漆酶在制浆造纸中的应用研究进展

漆酶在制浆造纸中的应用研究进展
漆酶在制浆造纸中的应用研究进展

收稿日期:2004 07 19(修改稿)

作者简介:张爱萍,女,1980年生;山东轻工业学院硕士研究生;主要研究方向:纤维资源的制浆造纸特性与生物技术应用。

E mail:zhap@https://www.360docs.net/doc/353211976.html,

漆酶在制浆造纸中的应用研究进展

张爱萍 秦梦华 徐清华

(山东轻工业学院制浆造纸工程省级重点学科,山东济南,250100)

摘 要:漆酶是一种多酚氧化酶,参与木素的降解或聚合,具有氧化木素的能力,在制浆造纸中的应用已拓展到脱墨、漂白、制浆、废水处理、增加湿强性能等诸多方面。本文综述了近年来漆酶在制浆造纸工业中的应用研究进展。关键词:漆酶;脱墨;漂白;湿强中图分类号:Q55

文献标识码:A

文章编号:1000 6842(2004)02 0161 05

漆酶是一种含酮的多酚氧化酶(p diphenol oxidore ductase,EC 1 10 3 2),最早是1883年Yoshida 从漆树的分泌物中发现的[1],以后的研究进一步发现漆酶广泛存在于昆虫、植物和真菌中,尤其在一些能够降解天然木素的白腐菌(T versicolo r )中大量存在。

作为一种木素降解酶,漆酶可以降解生物体中的木素。漆酶的氧化还原电势比较低,为300~800m V (对标准氢电极)[2],只能氧化降解木素中的酚型结构单元(图1),而不能氧化占木素90%的非酚型结构。1990年[3]

发现如果有低分子质量的化合物作为氧化还原介体,漆酶能氧化非酚型木素结构(图2),最适合的介体是一些酚型化合物和杂环如卟啉类化合物,这些介体物质有的来自真菌次生代谢产物或木素降解产物,如紫丁香醛和来自P ycno porus cinnabarinus 的3 羟基邻氨基苯甲酸(3 hydroxyanthranilicacid,3 HAA);有的来自人工合成化合物,如AB TS[2,2 联氨 二(3 乙基 苯并噻唑 6 磺酸)]、HB T (1 羟基苯并三唑)、VI O (紫尿酸)、NHA(N 羟基 N 乙酰苯胺)等[4]。据报道,在氧气存在的条件下,漆酶能将介体转化成共介体,由于这种共介体尺寸较小,能够渗透进入纤维而与木素反应,脱木素机理基于自由基的形成[5 6]。目前,漆酶在制浆造纸工业的诸多方面得到了广泛的应用,如二次纤维回用、漂白、制浆、废水处理、纤维性能的改善,湿强剂及纤维板制造等,本文就这些方面的研究进展进行了综述。

1 漆酶在二次纤维回用中的应用

近年来,二次纤维在原料中所占的比例日益增加,

脱墨技术引起了越来越多的关注,酶法脱墨是一种经济有效的脱墨方法,可以减少化学脱墨带来的环境污染,而且酶处理可以改善浆料滤水性能和纸页强度,降

低漂白化学品用量。

图1 漆酶氧化酚型木素结构

图2 漆酶介体体系氧化非酚型木素结构

161

Vol 19,No.2,2004

Transactions of China Pulp and Paper

中 国 造 纸 学 报

酶脱墨有两种途径[7],一种是利用酶直接攻击油墨使油墨降解,如脂肪酶、酯酶等;另一种是通过改变纤维表面或附近的联接键使油墨脱离,并借助洗涤、浮选或两者结合的方法将脱离下来的油墨粒子除去,如纤维素酶、半纤维素酶、木素降解酶等。

木素降解酶可以通过氧化降解纤维表面的木素来达到脱除油墨的目的,这对于木素含量高的纸种(如新闻纸)的脱墨具有重要意义。漆酶是一种木素降解酶,它在某些具有传递电子能力的介体和氧气的存在下,能够使木素发生氧化降解,在酶法脱墨中具有广阔的应用前景。

据Call 等报道[8],利用漆酶/介体体系对旧报纸进行脱墨,脱墨浆白度及可漂性略有提高。徐清华、秦梦华等研究了漆酶介体体系对旧报纸的脱墨效果及其对后续漂白的影响,在通氧气的条件下加入漆酶和介体VIO(Violuric acid,紫尿酸)后脱墨浆的白度下降,并且随着漆酶用量的增加,脱墨浆的白度呈现下降趋势,这归因于漆酶/介体体系氧化木素时产生的发色基团[9]

,但脱墨浆可漂性明显提高,漂白后纸浆白度达到52 4%ISO,比对照浆提高4 2%ISO,物理性能也得到改善,裂断长和撕裂指数分别比对照浆提高了20%和13%。研究还发现,漆酶与半纤维素酶的协同作用对旧报纸脱墨后漂白浆的质量有明显改善,漂白浆白度提高到60 4%ISO,比对照样提高了6 1%ISO,裂断长和撕裂指数分别比对照浆提高了22%和14%,这可能是由于木聚糖酶提高了漆酶/介体体系对纸浆的可及性[10]。该研究结果已申请国家专利[11]。2 漆酶在生物制浆中的应用2 1 漆酶在机械制浆中的应用

生物机械制浆是指在机械制浆前利用真菌或酶对木片进行预处理,其原理是利用具有木素降解能力的微生物或酶选择性地分解植物纤维原料中的木素。

白腐菌能产生木素过氧化物酶、锰过氧化物酶、漆酶,可以对木素进行有效的降解,成为近年来研究的热点。瑞典造纸研究所率先开展这方面的工作,利用能降解木素的白腐菌对木片进行预处理,研究发现,经预处理后的木片进行磨浆可以显著降低磨浆能耗。随后,美国研究者也对此进行研究,试验结果显示节能达30%,而且成纸强度也有提高,中试效果达到实验室水平[12]。

但是用真菌进行预处理周期较长,直接采用木素降解酶尤其是漆酶进行预处理,引起了广大研究者的

兴趣。据Jujiop [13]研究,在20~90 、pH 值2~10条件

下用漆酶进行预处理,可以对原料中的木素进行改性,磨浆能耗明显降低,每吨浆能耗从1300kW h 降到850kW h,节省动力约30%,且机械浆的物理性能得到改

善,纸浆质量达到化学热磨机械浆的水平。在漆酶活性0 5U/mL 、初始氧化还原电势100mV 及20 下,对云杉TMP 进行预处理,磨浆能耗降为1 27MJ/kg [14]。研究还发现[15]

,用虫漆酶浸透辐射松可使磨浆能耗减少5%~8%,而且不影响纸浆的光学性质,撕裂度有所提高,用动态成形器抄纸的强度降低也比较小。2 2 漆酶在化学制浆中的应用

随着环境压力的增大,对制浆造纸废水尤其是含氯漂白工段的废水有了更严格的限制,降低进入漂白工段纸浆中的木素含量是降低废水毒性的一种行之有效的方法,也是目前常采用的方法。

在制浆前对原料进行生物处理,可以降低化学浆的残余木素量。秦梦华等[16]研究发现,用漆酶和介体HBT 在蒸煮前对麦草进行预处理,可降低纸浆的卡伯值,提高纸浆的白度和强度。漆酶和聚木糖酶的协同作用使纸浆的卡伯值进一步降低,与未经酶处理的化学浆相比,卡伯值降低19%,而且具有更高的裂断长和撕裂指数。

3 漆酶介体体系在漂白中的应用

传统的含氯漂白产生大量有毒和强致癌性物质,对环境和人类造成了巨大危害,已逐渐被无氯漂白取代。酶法漂白作为一种对环境友好的漂白技术引起了研究者的广泛兴趣,自1990年报道了漆酶在传递电子的介体帮助下能氧化非酚型木素模型化合物(图3)以来,漆酶介体的生物漂白成为研究的热点。

