废热锅炉,10—高温气气换热器,11—省煤器,12—低压反应水冷器,13—氧化氮分离器,14—氧化氮压缩机,15—尾气预热器,16—高压反应水冷器,17—吸收塔,18—尾气分离器,19—二次空气冷却器,20—尾气透平,21—蒸汽透平,22—蒸汽分离器,23—汽包,24—蒸汽冷凝器。 图1-1 工艺流程示意图 1.2流程简述: 合成氨厂来的液氨进入有液位控制的A、B两台氨蒸发器中,氨在其中蒸发,正常操作时,大部分液氨被A台蒸发器中来至吸收塔的冷却水所蒸发(吸收塔上部冷却水与A蒸发器形成闭路循环),蒸发温度11.5 ℃;其余的液氨被冷却水在B台蒸发器中蒸发,蒸发温度为14 ℃,两台氨蒸发器的蒸发压力均维持在0.52 Mpa;其中的油和水在辅助蒸发器中被分离,蒸发出的气氨进入氨过热器,气氨温度由TV31022控制,温度为110 ℃,然后再经氨过滤器进入氨─空气混合器。 空气从大气中吸入,经过三级过滤进入空气压缩机入口(冬季在经过空气过滤器前由空气预热器预热),经过空气压缩机加压至0.35 Mpa后分为一次空气和二次空气两股气流,一次空气进入氨─空混合器,二次空气进入漂白塔。 氨和空气在氨─空混合器中混合以后,进入氧化炉,经过铂网催化剂氧化生成NO等混合气体,铂网氧化温度为860 ℃,然后经过蒸汽过热器、废热锅炉,再经高温气─气换热器、省煤器、低压反应水冷器,再进入氧化氮分离器,在此将稀酸分离下来,气体则与漂白塔来的二次空气混合后进入氧化氮压缩机,进气温度为60 ℃,压力为0.3 Mpa;出口温度为200 ℃,压力为1.0 Mpa。再经尾气预热器、高压反应水冷却器进入吸收塔,进入吸收塔时的氮氧化物气体温度为40℃,氮氧化物气体从吸收塔底部进入,工艺水从吸收塔顶部喷淋而下,二者逆流接触,生成58 %—60 %的硝酸,塔底酸温度为40 ℃,从吸收塔出来的硝酸进入漂白塔,用来自二次空气冷却器的约120 ℃的二次空气在漂白塔中逆流接触,以提出溶解在稀酸中的低价氮氧化物气体,完成漂白过程,漂白后的成品酸经酸冷却器冷却到40 ℃,进入成品酸贮罐,再用成品酸泵送往硝铵和间硝装置。 从吸收塔顶部出来的尾气先后经过尾气分离器、二次空气冷却器、尾气预热器、高温气—气换热器,温度升至360 ℃,进尾气透平,回收约60 %的总压缩功,出尾气透平的

高中化学工业制法

高中化学与工业生产有关的化学方程式 1.工业制硫酸 4FeS2+11O2 == 2Fe2O3+8SO2(反应条件:高温) 2SO2+O2 == 2SO3(反应条件:加热,催化剂作用下) SO3+H20 == H2SO4(反应条件:常温) 在沸腾炉,接触室,吸收塔内完成 2.工业制硝酸 4NH3+5O2== 4NO+6H2O(反应条件:800度高温,催化剂铂铑合金作用下) 2NO+O2 == 2NO2 3NO2+O2 == 2HNO3+NO 3.工业制盐酸 H2+Cl2 == 2HCl(反应条件:点燃) 然后用水吸收

在合成塔内完成 4.工业制烧碱(氯碱工业) 2NaCl+2H2O == H2+Cl2+2NaOH(电解饱和食盐水) 5.工业制取粉精 2Ca(OH)2+2Cl2 == CaCl2+Ca(ClO)2+2H2O 6.工业制纯碱(侯氏).侯氏制碱法 NaCl+NH3+CO2+H2O=NaHCO3+NH4Cl 1)NH3+H2O+CO2 == NH4HCO3 2)NH4HCO3+NaCl == NaHCO3+NH4Cl(NH4HCO3结晶析出) 3)2NaHCO3 == Na2CO3+H2O+CO2(反应条件:加热) 7.工业制金属铝 2Al2O3 == 4Al+3O2(反应条件:电解,催化剂为熔融的冰晶石)注:冰晶石化学式为NaAlF6 8.工业制硅 利用反应 SiO2+2C ==高温== Si+2CO↑ 能得到不纯的粗硅。粗硅需进行精制,才能得到高纯度硅。 首先,使Si跟Cl2起反应:

Si+2Cl2 == SiCl4(400 ℃~500 ℃) 生成的SiCl4液体通过精馏,除去其中的硼、砷等杂质。然后,用H2还原SiCl4: SiCl4+2H2==高温== Si+4HCl这样就可得到纯度较高的多晶硅。 9.硅酸盐工业(制普通玻璃) 生石灰(高温煅烧石灰石) CaCO3 =高温= CaO+CO2↑ 玻璃工业(玻璃窑法) Na2CO3 + SiO2 =高温= Na2SiO3 +CO2↑ CaCO3 + SiO2 =高温= CaSiO3 +CO2↑ 10.高炉炼铁 Fe2O3+3C == 2Fe+3CO[也可以生成CO2] 11.工业制取水煤气 C+H2O == CO+H2 12.粗铜的精炼电解:阳极用粗铜 阳极:Cu-2e-=Cu2+阴极:Cu2++2e-=Cu 13.工业制氨气 3H2+N2 == 2NH3(反应条件:高温高压催化剂作用下) 注:催化剂为铁触媒

硝酸钾生产工艺 (1)

硝酸钾生产工艺 配料、分离工段 根据相图,使氯化钾、半成品在高温下溶解而NaCl 等很少溶解。从而达到富集KNO 3的目的。 能医药工业主要用于生产青霉素钾盐、利福平和利尿、发汗、清凉的药剂。食品工