图3 生物漂白过程漆酶/介体体系降解木素机理示意图

1994年Call 和Mucke [17]

报道了一个漆酶介体系统,该系统能成功地处理硫酸盐浆、亚硫酸盐浆和溶剂浆,使纸浆卡伯值下降50%甚至更多,并进行了工厂中试,试验采用漆酶介体漂白+碱抽提+螯合处理+过氧化氢漂白(LEQP)的无氯漂白流程,纸浆得率、白度和物理性能都取得较好的结果,显示了良好的应用前景。1996年,Bourbonnais 和Paice [18]用漆酶-AB TS 系统处理硫酸盐浆和亚硫酸盐浆,后经碱抽提,纸浆的卡伯值分别下降25%~40%和50%,也证明了漆酶介体漂白是一个很有发展潜力的生物漂白技术。付时雨

162

中 国 造 纸 学 报第19卷 第2期

等[19]利用漆酶添加介体NHA(N 羟基 N 乙酰苯胺)处理尾叶桉硫酸盐浆,再进行过氧化氢漂白,纸浆的卡伯值降低56%,白度可达81%ISO。

有研究证明[20],半纤维素酶处理不但可以作为过氧化氢漂白的预处理段,也可以作为漆酶处理硫酸盐浆进行脱木素的预处理段。喻利等人[21]对漆酶和聚木糖酶协同漂白蔗渣硫酸盐浆进行了研究,发现漆酶介体体系与聚木糖酶同时或前后处理蔗渣硫酸盐浆,在一定程度上提高了纸浆的漂终白度和强度。据林鹿等[22]报道,用不同的酶处理桉木硫酸盐浆,以漆酶与木聚糖酶的协同作用最好,处理后纸浆白度提高,粘度降低较小,而且可以明显提高后续过氧化氢的漂白效果,这主要是由于经漆酶和木聚糖酶处理后,木素与半纤维素可直接降解溶出。最近新发现了一种虫漆酶载体asiumoctacyanomolybdate,一般情况下,氧漂针叶木浆与虫漆酶充分反应后,后续的碱处理可以脱除约50%的木素,如果再进行一次酶处理,后续的碱处理还可以脱除20%的木素,这样可以提高氧及过氧化氢的漂白效果,把麦草化学浆用木聚糖酶和虫漆酶的载体处理之后,可以使碱抽提段木素含量减少60%[15]。

4 漆酶在造纸废水处理中的应用

在处理造纸废水方面,漆酶及能产生漆酶的真菌已显示出它特有的作用。

氯化木素及其氧化产物是漂白废水颜色和毒性的主要来源[23]。据J Dec和J M Bollay研究发现[24],漆酶的去毒作用是通过酚的聚合反应实现的,漆酶可催化氯酚生成低聚物,聚合产生的不溶性沉淀可以通过沉降、过滤去除,这样可以去除浓度高达1600mg/L的取代酚。另外,研究表明[25],各种真菌系统中的漆酶都能迅速地将许多有毒的多氯酚和愈创木酚部分脱氯,但2 氯酚和4 氯酚除外。据林鹿等人[26]研究发现,漆酶可以脱除桉木硫酸盐浆CEH漂白废水中40%以上的有毒物质。与一般方法相比,采用漆酶处理造纸废液中有机氯化物,具有催化效能高,反应条件温和,对反应条件、反应设备的要求不苛刻等优点。

漆酶还可用于废水脱色,Elithbeth[27]等采用白腐菌对工业染料进行脱色,并对培养液的粗抽提液进行了分析,表明只有漆酶活力和染料的脱色效果呈正相关,说明漆酶在其中起到重要的作用。单独用漆酶对桉木硫酸盐浆CE H漂白废水进行脱色,脱色率为24%左右[26]。将漆酶和辣根过氧化物酶与L-酪氨酸共聚形成有酶活性的水不溶性聚合物,将此聚合物固定于凝胶颗粒,能进一步提高酶处理对纸浆厂废水的脱色效率[28]。

5 漆酶对改善纸浆纤维性能的作用

Ken K Y Wong等人[29]用漆酶介体体系预处理卡伯值为70和94的辐射松硫酸盐浆,卡伯值为70的纸浆成纸后抗张强度有提高,而卡伯值90的纸浆成纸后物理性能提高不大,他们认为漆酶预处理可能对卡伯值低于70的纸浆成纸物理性能提高较显著。另外对低卡伯值的化学浆研究表明,在全无氯漂白前用漆酶介体体系进行预处理,可以提高纸浆的结合强度[30],赋予成纸更高的撕裂-抗张关系[31]。

Mansfield[32]用漆酶处理经蒸汽和螺旋挤压后的木片,在相同游离度时提高了机械浆的抗张强度。

用漆酶(NS51003)介体体系处理马尾松磨木浆,可以显著提高未漂浆的裂断长和漂白浆的撕裂指数,分别比对照浆提高了42%和9 6%[33]。如果在漆酶介体体系处理前增加一段半纤维素酶预处理,可以进一步提高未漂浆及漂后浆的裂断长,说明半纤维素酶的预处理可以增强漆酶介体体系的处理效果[34]。经漆酶处理的机械浆有助于提高纤维的结合强度和中等定量纸板的纤维结合性能,而且漆酶处理的机械浆抄造的纸页经超级压光后能保持优良的抗张强度,并获得较好的平滑度[32]。

Richard P Chandra等[35]研究发现,在3,4,5 三羟基苯甲酸存在时,用漆酶处理卡伯值为91的硫酸盐浆,可以提高纸张的耐破度和抗张强度,分别比对照样提高34%和20%,但是用漆酶处理完全漂白后的浆,对纸张的强度性质没有提高。研究表明,纸张强度的提高是纤维间氢键结合力增强及纸页中产生苯氧自由基交联的共同结果。

6 漆酶的增湿强作用

湿强剂用来改善润湿时的纸张性能,常用的湿强剂主要有脲醛树脂、三聚氰胺甲醛树脂、聚酰胺聚胺环氧氯丙烷类等,此外还有低分子质量有机氯化物湿强剂,但其增加了甲醛和BOD的排放量,对环境有害,因此开发对环境友好的湿强剂势在必行。

湿强剂的作用一般是通过与纤维作用产生交联基团,阻止纤维的润胀保护氢键[36 37]。在水相溶液中,漆酶可以催化氧化含有木素的纤维原料,在木素和与之相邻的纤维之间产生苯氧基,而且被氧化的木素可以发生聚合作用,缩合的木素包围着纤维,在纤维间形成交联网,该网可以阻止纤维润胀,保护氢键不被破坏,其作用相当于纸张湿强剂[38],因此漆酶在制浆造

163

第19卷 第2期漆酶在制浆造纸中的应用研究进展

纸中可用做湿强剂。据Martin Lund研究[39],单独用漆酶处理未漂硫酸盐浆对成纸的湿强度提高不大,而用漆酶介体体系催化氧化可以明显提高湿强度,成纸湿强度达到4 9kNm/kg,比空白样提高了1倍多,加漆酶和介体PPT(phenothiazine 10 propionic acid,酚噻嗪 10 丙酸)后进行热处理,成纸湿强度可达12 4kNm/kg,增强效果显著。漆酶与3,4,5 三羟基苯甲酸处理卡伯值为91的硫酸盐浆,纸张湿强度与对照样相比提高72%[35]。

7 漆酶粘贴三合板,纤维板制造

漆酶在真菌色素合成中扮演着重要角色,并且可能参与菌索的形成,还能在细胞间催化酚类化合物的聚合粘连来固定菌丝。人们已经利用漆酶的这种粘合功能进行化工行业的开发研究,在酶的催化作用下,用制浆废水中的木素为原料可以生产木屑板等产品[40]。