业用于配肉,并在午餐肉中起防腐剂作用。机械工业用于热处理(金属淬火)作淬火之盐浴。玻璃工业用于玻璃器皿生产,起耐温硬化玻料的作用,还用作。农业上用作农作物和花卉的复合肥料。 分析试剂,用于锰、钠的微量分析。 复分解法 硝酸钠与氯化钾经复分解反应得硝酸钾和氯化钠。利用它们的不同溶解度可将其分离。此法工业上应用较多。先把硝酸钠溶于热水中,在搅拌下按硝酸钠:=100:85的配料比逐渐加入氯化钾,经蒸发浓缩,当温度为119°C时,氯化钠结晶析出。将分离氯化钠后的母液缓慢冷却,硝酸钾即结晶析出。经过滤、洗涤和干燥即得产品。 危害性 爆炸物危险特性:与有机物、硫磷等混合可爆 储运特性:库房通风; 轻装轻卸; 与有机物、还原剂、木炭、硫磷易燃物分开存放 可燃性危险特性:高热放出氧气; 遇有机物、还原剂、木炭、硫、磷等易燃物可燃; 燃烧产生有毒氮氧化物烟雾 防护措施 工程控制:生产过程密闭,加强通风。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其粉尘时,建议佩戴头罩型电动送风过滤式防尘呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿聚乙烯防毒服。 手防护:戴氯丁橡胶手套。 其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。保持良好的卫生习惯。 硝酸钾 - 存储运输 储存注意事项 两层塑料袋或一层塑料袋外麻袋、、;塑料袋外复合塑料编织袋(聚丙烯三合一袋、聚乙烯三合一袋、聚丙烯二合一袋、聚乙烯二合一袋);螺纹口玻璃瓶、塑料瓶或塑料袋外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱。

硝酸工业含氮氧化物工艺尾气处理方案

硝酸工业含氮氧化物工艺尾气处理方案 随着二十一世纪的到来,“绿色环保浪潮”已在世界范围掀起,环境保护已成为国际交往与协商的重要议题。成果内容简介 在各种硝酸工业中会产生大量的含NOX工艺尾气,NOX的排空即引起了严重的环境污染又造成了NOX资源的浪费。 当前对含NOX废气的处理方法主要有干法和湿法两大类,干法由于不能有效回收氮氧化物资源,多用于汽车尾气处理,而很少用于硝酸工业尾气治理;湿法一般是将尾气中的NO首先氧化成活性更高的NO2,然后通过水、或稀酸、碱溶液吸收NOX。由于氮氧化物的吸收过程,在气相和液相中都存在着数种可逆与不可逆反应,使得处理难度较大,目前国外一般采用中压或高压吸收来实现,但加压处理除了必然要对设备提出更高的要求外,操作费用也会随着压力的提高而直线上升。本技术采用填料塔技术在常压下实现对硝酸酸工业含NOX尾气处理,处理结果完全达到国家环保要求。 本技术采用多塔串联处理含氮氧化物硝酸工业工艺尾气,其中前部分为水吸收,后部分采用碱吸收。从硝酸工业生产工段出来的工艺尾气,混入一定量的富氧空气后,首先进入水吸收塔,一方面氮氧化物迅速被液相吸收形成稀酸,另一方面吸收过程生成的稀硝酸会对氮氧化物起到氧化作用,提高氮氧化物的氧化度,使其更加利于吸收。从水洗塔出来的尾气依次进入碱吸收塔,此时由于氧化度已经很低,有利于价值较高的亚硝盐生成。当尾气从系统出来后,已经达到了国

家排放标准的净化气体经过引风机排空。在整个过程中,可以从水洗塔得到稀硝酸,经混入一定比例的浓硝酸后,可返回生产工段继续使用;从碱吸收塔可以得到硝酸盐和亚硝酸盐母液,去结晶工段经结晶分离最终得到硝酸盐、和亚硝酸盐副产品。既避免了氮氧化物资源的损失,又减少了氮氧化物对大气的污染。 工业塔的流程简图见图1,填料塔内充高效规整填料,型号为250Y波纹板聚丙烯塑料填料。由图可知,由草酸反应釜出来的氮氧化物,通入足量空气经缓冲罐后,由防腐风机塔底引入塔内。塔顶的吸收剂自上而下流动,逐步与气体接触,进行气液反应吸收。在塔底产生的稀硝酸溶液由硝酸循环泵运送到换热器中进行换热,降温后的硝酸溶液重新被打入塔顶,在塔底累计达到设计浓度后再进行出料,这样共经历四个类似过程的吸收塔。在进入第五个塔前,需要用捕沫器将雾沫夹带或是气流中的酸雾捕集下来,将这部分液体返回到酸塔底部。穿过捕沫器的气体再次由底部进入碱吸收塔内,此时塔顶下降的是循环的碱液,经过三个碱吸收后,气体由60米的烟囱排出。 根据国家最新标准,60米烟囱的氮氧化物的排放浓度为≤240ppm,而本装置的尾气为178ppm,已完全符合国家规定。根据厂方反馈的信息表明在正常操作条件下,不会出现所谓的“黄龙”现象,而且尾气达标,吸收塔设备运行可靠,此外每小时可以副产硝酸钠0.5吨,亚硝酸钠1.5吨。所有这些指标均显示本技术已可作为一项成熟技术向外推广。该项目所实施的研究开发圆满地完成了各项指标。经过生产运行实践考核,系统性能稳定,特别是大幅度地削减氮氧化物排放

硝酸工业制法学生

硝酸的工业制法: 2.氨氧化法制硝酸 (1)反应原理 1)NH 3催化氧化 ?______________________________________ 2)HNO 3生成 ?______________________________________ (2)尾气吸收 ?______________________________________ 合成装置:氨合成塔和水冷分离器。 氨的分离原理:高压下氨的沸点较高,在水冷的条件下氨就转化为液态氨而与氮气和氢气分离。 (2)净化 ①原料气中的主要杂质:H 2S 、CO 、CO 2、O 2等。 ②主要危害:某些杂质会导致_______________。 ③净化方法 a .用氨水吸收H 2S : ________________________________ b .CO 转化为CO 2: CO +H 2O =====Fe 2O 3 高温CO 2+H 2 c .用K 2CO 3溶液吸收CO 2: _____________________________________ d .用醋酸、铜和氨配制成的溶液精制处理。 合成氨工业 原理:N 2 + 3H 2 2NH 3 + 92.4KJ 其他:(1)N 2和H 2的配比为1∶2.8,目的是使廉价易得的原料适当过量,以提高________。 (2)循环操作:混合气体通过冷凝器,使NH 3________,将________分离出来,并将________经循环压缩机再送入合成塔,使其充分反应。 (3)主要设备________。 (4)过程:原料气制备―→________―→压缩 原料: 主要来源于H 2O 和碳氢化合物,相关化学反应如下:

工业硝酸的合成原理

工业硝酸的合成原理 目前,硝酸是用氨催化氧化亲生产的,产品有稀硝酸(含量为45%-60%)和浓硝酸(含量为96%-98%),这里介绍稀硝酸的生产。 用氨催化氧化的方法制硝酸,主要有三步。 (l)氨的氧化从氨合成工段来的氨气和空气按一定比例混合,在铂网催化剂的作用下生成一氧化氨,其反应式为 4NH3 +504 —4N0+6H2O △H = - 907.3 kj/mol (2) 一氧化氨继续氧化生成二氧化氨氨催化氧化后的气体中主要是NO、H2O以及没有参加反应的N2、02,将该气体冷却降温到150-180℃,NO继续氧化便可得到二氧化氨,反应式为 2NO+O2 —2NO2 △HR = - 112.6 kj/mol (3)二氧化氨气体的吸收水吸收二氧化氨气体生成硝酸和一氧化氨,反应式如下: 3NO2 +H20 - 2HNO3+NO △H; - -136.2 kj/mol 从式可以看出,用水吸收的NO2,只有2/3生成硝酸,还有1/3转化为NO。耍利用这部分NO,必须使其氧化为NO2,氧化后的NOz仍只有2/3被吸收,因此吸收后的尾气必有一部分NO排空,需要治理,否则污染环境。 工业上,氨的催化氧化,一般是在铂系催化剂存在下进行的。铂系催化剂具有良好的选择性,既能加快反应,又能抑制其他副反应。纯铂具有催化能力,但强度较差,若采用含铑10%的铂铑合金,不仅使机械强度增加,而且比纯铂的活性更高。但铑价格昂贵,因此多采用铂、铑、钯三元合金,常见组成为铂93%、铑3%、钯4%。 根据操作压力的不同,氨氧化制稀硝酸工艺分为常压法、全加压法和综合法。 (l)常压法氨氧化和氨氧化物的吸收均在常压下进行。该法压力低,氨的氧化率高,铂消耗低,设备结构简单。吸收塔可采用不锈钢,也可采用花岗石、耐酸砖或塑料。但该法成品酸浓度低,尾气中氨氧化物浓度高,需经处理才能放空,吸收容积大,占地多,故投资大。 (2)全加压法又分为中压(0.2-0.5 MPa)与高压(0.7-0.9 MPa)两种。氨氧化及氨氧化物吸收均在加压下进行。该法吸收率高,成品酸浓度高,尾气中氨氧化物浓

第二章 浓硝酸的制造

第二章浓硝酸的制造 浓硝酸广泛用于化学工业和军事工业。随着近代有机合成、化学纤维、矿山建没,高效化肥以及火箭、导弹等工业的发展,均需大量浓硝酸。 所谓浓硝酸是指9 5%~100%H NO3而言。工业上制取浓硝酸方法有三: ①加脱水剂法。在稀硝酸中加入某种脱水剂,如浓硫酸、硝酸镁等脱水剂,然后通过精馏或蒸馏来获得。 ②直接合成法。即将液体N2O4、纯氧与水随接合成浓硝酸,简称直硝法。 ③共沸酸蒸馏法。即将HNO3含量6 8.3%编以上的硝酸通过精馏来获得。 2.1 加脱水剂法 浓硝酸不可能直接由稀硝酸蒸馏来获得。原因是稀硝酸是由HNO3与H2O组成的二元混合物。这个体系在不同压力下存在着不同的共沸点。例如在常压下,其共沸点温度为390.0 5K(120.05℃)这时气相和液相的HNO3含量均为68.4%。因而,不可能获得68.4%以上的浓硝酸。 另外,从以氨为原料制硝酸的总反应来看 NH3+2O2——HNO3+H2O (3-2-1) 理论上,生成硝酸的最大HNO3含量为63/(63+18)* 100%=77.8%。实际上由于氨的氧化率一般为95%~97%,所以其最大含量也只能是72%~73%。但事实上因溶液具有共沸点,最多也只能获得共沸酸(68.4%)。若在高压下,例如在0.8MPa下,因可获得较高浓度的NO2,这才可能制得HNO3含量为70%~85%的硝酸。 如欲获得95%~l00%的浓硝酸,必须在稀硝酸中加入脱水剂,以破坏共沸点组成方有可能。 工业上采用的脱水剂,应满足下列条件要求: ①脱水剂与水的亲和力必须大于硝酸与水的亲和力,这样才可以破坏共沸点组成。 ②脱水剂本身的蒸汽压应很小,且能大大降低稀硝酸液面上的水蒸气分压。 ③脱水剂本身不与硝酸起化学反应,并要求其热化学性质稳定,受热时不易分解。 2.1.1 浓硫酸脱水法 早期使用的脱水剂以浓硫酸最为普遍。 此法是将浓硫酸按一定比例加人稀硝酸中,然后在泡罩塔(或填料塔)中进行稀硝酸的浓缩。塔内共有2l层塔板。92%~9 5%的硫酸从由下往上数的第l6层塔板上送人。稀硝酸分别由第l3层和第l0层塔板上加入。浓缩和硫酸脱硝所用的蒸汽由塔底通人。温度为65~8 5℃的浓硝酸蒸气和少量氮氧化物由塔顶引出,送人硝酸冷凝器冷却到3 5℃左右。冷凝后 重新进入浓缩塔顶,在塔的第l 9、2 0、2 l层塔板上进行漂白,使溶解在硝酸中的氮氧化物完全解吸出来,由第l 9层塔板上流出c再经硝酸冷却器冷却,即得I{N03含量为98‘%左右的成品酸。 脱硝后68%左右的稀硫酸由浓缩塔底部流出,其温度为l 50~1 70℃,经酸封大稀硫酸浓缩器。 浓硫酸脱水法制取浓硝酸,因技术陈旧,设备在高温下腐蚀性大,环境保护条件差,且.热能消耗大,至今已很少采用。 2.1.2 硝酸镁脱水法 2.1.2.1 硝酸镁的性质 纯硝酸镁为三斜晶系的无色结晶,易吸水生成含有l、2、3、6、9个结合水的硝酸镁,在一定条件下可以相互转变。一般常见的是带有6个结合水的硝酸镁:Mg(NO3)2,6H2O为无色单斜晶体,常温时相对密度为1.464。