研究表明,用漆酶和木素过氧化物酶氧化木素可以提高纤维板原料中木素与纤维之间的连接键[41]。Martin Lund[39]等人用漆酶催化氧化富含木素的木材纤维原料提高了纤维板芯层强度。1993年Kharazipour 等人[42]在专利中报导了用漆酶处理木纤维2~7天,不加任何胶粘剂,然后按湿法或干法工艺制造纤维板,结果发现,纤维板的胶接强度均比对照板明显提高。Felby等人[43]用漆酶氧化水青冈木纤维,处理时间仅1h,制成的干法和湿法纤维板与对照板相比具有较好的MOR/MOE(强度/刚度)性能,电子自旋共振谱(ESR)的研究说明,漆酶能使木素生成较稳定的游离基,而胶合作用与木素形成的游离基的交联反应有关。

由上述可见,漆酶在制浆造纸工业中的应用研究已渗透到制浆造纸工业的诸多方面,但大多还停留在实验室研究阶段。漆酶在脱墨中的研究还处于初级阶段,其脱墨机理尚需进一步探讨。漆酶制浆的工业化还需解决缩短预处理周期、预处理过程中伴生的负效应、微生物的有效控制等问题。漆酶在漂白中的研究已比较成熟,并显示出其优越性,但实现工业化还有待于一些问题如漆酶的大规模生产、高效经济的介体的研制、木素的生物降解机理的研究等。漆酶在制浆造纸废水处理、改善纸浆纤维性能、提高湿强度及在纤维板制造中的作用等方面还需要进一步研究与开发。

参 考 文 献

[1] Yoshida H Che mis try of lacquer[J] Chem Soc ,1883,43:472

[2] Bourbonnais R,Paice M G Demethylation and deligni fication of kraft

pul p by Coriolus Versicol or Laccase i n the presence of2,2 azi no bis (3

ethybenz thiaoli ne 6 sulphonate)[J] Appl Microbiol Biotechnol , 1992,36(5):823

[3] Bourbonnais R,Paice M G Oxidative of non phenolic subs tances[J]

FEBS Lett,1990,267:99

[4] Li Kaichang,Bermek Hakan,Eriksson Karl Eri k L A ne w technique for

screening of laccase medi ators[C] Boil Sci Symp ,Tappi Press,At lanta,1997,349

[5] Potthase A,Koch H,Fischer K The laccase mediator s ystem reacti on

with model compounds and pulp[C] 9th ISWPC,Montreal,Canada, 1997,6F2 1,F2 4

[6] Bourbonnais R,Leec h D,Paice M G Electroche mical analysis of the in

terac tions of laccase medi ators with ligni n model compunds[J] Biochim Bi ophys Ac ta,1998,1379(3):381

[7] Prati ma Baj pai,Pramod K Bajpai Deinking w i th enz ymes:a review[J]

Tappi J,1998,81(12):111

[8] Call H P,Strittmatter G Applicati on of lignolytic enz ymes in the paper

and pulp indus try recent results[J] Papier,1992,46(10):32

[9] Sealey J,Ragauskas A J Res idual li gnin s tudies of laccase deli gni fied

kraft pulps[J] Enzyme and M ic robial Technology,1998,23(11):422 [10] Kanteli nen A,Hortling B,Ranua M,et al Effects of fungal and enzy

matic treatments on is olated li gni ns and pulp bleachability[J] Holz forschung,1993,47:29

[11] 秦梦华,徐清华,傅英娟,等 一种废新闻纸酶法脱墨技术[D]

中华人民共和国专利,专利申请号200410023797 3

[12] Johns rud S C,K E Eriksson Cros s breeding of selected and mutated

homokaryotic strains of Phanerochaete chrys osporium K 3:new cell ulose

deficient strains with i ncreased ability to de grade lignin[J]

Appl Microbi ol Biotechnol ,1985,21:320

[13] Jujop Enzymes are breaki ng into paper[J] Pulp and Paper Int ,1991,

33(9):81

[14] 秦梦华,陈嘉翔 酶制剂与制浆造纸工业[J] 纸和造纸 1995

(2):4

[15] 刘文,编译 造纸用化学药品的最新动向[J] 国际造纸,2003,

22(2):1

[16] 秦梦华,傅英娟,劭志勇,等 酶预处理对麦草NaO H A Q制浆性

能的影响[J] 中国造纸学报,2000,15:33

[17] Call H P,Mucke I State of the art of enz yme bleaching and dis cl os ure of

a breakthrough process[C] Proceedings International Non Chlori ne

Bleac hing Conference,Amelia Island,Florida,1994

[18] Bourbonnai s R,Paice M G Enzymatic delignificati on of kraft pulp usi ng

laccase and a medi ator[J] Tappi J,1996,79:199

[19] 付时雨,詹怀宇,余惠生 漆酶/介体系统漂白尾叶桉硫酸盐浆

的初步研究[J] 中国造纸,2000,19(2):8

[20] Vii kari L,Ranua M,Kanteli nen A,et al Bleaching kraft pulps with ox

idative enz ymes and alkaline hydrogen peroxide[J] Tappi J,1995,78

(9):161

[21] 喻利,詹怀宇,付时雨 漆酶和聚木糖酶协同漂白蔗渣硫酸盐浆

的研究[J] 纤维素科学与技术,2001(3):37

[22] 林鹿,陈嘉翔,等 降解木素酶和降解木聚糖酶的生物漂白及机

理[J] 中国造纸学报 1997,12:48

[23] 林鹿,陈嘉翔,王双飞 白腐菌对蔗渣浆CEH漂白废水的脱色

[J] 工业水处理,1996,16(3):25

164中 国 造 纸 学 报第19卷 第2期

[24] Dec J,Bollag J M Detoxificati on of s ubs ti tuted phenols by oxi doreduc

tive enz ymes through polymeriz ation reacti ons [J] Archi ves of Enviro mental Conta mination and Toxicology 1990,19:543

[25] Roy Arcand L,Archibald F S Direct dechlorination of chlorophenolic

compounds by laccases form Trametes (Coriolus)versicolor[J] Enz yme M icrob Tecnol,1991,13(3):194

[26] 林鹿,陈嘉翔,等 白腐菌对纸浆CEH 漂白废水的脱色、消除毒

性和芳香化合物的降解[J] 中国造纸学报,1996,11:69

[27] Elithbeth Rodr guez,M ichael A Pickard,Rafael Vazquez Duhalt In

dustial dye decolorization by laccases from ligninolytic fungi[J] Current Microbiology 1999,38:27

[28] 周学飞 微生物酶制剂在造纸工业中的应用前景[J ] 中国造纸

学报,1998,增刊:74

[29] Ken K Y Wong,Kathryn B,Anders on R Paul Kibblewhite Effects of

the laccase mediator system on the handsheet properties of two high kappa kraf t pulps[J] Enzyme and Technology ,1999(25):125

[30] Haynes,Kaaren,R agaus kas,Art Effects of laccase Mediator Deli gni

fication on Fiber Properties[C] International Pulp Bleaching Conference (Book2),Helsi nki,Fi nland,1998,355

[31] Poppius Levli n K,Wang Ranua M TCF bleaching of laccase/mediator

treated kraft pulps[C].proceedings of Internati onal Pulp Bleachi ng Con ference,Helsinki,Finland,1998,Book1:77

[32] Ken K Y Wong,Sha wn D Mans field Enz ymetic process ing for pulp and

paper manufacture a review[J] Appita J ,1999,52(6):409[33] 汤镇江,徐清华,秦梦华 漆酶对未漂马尾松磨木浆的酶法改性

[J] 纤维素科学与技术,2004(2)

[34] 汤镇江,徐清华,秦梦华 纤维素酶系对马尾松磨石磨木浆酶法

改性的影响[J] 林产化学与工业(已录用)

[35] Ric hard P Chandra,Lauri K Lehtonen,Arthur J Ragaus kas * Modifac

ton of Hi gh Lignin Content Kraft Pulps with Laccase to Improve Paper Strength Properties 1 Laccase Treatment i n the Presence of Gallic Acid [J] Biotechnol Prog 2004(1):255

[36] Marchess ault R H,Dube M,Pierre J St,Revol J F Ne w i nsight into fi

bre swelling,i nterfibre bonding and wet strength In:Fi ber water inter actions in paper making[M].Technical Division of the British Paper and Board Industry Federati on,London,1978:795

[37] Scott W E Wet strength additives In:Priciples of wet end che mis try

[C].Tappi Press,Atlanta,GA,1996:61

[38] Ishihara T,Miyaz aki M Oxidati on of milled wood li gni n by fungal lac

cas e[J] Mokuzai Gakkaishi,1972,18:415

[39] Martin Lund,Claus Felby Wet strength improve ment of unbleached kraft

pulp through laccase catalyzed oxidation [J ] Enzyme and M icrobial Technology,2001,28:760

[40] 钞亚鹏,钱世钧 真菌漆酶及其应用[J] 生物工程进展,2001,12

(5):23

[41] Felby C,Pedersen L S,Nielsen B R.Enhanced auto adhesi on of wood

fi bers using phenol oxidas es[J] Holz forschung,1997,51:281[42] EP0,565,109A1[P]

[43] Claus Fel by,et al Enhanced Auto Adhesi on of Wood Fibers Using Phe

nol O xidases[J] Holzforschung,1997,51(3):281

Application of Laccase in Pulp and Paper Industry ZHANG Ai ping * QI N Meng hua XU Qing hua

(Shan don g Key Lab o f Pulp and Pa p e r En gineering,Shandon g Institute o f Light I n dustry ,Ji nan,Shandong Province ,250100)

(*E mail:zhap@sdili edu cn)

Abstract:Laccase (EC 1 10 3 2)is a polyphenolic oxidase It can oxidate li gnin and participate in the degradation or polymerization of lignin It has been broadly used in different areas of pulp and paper i ndustry,such as deinking,bleaching,pulping,treating waster water,enhancing wet strength of paper and so on In this paper ,the application of laccase in pulp and paper industry i s reviewed Key words:laccase;deinking;bleaching;wet strength

(责任编辑:房宝伦)

165

第19卷 第2期漆酶在制浆造纸中的应用研究进展

漆酶催化活性中心结构及应用的研究进展

第8卷第2期2000年 6月 纤维素科学与技术 Journal of Cellulose Science and T echnology V ol.8 N o.2 Jun. 2000 综述评论漆酶催化活性中心结构及应用的研究进展Ξ 李光日 余惠生3 付时雨 秦文娟 (中国科学院广州化学研究所纤维素化学开放研究实验室 广州 510650) 文 摘:综述了漆酶催化活性中心结构及应用的研究进展。漆酶的催化 反应发生在铜离子形成的活性中心,但其氧化能力与氨基酸配体有密切 的关系。漆酶可应用于带有羟基或氨基的芳香族单体的聚合反应,偶氮 染料的合成及降解,稠环芳烃的降解去毒等。同时在纸浆的洁净漂白,化 学分析中痕量物质的检测,食品的保鲜及改良和环保等方面有重要应用。 关键词:漆酶,催化活性中心结构 中图法分类号:Q55 0 前 言 漆酶是一类含铜的多酚氧化酶(P—diphenol:oxidoreductase,EC1.10.3.2)。早在1883年,Y oshida从漆树的分泌物中发现了一种蛋白质,它可使油漆迅速固化[1]。1894年Bertrand将这种蛋白质命名为漆酶[2]。随后人们发现这种酶不仅存在于漆树的分泌物中[3~5],而且存在于多种植物[6~8]、昆虫[9,10]和高等真菌中[11~15]。 近年来,漆酶在痕量物质的分析、染料合成与降解、食品性质的改良、环保和皮革工业等领域显示了较高的应用价值。尤其重要的是漆酶在氧化还原介体的协助下具有降解木素的能力[16],可以用于纸浆中残余木素的脱除,有利于发展全无氯的纸浆漂白技术。与传统的氯漂工艺相比,利用漆酶来脱除纸浆中的残余木素,不会产生有毒性的氯酚类化合物,对减少环境污染有着重要的意义。因此漆酶作为一种具有很大的潜在应用价值的酶越来越受到人们的关注。关于漆酶产生方面的研究大多数是以白腐菌为研究对象,只有少数是以细菌[17]为研究对象。王佳玲等人对产漆酶白腐菌菌种,培养方式及产漆酶效果的影响因素等方面做过较为系统的总结[18]。本文将分以下三个方面对近年来有关漆酶的一些研究结果进行扼要的综述。 1 漆酶的催化活性中心结构 漆酶一般以单蛋白体的形式存在,其分子量范围一般是从52K Da到110K Da,也有些漆酶分子的分子量大于110K Da。不同来源的漆酶其分子被不同程度地糖基化,碳水化合物含量占10%~45%(质量分数),一般情况下真菌漆酶的碳水化合物含量要低于植物漆酶的碳水化合物含量[19]。含有糖基的蛋白不易结晶,为了研究漆酶蛋白多肽的 收稿日期:2000-01-06 国家自然科学基金和广东省科学基金资助课题 3通讯联系人

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研 究进展 班级:09药剂4班 组长:11-何燕珊:分配工作、选题、摘要、关键词和整理全篇文章 找资料:09-何炳俊:细菌耐药性产生的机理 10-何根铭:耐药性产生的因素及预防措施 12-洪春庆:抗生素的抑菌机理

细菌对抗生素耐药性的研究进展 摘要:抗生素作为治疗细菌感染性疾病的主要药物,在全世界上是应用最广、发展最快、品种最多的一类药物。但随着抗生素的广泛使用,其耐药性亦不断增长,并已迅速发展至十分严重的程度。耐药性的大量出现与广泛传播会给人们的健康造成很大的危害,给临床治疗带来很大困难,甚至造成治疗失败,目前已是全球关注的公共卫生问题。本文通过对抗生素的抑菌机理、细菌的耐药机制、耐药性产生因素以及预防等方面内容作简要综述,以示预防抗生素耐药性产生的重要性。 关键词:抗生素、细菌、耐药性 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。近年来,由于人类对抗生素的滥用,导致感染性细菌对抗生素不敏感,产生了耐药性,并开始对人类展开致命的反击,严重地威胁着人类的健康。中国工程院院士许文思也感叹:“可以毫不夸张的说,细菌耐药性是21世纪全球关注的热点,它对人类生命健康所构成的威胁绝不亚于艾滋病、癌症和心血管疾病。”可见,预防抗生素耐药性的产生是十分重要的。 一、抗生素的抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素) ;第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素) ,或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷) ;第三类则是通过阻止细菌DNA (如喹诺酮类)、RNA (如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌。[1]因此,根据主要作用靶位的不同,抗生素的抑菌机理可分为以下几种。 1)抑制细菌细胞壁合成,细胞壁缺损细菌在低渗条件下常因细胞吸水过多破裂而死亡,而对人和动物无毒害作用,因人和动物不具有细胞壁,如青霉素、头孢菌素、杆菌肽等。 2)破坏细胞模的通透性。主要通过下面 3 种途径:①多肽类抗生素,如多粘菌素E,能降低细菌细胞膜表面张力,因而改变了细胞膜的通透性,甚至破坏膜的结构,结果使氨基酸、单糖、核苷酸、无机盐离子等外漏,影响细胞正常代谢,致使细菌死亡。②多烯类抗生素,如制霉菌素与固醇具有亲和力,因此能与微生物的膜(含固醇物质)结合后形成膜- 多烯化合物,引起细胞膜的通透性能改变,导致胞内代谢物的泄漏。这类抗生素对真菌细胞膜起作用,而对细菌不起作用,因细菌细胞膜不含固醇类物质。③离子载体类抗生素,这类抗生素是脂溶性的,能结合并运载特定阳离子通过双脂层膜。如缬氨霉素、短杆菌肽A 等能增加线粒体膜对H+、K+或 Na+的通透性,为维持线粒体内正常的K+浓度就必须使泵入K+的速度与流出速度平衡,这样使得线粒体消耗能量用于泵入K+,而不是用来形成ATP,因此抑制了氧化磷酸化作用,从而起杀菌作用。 3)抑制蛋白质的合成。能抑制蛋白质合成的抗生素很多,其作用机理也较复杂,主要有下面 4 个方面:①抑制氨酰-tRNA 的形成。如吲哚霉素的抑菌作用是在氨基酸活化反应中和色氨酸竞争与色氨酸激活酶结合,从而抑制氨酰-tRNA的形成。②抑制蛋白质合成的起始。如链霉素、庆大霉素等能抑制 70S 合成起始复合体的形成以及引起 N-甲酰-甲硫氨酰-tRNA从70S合成起始复合体上的解离,因此阻碍蛋白质合成的起始。③抑制肽链的延长。如四环素族抗生素