硝酸工业

硝酸工业 原料:氨气、空气 原理:4NH 3+5O 2 == 4NO+6H 2O 2NO+O 2 == 2NO 2 3NO 2+H 2O == 2HNO 3+NO 设备:转化器:NH 3氧化成NO ; 吸收塔:NO 转化成NO 2,用水吸收NO 2生成硝酸。 尾气处理:NO 和NO 2,用碱液吸收 NO + NO 2 + 2NaOH = 2NaNO 2 2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2O 工业制法原料:NH3 ,水,空气. 设备:氧化炉,吸收塔.硝酸的工业制法历史上曾用智利硝石与浓硫酸共热制取。现改用氨氧化法制取,其法以氨和空气为原料,用Pt —Rh 合金网为催化剂在氧化炉中于 800℃进行氧化反应,生成的NO 在冷却时与O 2生NO 2,NO 2在吸收塔内用水吸收在过量空气中O 2的作用下转化为硝酸,最高浓度可达50%。制浓硝酸则把50%HNO 3与Mg[NO 3]2或浓H 2SO 4蒸馏而得。 主要反应为:4NH 3 + 5O 2 =催化剂+强热= 4NO + 6H 2O [氧化炉中];2NO + O 2 = 2NO 2 [冷却器中]; 3NO 2 + H 2O = 2HNO 3 + NO [吸收塔]; 4NO 2 + O 2 + 2H 2O == 4HNO 3 [吸收塔]。 从塔底流出的硝酸含量仅达50%, 不能直接用于军工,染料等工业, 必须将其制成98%以上的浓硝酸. 浓缩的方法主要是将稀硝酸与浓硫酸或硝酸镁混合后, 在较低温度下蒸馏而得到浓硝酸, 浓硫酸或硝酸镁在处理后再用. 因为氨气的氧化可以被氧化为氮气 由于这个反应是可逆反应 所以,冲入氮气可以使 氨气不氧化为氮气而是氧化为一氧化氮 ,再氧化为 二氧化氮 ,最后溶于浓硝酸来制硝酸(不常用水吸收,用水吸收放热,且生成NO ) 所以同时通入氮气是为了使反应向生成一氧化氮的方向进行和平衡向这个方向移动,有利于生产 硫酸工业 硫酸生产中,SO2催化氧化成SO3: 2SO2(g)+O2(g) 2SO3(g) 催化△

工业硝酸

硝酸化学品安全技朮说明书 第一部分:化学品名称 化学品中文名称:硝酸 化学品英文名称:nitric acid 中文名称2: 英文名称2: CAS No.:7697-37-2 技朮说明书编号﹕MF038 分子式:HNO3 分子量:63.01 环境危害: 燃爆危险:本品助燃,具强腐蚀性、强刺激性,可致人体灼伤。 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分:消防措施 危险特性:强氧化剂。能与多种物质如金属粉末、电石、硫化氢、松节油等猛烈反应,甚至发生爆炸。与还原剂、可燃物如糖、纤维素、木屑、棉花、稻草或废纱头等接触,引起燃 烧并散发出剧毒的棕色烟雾。具有强腐蚀性。

有害燃烧产物: 灭火方法:消防人员必须穿全身耐酸碱消防服。灭火剂:雾状水、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。从上风处进入现场。尽可能切断泄漏源。防 止流入下水道、排洪沟等限制性空间。小量泄漏:将地面洒上苏打灰,然后用大量水 冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。喷雾状水冷却和 稀释蒸汽、保护现场人员、把泄漏物稀释成不燃物。用泵转移至槽车或专用收集器内, 回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,自动化。 第八部分:接触控制/个体防护 职业接触限值 MAC(mg/m3):未制定标准 TLVTN:OSHA 2ppm,5mg/m3; ACGIH 2ppm,5.2mg/m3 TLVWN:ACGIH 4ppm,10mg/m3 监测方法: 工程控制:密闭操作,注意通风。尽可能机械化、自动化。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其烟雾时,佩戴自吸过滤式防毒面具(全面罩)或空气呼吸器。紧急事态抢救或撤离时,建议佩戴氧气呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿橡胶耐酸碱服。 手防护:戴橡胶耐酸碱手套。

硝酸工业含氮氧化物工艺尾气处理方法

精心整理硝酸工业含氮氧化物工艺尾气处理方案 随着二十一世纪的到来,“绿色环保浪潮”已在世界范围掀起,环境保护已成为国际交往与协商的重要议题。成果内容简介 在各种硝酸工业中会产生大量的含NOX工艺尾气,NOX的排空即引起了严重的环境污染又造成了NOX资源的浪费。 当前对含NOX废气的处理方法主要有干法和湿法两大类,干法由于不能有效回收氮氧化物资源,多用于汽车尾气处理,而很少用于硝酸工业尾气治理;湿法一般是将尾气中的NO首先氧化成活性更高的NO2,然后通过水、或稀酸、碱溶液吸收NOX。由于氮氧化物的吸收过程,在气相和液相中都存在着数种可逆与不可逆反应,使得处理难度较大,目前国外一般采用中压或高压吸收来实现,但加压处理除了必然要对设备提出更高的要求外,操作费用也会随着压力的提高而直线上升。本技术采用填料塔技术在常压下实现对硝酸酸工业含NOX尾气处理,处理结果完全达到国家环保要求。 本技术采用多塔串联处理含氮氧化物硝酸工业工艺尾气,其中前部分为水吸收,后部分采用碱吸收。从硝酸工业生产工段出来的工艺尾气,混入一定量的富氧空气后,首先进入水吸收塔,一方面氮氧化物迅速被液相吸收形成稀酸,另一方面吸收过程生成的稀硝酸会对氮氧化物起到氧化作用,提高氮氧化物的氧化度,使其更加利于吸收。从水洗塔出来的尾气依次进入碱吸收塔,此时由于氧化度已经很低,有利于价值较高的亚硝盐生成。当尾气从系统出来后,已经达到了国家排放标准的净化气体经过引风机排空。在整个过程中,可以从水洗塔得到稀硝酸,经混入一定比例的浓硝酸后,可返回生产工段继续使用;从碱吸收塔可以得到硝酸盐和亚硝酸盐母液,