白腐真菌

白腐真菌 前言 白腐真菌(white rot fungi)为丝状真菌,系木腐真菌(wood—degrading fungi)的一种,绝大多数为担子菌纲,少数为子囊菌纲,着生在木材上,因其能降解木材中的木质素、纤维素和半纤维素使木材呈现特征性的白色腐朽状而得名。日前研究最多的有:黄孢原毛平革菌(Phanerochete chrysosporium)[1]、彩绒草盖菌(Coridusversicolor)、变色栓菌(Thametes versicolor)、射脉菌(Phlebia radiata)、风尾菇(Pleurotus pul—mononanus)等。其中黄孢原毛平革菌是其典型种,也是研究木质素降解的模式菌。白腐真菌是已知的唯一能在纯系培养中有效地将木质素降解为CO2和H2O 的一类微生物。木质素是由苯丙烷单元通过醚键和碳一碳键连接而成的具有三维空间结构的高分子芳香族类聚合物。组成单元的结构及其连接键复杂而稳定,使得木质素很难降解[2]。木质素结构的异质性和不规则性,决定了对其生物降解的复杂性和特殊性。白腐真菌经过长期进化,形成了相应的适应性特性:白腐真菌能分泌氧化酶到胞外,在催化氧化过程中形成自由基,进而攻击木质素结构,此过程不需要特异的电子供体,因此其作用具有非特异性[3]。1983年Kirk和Gold两个研究小组发现能够利用白腐真菌的上述生物学特性降解染料[4,5]。此后,白腐真菌受到许多研究者的高度关注,并在将白腐真菌应用于降解诸如染料、三硝基甲苯(TNT)等许多难降解有机物方面进行了有成效的探索[6],在木质素降解酶的生理生化过程以及基因调控方面获得了一些有意义的研究成果。以下就酶系统基因结构,催化机制,应用及新发展几方面进行介绍。木质素降解酶系统 白腐真菌依赖一系列酶催化反应实现对难降解有机物的转化,这一过程殊为复杂,其中的关键酶系为木质素降解酶系。木质素降解酶主要包括了3 种酶:木质素过氧化物酶( lignin peroxidase,LiP) 、锰过氧化物酶( mangnase peroxidase,MnP) 、漆酶( laccase,Lac) 这3 种木质素降解酶均能单独降解木质素,也能两两联合,或者3 种酶一起作用对木质素进行降解。 1、木质素降解酶的比较 1.1 LiP、MnP 和Lac 三种酶的结构及组成特点

真菌漆酶的研究进展及其应用前景

万方数据

万方数据

万方数据

真菌漆酶的研究进展及其应用前景 作者:周雪婷, 张跃华, 罗志文, 潘亭如, 缪天琳 作者单位:佳木斯大学,黑龙江佳木斯,154007 刊名: 农业与技术 英文刊名:Agriculture & Technology 年,卷(期):2012,32(9) 参考文献(33条) 1.王光辉;季立才中国漆树漆酶的底物专一性 1989 2.Nina H;Laura-Leena K Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear coper site 2002(08) 3.雷福厚;蓝虹云漆树漆酶和真菌漆酶的异同研究[期刊论文]-中国生漆 2003(01) 4.李慧蓉白腐真菌生物学和生物技术 2005 5.Harald Claus Laccases:structure.reactions,distrihution 2004(35) 6.张丽白腐真菌产漆酶对染料废水降解的研究 2004 7.张敏;肖亚中;龚为民真菌漆酶的结构与功能[期刊论文]-生物学杂志 2003(20) 8.Gimifreda L;Xu F;Bollag J-M Laccases:a useful group of oxido reductive enzymes 1999(03) 9.Xu F;Kulys J J;Duke K Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds 2000(66) 10.堵国成;赵政;陈坚真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[期刊论文]-江南大学学报(自然科学版) 2003(02) 11.缪静;姜竹茂漆酶的最新研究进展[期刊论文]-烟台师范学院学报(自然科学版) 2001(17) 12.刘尚旭;赖寒木质素降解酶的分子生物学研究进展[期刊论文]-重庆教育学院学报 2001(14) 13.何为;詹怀宇;王习文;伍红一种改进的漆酶酶活检测方法[期刊论文]-华南理工大学学报(自然科学版) 2003(31) 14.季立才;胡培植漆酶结构,功能及应用 1996(18) 15.侯红漫白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究 2004 16.Huang Z Y;Huang H P;CaiR X Organic solvent enhanced spectrofluorin etric method for determition of laccase activity 1998(01) 17.Badiani M;Felici M;Luna M Laccase assay by means of highperfomance liquid chromatography 1983(02) 18.Wood D.A Production,Purification and Properties of Extracelluar laccase of Agaricus bisporus 1980(17) 19.林俊芳;刘志明;陈晓阳真菌漆酶的酶活测定方法评价[期刊论文]-生物加工过程 2009(04) 20.望天志;李卫莲;万洪文微量热法测定漆酶的活性[期刊论文]-自然杂志 1997(06) 21.Kirk T K;Farrell R L Enzymatic "combustion":The microbial degradation of lignin 1987(10) 22.张爱萍;秦梦华;徐清华漆酶在制浆造纸中的应用研究进展[期刊论文]-中国造纸学报 2004(02) 23.Reid I D Biological pulping in paper manufacture 1991(08) 24.Bergbauer M;Eggert C;Kraepelin G Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes Versicolor 1991(35) 25.林建城酶在食品工业,轻工业和环境保护上的应用分析[期刊论文]-莆田学院学报 2005(02) 26.林鹿;陈嘉翔白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解 1996(11) 27.E Rodriguez;MA.Pickard;R Vazquez-Duhalt Industial dye decolorization by laccases from ligninolytic fungi 1999(38) 28.Bollag J M;Myers C Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances 1992(117-118) 29.Majcherczy A Oxidation of ploycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor 1998(22) 30.刘涛;曹瑞饪漆酶在环境保护领域中的研究及应用进展[期刊论文]-云南环境科学 2005(03) 31.Collins P J;Kotterman M J J;Field J A;Dobson A Oxidation of Anthracene and Benzo[a]pyrene by Laccase from Trametes versicolor[外文期刊] 1996(12)

细菌耐药机制的国内外最新研究进展_丁元廷

·实验技术及其应用·细菌耐药机制的国内外最新研究进展 丁元廷 (贵阳中医学院第一附属医院检验科,贵州贵阳550001) 摘要:全球性的细菌抗生素耐药是近年来感染性疾病治疗所面临的一大难题,细菌可对某类抗菌药物产生耐药性,也可 同时对多种化学结构各异的抗菌药物耐药。随着各种新型抗生素在临床的应用,细菌的耐药也越来越广。本文对细菌耐 药机制近年来国内外的研究进展进行简要综述,并探索有效的防治措施。 关键词:细菌耐药性;耐药机制;进展 中图分类号:R446.5文献标志码:A文章编号:1003-8507(2013)06-1109-03 The research progress on mechanism of bacterial resistance at home and aboad DING Yuan-ting. Department of Clinical Laboratory,The First Affiliated Hospital,Traditional Chinese Medical College of Guiyang, Guiyang550001,China Abstract:A big problem we meet during the treatment of infectious diseases is the global antibiotic resistance of baceria.Bacte- ria can develop resistance to not only a certain kind of antimicrobial agent,but also a variety of different chemical structure of the antimicrobial drugs.With a variety of new antibiotics applied in clinical practice,more and more extensive drug-resistant bacteria appear.The aim of this paper was to give a brief overview of the progress of bacterial resistance at home and abroad in recent years,and also to explore effective control measures. Key words:Bacterial resistance;Mechanisms of resistance;Progress 随着抗菌药物的大量使用,尤其抗生素的滥用导致细菌在抗生素及环境压力下,细菌群体中的敏感株被灭杀,耐药株被选择或诱导出来并繁殖生长而成为优势菌群,通过多种形式获得了对抗生素耐药性。细菌耐药性不仅可通过基因水平在相同或不同种属细菌中传播,而且结构完整的耐药菌株还可以在医院之间乃至全球播散,所致感染治疗棘手,病死率高,严重威胁人类健康,已成为全球关注的热点[1]。而临床在应用抗生素过程中,不适当治疗和滥用更加速和扩大了细菌对抗生素产生耐药性。据报道,一种新抗生素从研制到临床应用一般需要5~10年,而产生细菌耐药仅需要2年[2]。因此,在临床上减缓耐药性产生与追求抗菌疗效同等重要。了解细菌耐药发生机制的研究状况对于指导合理应用抗生素、预防菌株耐药和有效抗感染治疗具有重要的意义,本文就有关细菌耐药机制主要从基因水平、蛋白质水平及细菌多重耐药性角度对近年来研究进展进行综述。 1细菌耐药性概况 细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效,这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,20世纪30年代末磺胺药上市,40年代临床广泛使用磺胺药后,1950年日 作者简介:丁元廷(1975-),男,硕士,副主任检验技师,研究方向:分子生物学本报道80%~90%的志贺痢疾杆菌对磺胺药耐药了;1940年青霉素问世,1951年发现金黄色葡萄球菌能产生β-内酰胺酶灭活青霉素;60~70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生β-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降;80~90年代,阴性杆菌产生的超广谱β-内酰胺酶和染色体介导的I类酶,三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌,阳性球菌中出现了非常难治的多重耐药菌感染。近年来由于出现了万古霉素中介金葡菌,关注对耐万古霉素MRSA的监测。近年来还开始注意红霉素耐药β-溶血性化脓性链球菌的发展,特别是耐大环内酯类-林可霉素类-链阳霉素B的β-溶血性化脓性链球菌的耐药性发展。 2细菌耐药机制 2.1基因水平(耐药性产生的遗传方式)遗传学机制 细菌可通过自身基因的突变产生耐药性,也可以通过染色体垂直传播和通过质粒或转座子水平传播而获得外源耐药性基因,还可通过整合子捕获外源基因并使之转变为功能性基因来传播耐药性基因。包括细菌先天固有耐药和染色体突变或获得新的脱氧核糖核酸分子。 2.1.1固有耐药天然或基因突变产生的是细菌染色体基因决定的代代相传的天然耐药性,亦称突变耐药。通过染色体遗传基因DNA发生突变,细菌经突变后的变异株对抗生素耐药。一般突变率很低,由突变产生的耐药菌生长和分裂缓慢,故由突变造成的耐药菌在自然界中不占主要地位,但染色体介导的

白腐真菌的木质素降解酶

26生物学通报2005年第40卷第8期 1200m以下的山地林中,在四川和云南垂直分布可达到3500m。 从系统位置看,上述植物都是裸子植物中较进化的科属类群。由于它们的种子常常为假种皮等附属结构所全部或部分包被,而使种子呈核果状、坚果状或浆果状。这些情况不但反映出裸子植物与被子植物之间的系统亲缘关系,而且对于裸子植物的进化与适应辐射也具有重要的意义。一方面,这些结构能够对种子起到良好的保护作用;另一方面,这类肉质营养组织可以作为传播其种子的食果动物的食物,从而吸引并促进动物对裸子植物种子的传播。裸子植物由种子及肉质假种皮或种鳞所构成的传播体在种子传播功能上,以及鸟类等食果动物对这类裸子植物种子取食与传播的方式和途径方面也是与被子植物的肉质果实完全相同的[4-5]。事实上,即使在被子植物一些适应于鸟类等食果动物传播种子的植物类群中,如荔枝属(Litchi)和卫矛属(Euonymus)等,它们的核果或蒴果中的肉质结构也并非来源于子房壁发育而来的果皮,而是同样为包被种子的假种皮。 参考文献 1周云龙.植物生物学,第2版.北京:高等教育出版社,2004,365—366. 2RavenP.H.JohnsonG.B..Biology,FourthEdition.Boston:Mcgraw-HillCompanies,1996:731—733. 3中国科学院中国植物志编辑委员会.中国植物志,第7卷,北京:科学出版社,1978:1—542. 4李新华,尹晓明,贺善安.南京中山植物园秋冬季鸟类对树木果实的取食作用,动物学杂志,2001,36(6):20—24.5李新华,尹晓明,贺善安.南京中山植物园秋冬季鸟类对植物种子的传播作用,生物多样性,2001,9(1):68—72. (BF) 木质纤维素(lignocellulose)主要由纤维素(cellulose)、半纤维素(hemicellulose)和木质素(lignin)所组成,是自然界中广泛存在的可再生的数量巨大的生物质(biomass)资源。木质素是由苯丙烷衍生物单体(如香豆醇、松柏醇和芥子醇等)构成的一种结构复杂的立体网状物质,是植物细胞胞间层和初生壁的主要填充物。在植物组织中,木质素与半纤维素一起构成了包裹在纤维素周围的基质,占植物细胞化学组成的15%~36%。木质素是第2大类天然聚合物,在数量上仅次于纤维素。由于木质素立体结构的复杂性,所以绝大多数微生物不易对其进行生物学降解。木质素的微生物降解作用是维持自然界生物碳素循环的重要组成部分。白腐真菌所产生的木质素降解酶可有效地分解木质素和芳香族污染物,因而在生物制浆、纸浆的生物漂白和环境保护等方面具有重要的研究价值和应用前景。1木质素降解酶的来源 迄今为止,已知参与降解木质素的微生物包括真菌、放线菌和细菌,其中,真菌是最为重要的一类。由于微生物的作用,木材腐朽时形态上发生变化,人们把参与木材腐朽的真菌分为白腐真菌(white-rotfungi)、褐腐真菌(brown-rotfungi)和软腐真菌(soft-rotfun-gi),其中白腐真菌是一类能够引起木材白色腐朽的真菌,它们绝大多数属于高等担子菌,也是目前已知在自然界中降解木质素能力最强的一类真菌。在整个木质素生物降解系统中,虽然细菌、放线菌、软腐菌和褐腐菌也能够发挥一定作用,但是,一般认为它们仅起次要作用。降解木质素的微生物主要是一些可分泌胞外过氧化物酶的白腐真菌。目前,用于木质素降解研究 的只有10余种,主要是烟管菌属(Bjerkandera)、香菇菌属(Lentinula)、平革菌属(Phanerochaete)、侧耳属(Pleu-rotus)和栓菌属(Trametes)中的一些种。白腐真菌所产生的参与木质素降解的酶系主要由木质素过氧化物酶(ligninperoxidase,LiP)、锰过氧化物酶(manganeseper-oxidase,MnP)和漆酶(laccase)等所组成,这些酶类合称为木质素降解酶或木质素酶。 2木质素降解酶的催化反应机理 木质素过氧化物酶(LiP)以低浓度H 2 O 2 为氧化剂,经历一个双电子氧化步骤和两个单电子还原步骤,使非酚型芳香族底物形成阳离子自由基,后者再进行一 系列非酶催化的反应从而导致芳香环裂解。当H 2 O 2 和二羧酸螯合剂(如丙二酸盐和草酸盐)存在时,锰过氧化物酶(MnP)能氧化Mn2+成为Mn3+,后者再进一步氧化各类酚型化合物,如2,6-二甲氧基酚、香草丙酮和苯酚等。在许多真菌中,MnP是木质素起始降解的关键酶,因为MnP可产生强氧化态的Mn3+,Mn3+作为可扩散的氧化还原介质再进一步裂解木质素聚合物中的芳香 白腐真菌的木质素降解酶 陈素华(菏泽市牡丹区北城中学山东菏泽274000) 摘要简述了白腐真菌木质素降解酶的概念、催化反应机理及在纸浆的生物漂白和染料脱色中的应用。 关键词白腐真菌木质素降解酶木质素生物漂白染料脱色 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