去结晶工段经结晶分离最终得到硝酸盐、和亚硝酸盐副产品。既避免了氮氧化物资源的损失,又减少了氮氧化物对大气的污染。 工业塔的流程简图见图1,填料塔内充高效规整填料,型号为250Y波纹板聚丙烯塑料填料。由图可知,由草酸反应釜出来的氮氧化物,通入足量空气经缓冲罐后,由防腐风机塔底引入塔内。塔顶的吸收剂自上而下流动,逐步与气体接触,进行气液反应吸收。在塔底产生的稀硝酸溶液由硝酸循环泵运送到换热器中进行换热,降温后的硝酸溶液重新被打入塔顶,在塔底累计达到设计浓度后再进行出料,这样共经历四个类似过程的吸收塔。在进入第五个塔前,需要用捕沫器将雾沫夹带或是气流中的酸雾捕集下来,将这部分液体返回到酸塔底部。穿过捕沫器的气体再次由底部进入碱吸收塔内,此时塔顶下降的是循环的碱液,经过三个碱吸收后,气体由60米的烟囱排出。 根据国家最新标准,60米烟囱的氮氧化物的排放浓度为≤240ppm,而本装置的尾气为178ppm,已完全符合国家规定。根据厂方反馈的信息表明在正常操作条件下,不会出现所谓的“黄龙”现象,而且尾气达标,吸收塔设备运行可靠,此外每小时可以副产硝酸钠0.5吨,亚硝酸钠1.5吨。所有这些指标均显示本技术已可作为一项成熟技术向外推广。该项目所实施的研究开发圆满地完成了各项指标。经过生产运行实践考核,系统性能稳定,特别是大幅度地削减氮氧化物排放量,社会效益和经济效益突出。立项情况 化学工业如何实施减少废料、防止污染,向“洁净化工”转化,已成为社会关注的焦点。在水环境、生态环境遭到人类生产活动严重破坏的同时,大气环境也日趋恶化,历史上世界各地曾多次发生大气污染公害事件,对人类的生存环境构成了极大的威胁。在各种硝酸工业中会产生大量的含NOX工艺尾气,NOX的排空即引起了严重的环境污染又造成了NOX资源的浪费。为此,对硝酸工业工艺尾气中的NOX

硝酸工艺流程简介教学资料

硝酸工艺流程简介

精品资料 1. 双加压法稀硝酸生产工艺流程 1.1工艺流程示意图如图1-1: 空气 1、2—液氨蒸发器,3—辅助蒸发器,4—氨过热器,5—氨过滤器,6—空气过滤室,7—空压机,8—混合器,9—氧化炉、过热器、废热锅炉,10—高温气气换热器,11—省煤器,12—低压反应水冷器,13—氧化氮分离器,14—氧化氮压缩机,15—尾气预热器,16—高压反应水冷器,17—吸收塔,18—尾气分离器,19—二次空气冷却器,20—尾气透平,21—蒸汽透平,22—蒸汽分离器,23—汽包,24—蒸汽冷凝器。 图1-1 工艺流程示意图 1.2流程简述: 合成氨厂来的液氨进入有液位控制的A、B两台氨蒸发器中,氨在其中蒸发,正常操作时,大部分液氨被A台蒸发器中来至吸收塔的冷却水所蒸发(吸收塔上部冷却水与A 蒸发器形成闭路循环),蒸发温度11.5 ℃;其余的液氨被冷却水在B台蒸发器中蒸发,蒸发温度为14 ℃,两台氨蒸发器的蒸发压力均维持在0.52 Mpa;其中的油和水在辅助蒸发器中被分离,蒸发出的气氨进入氨过热器,气氨温度由TV31022控制,温度为 110 ℃,然后再经氨过滤器进入氨─空气混合器。 空气从大气中吸入,经过三级过滤进入空气压缩机入口(冬季在经过空气过滤器前由空气预热器预热),经过空气压缩机加压至0.35 Mpa后分为一次空气和二次空气两股气流,一次空气进入氨─空混合器,二次空气进入漂白塔。 氨和空气在氨─空混合器中混合以后,进入氧化炉,经过铂网催化剂氧化生成NO等混合气体,铂网氧化温度为860 ℃,然后经过蒸汽过热器、废热锅炉,再经高温气─气换热器、省煤器、低压反应水冷器,再进入氧化氮分离器,在此将稀酸分离下来,气体则与漂白塔来的二次空气混合后进入氧化氮压缩机,进气温度为60 ℃,压力为0.3 Mpa;出口温度为200 ℃,压力为1.0 Mpa。再经尾气预热器、高压反应水冷却器进入吸收塔,进入吸收塔时的氮氧化物气体温度为40℃,氮氧化物气体从吸收塔底部进入,工艺水从吸收塔顶部喷淋而下,二者逆流接触,生成58 %—60 %的硝酸,塔底酸温度为40 ℃,从吸收塔出来的硝酸进入漂白塔,用来自二次空气冷却器的约120 ℃的二次空气在漂白塔中逆流接触,以提出溶解在稀酸中的低价氮氧化物气体,完成漂白过程,漂白后的成品酸经酸冷却器冷却到40 ℃,进入成品酸贮罐,再用成品酸泵送往硝铵和间硝装置。 仅供学习与交流,如有侵权请联系网站删除谢谢2

硝酸生产工艺

硝酸生产工艺 一、中压法制稀硝酸工艺流程 硝化法制硫酸的一种方法,硫酸工业发展史上最古老的工业生产方法,因以铅制的方形空室为主要设备而得名。铅室法曾作为硫酸的唯一制造法盛行于世,历时100多年。20世纪起,逐渐被塔式法和接触法(见硫酸)取代。 铅室法的基本原理与塔式法相同,实质上是利用高级氮氧化物(主要是三氧化二氮)使二氧化硫氧化并生成硫酸: SO+NO+HO─→HSO+2NO生成的一氧化氮又迅速氧化成高级氮氧化物: 2NO+O─→2NO NO+NO─→NO因此,在理论上,氮氧化物仅起着传递氧的作用,本身并无消耗。 英国人J.罗巴克于1746年创建了世界上第一个铅室法制造硫酸的工厂。至19世纪50年代,铅室法生产工艺才臻于完善。 典型的铅室法的生产流程(图2[ 铅室法生产硫酸工艺流程]),是使300~500℃的含二氧化硫气体(见硫酸原料气)进入充有填料的脱硝塔,与淋洒的含硝硫酸逆流接触。由于酸温升高,含硝硫酸中的氮氧化物得以充分脱除。塔顶引出的含二氧化硫、氮氧化物、氧和水蒸气的混合气体,依次通过若干个铅室。在铅室中,二氧化硫充分氧化而成硫酸。最终通过两座串联的填料式吸硝塔,塔内淋洒经过冷

却的脱硝硫酸,以吸收氮氧化物,所得的含硝硫酸送往脱硝塔。 由于部分氮氧化物会随废气和产品带出,需不断补充。早期是将硝石加入焚硫炉内使受热分解,取得二氧化硫和氮氧化物的混合气体。后来,都是将氨氧化成氮的氧化物,再将后者引入第一个铅室,或将硝酸直接补加在含硝硫酸中,用以淋洒脱硝塔。 潮湿的二氧化硫氮氧化物的混合气体和浓度在70%以下的稀硫酸具有很强的腐蚀性,设备需用铅制。在铅室中,二氧化硫的氧化与成酸反应大部分是在气相中进行,因而不可避免地会形成大量的硫酸雾。这种气溶胶状态的细微颗粒需经较长进间才能凝聚成液滴,坠落至铅室底部。为此必须拥有很大的反应空间,才能保持较高的生产效率。再者,生产过程中释放的大量反应热也须经铅室表面及时散去。因此,铅室法工厂往往采用多个串联的铅室,耗铅量大,这是历史上人们力求革新铅室法的主要原因。 大部分硫酸从铅室制得(浓度为65%HSO)。适量的铅室产品可注入脱硝塔,因多余的水分被蒸发以及塔内也进行部分成酸反应,从而可由脱硝塔取得浓度达76%HSO产品铅室法的硫酸浓度低而且往往含有很多杂质,用途受到限制,这也是铅室法被淘汰的重要因素。(数据来源:五泰信息咨询https://www.360docs.net/doc/3518039093.html, 市场调研报告https://www.360docs.net/doc/3518039093.html,)(市场调研报告https://www.360docs.net/doc/3518039093.html,)(数据来源:https://www.360docs.net/doc/3518039093.html, https://www.360docs.net/doc/3518039093.html,) 二、双加压法制稀硝酸流程

硝酸生产工艺

摘要:硝酸是基本化学工业的重要产品之一,也是一种重要的化工原料,产量在各类酸中仅次于硫酸。工业上制取浓硝酸(HNO3浓度高于96%)的方法有三种:一是在有脱水剂的情况下,用稀硝酸蒸馏制取的间接法,习惯上称“间硝";二是由氮氧化物、氧及水直接合成浓硝酸,称为’直硝’;三是包括:氨氧化、超共沸酸(75%—80%HNO3)生产和精馏的直接法。本文仅探讨超共沸精馏法。 关键词:浓硝酸、氨氧化、超共沸精馏法 前言 硝酸是基本化学工业的重要产品之一,也是一种重要的化工原料广泛用于生产化肥、炸药、无机盐,也可用于贵金属分离、机械刻蚀等。目前,我国有浓硝酸厂家20多家,年生产能力在80万吨以上。1999年产量在73万~75万吨,到2005年稀硝酸生产能力达544.7万吨,2004年浓硝酸产量130.5万吨,2005年产量157万吨,2006年新增产能达300万吨。稀硝酸是合成氨的下游产品,与化肥生产紧密相关。浓硝酸最主要用于国防工业,是生产三硝基甲苯(TNT)、硝化纤维、硝化甘油等的主要原料。生产硝酸的中间产物——液体四氧化二氮是火箭、导弹发射的高能燃料。硝酸还广泛用于有机合成工业;用硝酸将苯硝化并经还原制得苯胺,用硝酸氧化,苯可制造邻苯二甲酸,均用于染料生产。此外,制药、塑料、有色金属冶炼等方面都需要用到硝酸。 我国硝酸的消费结构大致为:化学工业占65%左右,冶金行业占20%,医药行业占5%,其他行业占10%。在化学工业中生产浓硝酸的工艺主要有多种大同小异的工艺流程,生产中是根据氨氧化和氮氧化物吸收操作压力的不同分为间接法、直硝法和直接法三种类型。 1 硝酸的性质、用途及生产方法 1.1 硝酸的性质 纯硝酸为带有窒息性与刺激性的无色液体,其相对密度1.522,沸点83.4℃,熔点‐41.5℃,分为浓硝酸和稀硝酸。无水硝酸极不稳定,一旦受热见光就会分解,生成二氧化氮和水。 硝酸能与任意比例的水混合,形成浓硝酸(96%~98%HNO3)和稀硝酸(45%~70% HNO3)。硝酸是三大强酸之一,具有很强的氧化性。除金、铂及一些稀有金属外,各种金属都能与稀硝酸作用生成硝酸盐。由浓硝酸与盐酸按1:3(体积比)组成的混合液称为“王水”,能溶解金和铂,故称“王水”。 硝酸还具有强烈的硝化作用,与硫酸制成的混酸能与很多有机化合物结合成