漆酶在制浆造纸中的应用研究进展

收稿日期:2004 07 19(修改稿) 作者简介:张爱萍,女,1980年生;山东轻工业学院硕士研究生;主要研究方向:纤维资源的制浆造纸特性与生物技术应用。 E mail:zhap@https://www.360docs.net/doc/353211976.html, 漆酶在制浆造纸中的应用研究进展 张爱萍 秦梦华 徐清华 (山东轻工业学院制浆造纸工程省级重点学科,山东济南,250100) 摘 要:漆酶是一种多酚氧化酶,参与木素的降解或聚合,具有氧化木素的能力,在制浆造纸中的应用已拓展到脱墨、漂白、制浆、废水处理、增加湿强性能等诸多方面。本文综述了近年来漆酶在制浆造纸工业中的应用研究进展。关键词:漆酶;脱墨;漂白;湿强中图分类号:Q55 文献标识码:A 文章编号:1000 6842(2004)02 0161 05 漆酶是一种含酮的多酚氧化酶(p diphenol oxidore ductase,EC 1 10 3 2),最早是1883年Yoshida 从漆树的分泌物中发现的[1],以后的研究进一步发现漆酶广泛存在于昆虫、植物和真菌中,尤其在一些能够降解天然木素的白腐菌(T versicolo r )中大量存在。 作为一种木素降解酶,漆酶可以降解生物体中的木素。漆酶的氧化还原电势比较低,为300~800m V (对标准氢电极)[2],只能氧化降解木素中的酚型结构单元(图1),而不能氧化占木素90%的非酚型结构。1990年[3] 发现如果有低分子质量的化合物作为氧化还原介体,漆酶能氧化非酚型木素结构(图2),最适合的介体是一些酚型化合物和杂环如卟啉类化合物,这些介体物质有的来自真菌次生代谢产物或木素降解产物,如紫丁香醛和来自P ycno porus cinnabarinus 的3 羟基邻氨基苯甲酸(3 hydroxyanthranilicacid,3 HAA);有的来自人工合成化合物,如AB TS[2,2 联氨 二(3 乙基 苯并噻唑 6 磺酸)]、HB T (1 羟基苯并三唑)、VI O (紫尿酸)、NHA(N 羟基 N 乙酰苯胺)等[4]。据报道,在氧气存在的条件下,漆酶能将介体转化成共介体,由于这种共介体尺寸较小,能够渗透进入纤维而与木素反应,脱木素机理基于自由基的形成[5 6]。目前,漆酶在制浆造纸工业的诸多方面得到了广泛的应用,如二次纤维回用、漂白、制浆、废水处理、纤维性能的改善,湿强剂及纤维板制造等,本文就这些方面的研究进展进行了综述。 1 漆酶在二次纤维回用中的应用 近年来,二次纤维在原料中所占的比例日益增加, 脱墨技术引起了越来越多的关注,酶法脱墨是一种经济有效的脱墨方法,可以减少化学脱墨带来的环境污染,而且酶处理可以改善浆料滤水性能和纸页强度,降 低漂白化学品用量。 图1 漆酶氧化酚型木素结构 图2 漆酶介体体系氧化非酚型木素结构 161 Vol 19,No.2,2004 Transactions of China Pulp and Paper 中 国 造 纸 学 报