世界硝酸产业总体发展状况

世界硝酸产业总体发展状况 硝酸工业生产具有悠久的历史,早在15世纪就有人用智利硝石与硫酸反应制造硝酸,该法一直沿用至20世纪初。1913年Haber合成氨法问世,原料氨充足,从此氨氧化生产硝酸成为世界上生产硝酸的主要方法。 硝酸作为一种特殊产品,可用于和平建设,亦可用于战争。美国在20世纪70年代越战时期,硝酸工业得到快速发展,其产量最高达10000 kt/a。越战之后进行调整,现保留约67家,总产能7000~7500 kt/a。全球硝酸生产厂家(未含中国大陆)约345家,总产能55100~55700 kt/a,生产方法以高压法和双加压法为主。全球各国硝酸生产能力及生产企业排序如下。 1. 全球各国生产能力前五名排序 中国7050 kt/a(2010年预计9670 kt) 美国7000~7500 kt 德国3866 kt 英国3187 kt 荷兰2465 kt 2. 全球生产企业产能前五名排序 英国帝国化学工业分公司2205 kt(最大生产厂比村厄1375 kt) 荷兰氮素公司斯勒伊斯基尔1100 kt 德国巴斯夫(在路德维港)950 kt

挪威波尔斯洛伦950 kt 中国山西天脊煤化工集团公司810 kt 国际硝酸产业概况 当前,硝酸材料是最主要的化工和农药生产原料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是主流材料。硝酸的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况。 硝酸的需求主要来自于农药和化工生产。按浓度要求不同,分为浓硝酸和稀硝酸。其中,用于农药市场占55%左右,化工占45%,1994年全世界硝酸总产量只有94763万吨,而2004年就接近52416万吨,在短短的10年里就增长了16多倍。 美国能源部计划在2010年累计安装容量4600万吨,日本计划2010年达到5000万吨,欧盟计划达到6900万吨,预计2010年世界累计安装量至少180000万吨。从上述的推测分析,至2010年硝酸至少在30000吨以上,世界多晶硅的产量2005年为28750吨,其中浓硝酸为20250吨,稀硝酸为8500吨,浓硝酸需求量约为19000吨,略有过剩;稀硝酸的需求量为15000吨,供不应求,从2006年开始浓硝酸和稀硝酸需求的均有缺口,其中浓硝酸产能缺口更大。 世界化工硝酸需求紧张,主要是由于以欧洲为中心的太阳能市场迅速扩大浓硝酸价格方面将逐步涨高,2005年世界硝酸产量约67421万吨 世界硝酸主要生产企业有日本的Tokuyama、三菱、住友公司、

硝酸生产工艺

摘要:简要介绍了国内外硝酸工业的技术及发展趋势,同时对双加压法的特点进行阐述,并提出了其发展前景及需关注的问题。 关键词:硝酸生产双加压法问题发展趋势 前言 硝酸工业的发展已有一百多年的历史,自从硝酸实现工业化生产以来,人们就把装置产量的提高,经济技术指标的优化和运行安全可靠作为追求的目标。伴随着金属材料技术、设备机械制造技术、催化剂技术和控制技术的发展,硝酸生产的大型化、经济技术指标的先进化、控制手段的自动化成为可能。 1 硝酸生产方法简介 稀硝酸的生产过程根据氧化压力和吸收压力设置的不同,主要有常压法(N)、综合法(N+M)、中压法(M+M)、高压法(H+H)和双加压法(M+H)五种方法。表1给出了各种生产方法的特征。 表1 各种生产方法的特征 从表1可以看出:氨和铂的消耗综合法为最低,中压法和双加压法次之,高压法最高;相对投资费用高压法最低,双加压法次之;在生产规模上双加压法、高压法最宜实现大型化。尾气排放双加压法最优。 1.1常压法、综合法[1] 我国已将此两种生产方法列入落后和淘汰行列,除个别老厂在运行外,新建装置已不许选用上述两种方法。 1.2全中压法[2] 氨的氧化和氮氧化物的吸收均在0.35~0.6MPa压力下进行,此法的特点是:设备较为紧

凑,生产强度较高,不需要NO x压缩机,流程比综合法简单,投资较少,酸浓度为53%,能量可以部分回收。缺点是生产强度低,吸收容积较大,尾气中NO x含量较高为2 000×10-6,需处理才能达标排放,并且系统设备腐蚀严重。 1.3高压法 氨氧化和氮氧化物吸收均在0.71~1.2MPa的压力下进行。此法的特点是全过程压力均由空气压缩机供给,不需NO x压缩机,流程简单,设备布置紧凑,基建投资少,特种钢材用量少,生产强度大,吸收率高达99%,产品浓度高(55%~70%),尾气中氮氧化物含量低,能实现清洁生产,能量回收率高。缺点是氨氧化率低,氨耗高,铂催化剂装填量大,使用周期短,损耗亦大,生产成本较高。 1.4双加压法 双加压法是法国的GP公司最早研制开发成功的,该公司于1958年创建了第一套双加压法硝酸生产装置。国内山西天脊集团于1983年最早引入“双加压法”硝酸生产工艺。 双加压法是继全中压法和全高压法后硝酸生产工艺的进一步发展,它集中了中压法氨耗低、铂耗低和高压法成品酸浓度高及尾气中NO x含量低的优点,是目前世界上最先进的硝酸生产工艺。 氨的氧化采用中压(0.35~0.6MPa),氮氧化物的吸收采用 1.0~1.5MPa,此法吸收了全中压法与全高压法的优点,并可采用比全高压法更高的吸收压力,对工艺过程更为适用。使氨的损耗与铂催化剂的损耗接近常压法,吸收系统采用高压后吸收率高(99.8%),容积减少,酸浓度高(60%~70%),生产强度大,经济技术指标最优化,生产成本低,尾气中NO x含量低(最低达150×104t),是最彻底的清洁生产技术,符合国际排放要求,基建投资适度,能量回收综合利用合理,是最具发展的流程。 图1是目前国内最新双加压法硝酸工艺流程图[3]。

硝酸生产工艺技术简介

C硝酸生产工艺技术简介 1建设规模及产品方案 1.1产品方案 利用本公司生产的液氨生产硝酸,最终产品为98%浓硝酸。 1.2生产规模 1.2.1设计规模: 公称能力为日产浓硝酸350吨(以100%HNO 3计) (公称能力产浓硝酸10万吨/年,计算产能10.5万吨/年,配套建10.5 万吨/年稀硝酸装置)。 年运行时间:7200小时。 1.2.2确定本装置设计规模依据以下因素: 结合耀隆集团原材料供应、辅助工程条件以及市场需求,将本工程浓硝酸生产规模定为10万吨/年(以100%HNO 3计)。 2工艺技术方案及技术来源 2.1工艺技术方案选择 2.1.1稀硝酸 2.1.1.1国内外稀硝酸工艺技术概况 目前,国内外工业上生产稀硝酸的方法有常压法、综合法、全中压法、高压法、双加压法,现分述如下: (1)常压法: 氨氧化和吸收均在常压下进行的生产工艺。 早期硝酸生产多采用这种方法,该工艺流程的特点为系统压力低,设备结构简单,工艺操作稳定,氨氧化率高,铂耗较低。但吸收比容积大 (20~25m3)

, 酸吸收率较低(仅为92%左右)。为减少对大气的污染并提高氨利用率,需附有碱吸收N OX尾气装置并副产硝盐,即便如此尾气中N OX浓度仍很高,不符合目前日益严格的环境要求。加上设备相对台数较多,设备体积大,装置占地面积多,投资大,成品酸浓度低等因素,国家经贸委已明文规定禁止采用此种流程新建硝酸装置。 (2)综合法 常压氨氧化和中压(0.25~0.5MPa)酸吸收的稀硝酸生产工艺。 这种方法在一定程度上弥补了常压酸吸收的缺点,我国在本世纪50年代末 引进该流程进行稀硝酸的工业生产。该方法主要缺点是常压氨氧化、设备庞大、占地多,需要配备较昂贵的不锈钢材质的氧化氮压缩机,其投资高于下面介绍的中压法,且吸收压力低仅0.35MPa(A),因此酸浓度低及尾气排放不能达到环保要求,不适用于规模较大的硝酸装置,国家经贸委也明文规定了不能采用此种流程建设硝酸装置。 (3)全中压法 氨氧化和酸吸收均在中压下进行的稀硝酸生产工艺。 我国从60年代中期开始建设的硝酸装置,大多为中压法,该装置的特点是:采用蒸汽透平与尾气膨胀机直接驱动空气压缩机,系统压力为0.35MPa (g),双塔吸收,成品酸浓度在54~57%左右,出塔尾气中N OX含量为0.2%左右,仍需采取进一步的尾气处理措施才能满足环保要求。 国外也有各具特点的全中压流程,诸如:伍德流程、Bamag流程、Stamicarbon流程等。由于其酸浓度、尾气指标以及投资等仍不太令人满意,故而,新建装置已很少采用该种流程。 (4)全高压法 除系统压力较全中压法高外(约为0.6~1.1MPa俵)),其它均类似于全中压 流程。该工艺流程特点为:设备紧凑,相对其它流程投资省,酸浓度高(一般可

硝酸工艺流程简介

1. 双加压法稀硝酸生产工艺流程 工艺流程示意图如图1-1: 1、2—液氨蒸发器,3—辅助蒸发器,4—氨过热器,5—氨过滤器,6—空气过滤室,7—空压机,8—混合器,9—氧化炉、过热器、废热锅炉,10—高温气气换热器,11—省煤器,12—低压反应水冷器,13—氧化氮分离器,14—氧化氮压缩机,15—尾气预热器,16—高压反应水冷器,17—吸收塔,18—尾气分离器,19—二次空气冷却器,20—尾气透平,21—蒸汽透平,22—蒸汽分离器,23—汽包,24—蒸汽冷凝器。 图1-1 工艺流程示意图 流程简述: 合成氨厂来的液氨进入有液位控制的A 、B 两台氨蒸发器中,氨在其中蒸发,正常操作时,大部分液氨被A 台蒸发器中来至吸收塔的冷却水所蒸发(吸收塔上部冷却水与A 蒸发器形成闭路循环),蒸发温度11.5 ℃;其余的液氨被冷却水在B 台蒸发器中蒸发,蒸发温度为14 ℃,两台氨蒸发器的蒸发压力均维持在 Mpa ;其中的油和水在辅助蒸发器中被分离,蒸发出的气氨进入氨中压蒸 空气 尾气 液氨 至漂白1 23456 789 111111*********

过热器,气氨温度由TV31022控制,温度为110 ℃,然后再经氨过滤器进入 氨─空气混合器。 空气从大气中吸入,经过三级过滤进入空气压缩机入口(冬季在经过空 气过滤器前由空气预热器预热),经过空气压缩机加压至 Mpa后分为一次空气和二次空气两股气流,一次空气进入氨─空混合器,二次空气进入漂白塔。 氨和空气在氨─空混合器中混合以后,进入氧化炉,经过铂网催化剂氧 化生成NO等混合气体,铂网氧化温度为860 ℃,然后经过蒸汽过热器、废热 锅炉,再经高温气─气换热器、省煤器、低压反应水冷器,再进入氧化氮分 离器,在此将稀酸分离下来,气体则与漂白塔来的二次空气混合后进入氧化 氮压缩机,进气温度为60 ℃,压力为 Mpa;出口温度为200 ℃,压力为 Mpa。再经尾气预热器、高压反应水冷却器进入吸收塔,进入吸收塔时的氮氧化物 气体温度为40℃,氮氧化物气体从吸收塔底部进入,工艺水从吸收塔顶部喷 淋而下,二者逆流接触,生成58 %—60 %的硝酸,塔底酸温度为40 ℃,从吸收塔出来的硝酸进入漂白塔,用来自二次空气冷却器的约120 ℃的二次空气在漂白塔中逆流接触,以提出溶解在稀酸中的低价氮氧化物气体,完成漂 白过程,漂白后的成品酸经酸冷却器冷却到40 ℃,进入成品酸贮罐,再用成品酸泵送往硝铵和间硝装置。 从吸收塔顶部出来的尾气先后经过尾气分离器、二次空气冷却器、尾气 预热器、高温气—气换热器,温度升至360 ℃,进尾气透平,回收约60 %的总压缩功,出尾气透平的气体温度为140 ℃左右,NO X含量≤200ppm,经排气筒排入大气。 在废热锅炉中产生的湿饱和蒸汽,经蒸汽过热器加热到温度440 ℃、压力为 Mpa过热蒸汽进入蒸汽分离器,过热蒸汽用于驱动蒸汽透平,蒸汽过剩

相关文档
最新文档