细菌耐药机制研究进展

细菌耐药机制研究进展 发表时间:2013-01-08T13:58:09.640Z 来源:《中外健康文摘》2012年第42期供稿作者:黄碧娇 [导读] 药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制 黄碧娇 (井冈山大学附属医院江西吉安 343000) 【中图分类号】R915 【文献标识码】A【文章编号】1672-5085(2012)42-0085-02 【摘要】了解细菌对β—内酰胺类,喹诺酮类及大环内酯类等临床常用抗菌药物耐药机制的研究进展,有助于抗菌药物的正确使用,尽量减少抗菌药物的耐药出现,为新的抗菌药物的开发及利用打下坚实的基础。 【关键词】细菌耐药性抗菌药物 细菌耐药,为人类战胜病原菌提出了一个严峻的挑战,细菌耐药机制非常复杂,通常认为涉及到以下几个方面: 1 细菌对抗菌药物产生耐药性的可能性机制 主要有四种:①产生灭活酶和钝化酶,细菌能产生破坏抗生素或使之失去抗菌作用的酶,使药物在作用于菌体前即被破坏或失效;②抗菌药物渗透障碍,细菌外层的细胞膜和细胞壁结构对阻碍抗生素进入菌体有着重要的作用,膜上有亲水性的药物通过蛋白,称外膜蛋白,主要有两种分子较大的为ompf和分子较小ompc,最近又发现了第三种蛋白phoe,外膜蛋白的缺失可导致细菌耐药性的发生,在某些药物的外膜上含有特殊药物泵出系统,使菌体药物的浓度不足以发挥抗菌作用而导致耐药;③药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制;④代谢途径的改变绝大多数细菌不能利用已有叶酸及其衍生物必须自行合成四氢叶酸,肠球菌属等某些营养缺陷细菌能用外源性胸苷或胸腺嘧啶,表现对磺胺和甲氧嘧啶等药物的耐药。 从分子生物学角度认识细菌的耐药机制过去主要集中在基因突变的研究中,认为基因突变的积累使细菌产生耐药性的重要机制,但近来研究发现,没有接触过抗生素的病原菌,对抗生素也有抗药性,耐药性具有转移的特点,螯分子被认为是抗性基因在水平传播的重要因子,由两部分组成,5’与3’端保守区域(简称cs)以及中间的基因簇,选择性的整合到螯分子上面获得耐药性,通过螯合子的螯合作用,抗性基因之间能够互相转换,再借助于转化,转导与结合作用,使得耐药性在畜禽与畜禽,畜禽与人类,人类与人类之间的病原菌广泛传播,给人类健康造成严重威胁。 2 细菌对β—内酰胺类抗药性的耐药机制。 2.1产生β—内酰胺酶 β—内酰胺环为β—内酰胺类抗菌药物的活性部位,一旦被β—内酰胺酶水解就将失去其抗菌活性,细菌对β—内酰胺类抗菌药物的耐药性约80%通过产生β—内酰胺酶实现,β—内酰胺酶种类繁多,已经报道通过的就有200余种。具有不同特性的β—内酰胺酶的细胞对不同的β—内酰胺酶抗菌药物的耐受性不同。G+菌、G-菌、分枝杆菌和诺卡菌种都发现有各种不同特性的β—内酰胺酶。 针对这一耐药机制,临床上目前应用的药物有2类:①具有对β—内酰胺酶稳定的化学结构的药物,包括苯唑西林、双氯西林、甲氧西林、异口恶唑青霉素等半合成青霉素以及亚胺培南、美罗培南等碳青霉烯类药物等。②β—内酰胺酶抑制剂,包括克拉维酸,舒巴坦、他唑巴坦等,它们与β—内酰胺类药物联用,对产酶菌有很强的增效作用。其复合制剂有:由阿莫西林与克拉维酸组成的奥格门汀,由羧苄西林与克拉维酸组成的替门汀,由氨苄西林与舒巴坦组成的优立新及由哌拉西林与他唑巴坦组成的他唑辛等。 2.2药物作用的靶蛋白改变 β—内酰胺类抗菌药物的作用靶位为青霉结合蛋白(PBP),对β—内酰胺类抗菌药物耐药的细菌除了由于产生大量β—内酰胺酶破坏进入胞内的抗菌药物外,还由于PBP发生了改变使之与这类抗菌药物(如青霉素类、头孢菌素类、单环β—内酰胺类和碳青霉烯类等)的亲和力降低,或是出现了新的PBP所致,这种耐药机制在金萄球菌、表皮葡萄球菌、皮炎链球菌、大肠杆菌、绿脓杆菌和流感嗜血杆菌等耐药菌种均已证实。 2.3细胞外膜渗透性降低细菌的细胞膜使细菌与环境离开。细胞外膜上的某些特殊蛋白即孔蛋白是一种非特异性的、跨越细胞膜的水溶物质扩散通道。一些半合成的β—内酰胺类抗菌药物很容易透过肠细菌的孔蛋白通道;但一些具有高渗透性外膜的对抗菌药物敏感的细菌可以通过降低外膜的渗透性产生耐药性,如原来允许某种抗菌药物通过的孔蛋白通道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细菌就会对该抗菌药物产生很高的耐药性。亚胺培南是一种非典型的β—内酰胺类抗菌药物,其对铜绿假单胞菌的活性,主要是通过一个特殊的孔蛋白通道OprD的扩散而实现的,这就意味着一旦这一简单的孔蛋白通道消失,则铜绿假单胞菌对亚胺培南就会产生耐药性。事实上,最近已经分离到许多具有这种耐药机制的耐亚胺培南的铜绿假单胞菌。 3 细菌喹诺酮类抗菌药物的耐药机制 3.1喹诺酮类药物的作用机制是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用,细菌DNA拓扑异构酶有Ⅰ、Ⅱ、Ⅲ、Ⅳ分2大类:第一类有拓扑异构酶Ⅰ、Ⅲ主要参与DNA的松解;第二类包括拓扑异构酶Ⅱ、Ⅳ,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中,但拓扑异构酶Ⅰ和Ⅲ对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ。革兰阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰阳性菌中拓扑异构酶Ⅳ是第一靶位。 DNA促旋酶是通过暂时切断DNA双链,促进DNA复制转导过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型,喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA—拓扑异构酶—喹诺酮类3者复合物,阻止DNA拓扑异异构变化,妨碍细菌的DNA复制转录,已达到杀菌的目的。 3.2作用靶位的改变,编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ和ParC和ParE亚单位中任一亚基的基因发生突变均可引起喹诺酮类药物的耐药性,在所有的突变型中,以gxyA的突变为主,主要为Thr—83→Ile,Ala和ASp—87→Asn,Gly、Thr两者均占75%以上,而其他的突变型罕见,GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gyxA上的83和87位的氨基酸在提供喹诺酮类结合位点时具有重要的作用,而gyrB的突变株则较gyrA上突变少见,主要为Glu—470→Asp,Ala—477→val和ser—468→phe,Parc 的突变主要为Ser—87→Leu,Trp位值得注意的是所有存在parc改变的发生是在gyxA突变之后才发生的,在同时具有gyxA和parc突变的菌株中,以gxyA上的Thx—83→Ile和parc上的ser—87→leu类型为最多见,ParE的突变型为ASp—419→Asn、Ala—425→val但现在parE出现突变极为罕见3/150 3.3 膜通透性改变,喹诺酮类药物与其他抗菌药物一样,依靠革兰阴性菌的外膜蛋白(oMp)和脂多糖的扩散作用而进入细菌体内,

白腐菌对玉米秸秆木质素降解的效果

白腐菌对玉米秸秆木质素降解的效果 摘要 摘要: 添加不同品种和比例的白腐菌,研究其对玉米秸秆中木质素的降解情况。结果表明,在尿素与白腐菌的共同作用下,玉米秸秆的粗蛋白含量平均提高180% ; 在白腐菌的单独作用下 摘要: 添加不同品种和比例的白腐菌,研究其对玉米秸秆中木质素的降解情况。结果表明,在尿素与白腐菌的共同作用下,玉米秸秆的粗蛋白含量平均提高180% ; 在白腐菌的单独作用下,平均降解木质素33. 4% 。2 株白腐菌对玉米秸秆中木质素的降解速率不同,白腐菌2 ( 编号GIM3. 393) 对木质素的降解能力优于白腐菌1 ( 编号GIM3. 383) 。 关键词: 白腐菌; 木质素; 粗蛋白; 玉米秸秆 玉米秸秆是丽水最常见农作物的废弃资源,使玉米秸秆资源化利用既可美化农村环境,保护水资源环境,营造农旅结合的优美环境,又为畜牧养殖业提供可食性的资源,丰富饲料的品种,达到资源循环利用的目的。但玉米秸秆用作草食性动物的饲料还存在几个缺点,主要是粗蛋白含量低、木质素含量偏高、食口性差[1]。本试验通过在玉米秸秆中加入不同比例、不同品种的白腐菌,作用不同时间后,测定白腐菌对玉米秸秆中的木质素降解及粗蛋白的含量变化的影响[2-3],了解白腐菌对玉米秸秆的木质素降解情况,为玉米秸秆的进一步利用提供理论依据。 1 材料与方法 1. 1 供试菌株 白腐菌来源于上海名劲生物科技有限公司,编号GIM3. 383 ( 标记为A) 、GIM3. 393 ( 标记为B) ,黄孢原毛平革菌。 1. 2 材料 来源于丽水市莲都区收集而来的成熟后的玉米秸秆,将其截成3 ~5 cm 的长度,加入10% 的尿素,处理4 ~5 h。此时玉米秸秆湿度为60% 左右。

漆酶对环境污染物降解的研究

《环境生物技术》论文 ——漆酶对污染物降解的研究 漆酶对环境污染物降解的研究 摘要:漆酶是一种含铜多酚氧化酶,该酶是一种氨基酸残基在500个左右的单体酶,一般都为酸性蛋白,漆酶的应用集中在以下几方面:生物漂白,环境治理,漆酶降解有害物质,工业废水处理;其他方面的应用;等等。本文进行了漆酶对废水降解的初步研究,并对染料废水的降解机理和部分影响因素进行了一定的分析探讨。 关键词:漆酶、应用、降解机理、影响因素。 漆酶是一种含铜的多酚氧化酶,和植物中的抗坏血酸氧化酶、哺乳动物的血浆铜蓝蛋白属铜蓝氧化酶家族中的同一小族,在结构和功能上存在着许多相似之处。它最早是从日本漆树的汁液中发现的,后来也发现其存在于多种植物、昆虫和高等真菌中【1】。不同来源的漆酶具有不同的催化性质.即使是相同来源,比如同一白腐菌菌种,可分泌多种具有不同性质的漆酶组分,包括氧化能力,酶蛋白分子量,最适pH值、底物的专一性等等…,因此所起的作用是各不相同的。在漆酶降解木素方面已进行了较多较深入的研究,漆酶除了能氧化木质素以外,还被证明能催化多种底物,如酚类化合物及其衍生物、芳胺及其衍生物、羧酸及甾体激素等【2】。由于许多漆酶氧化的底物为环境污染物,因此利用白腐真菌产生的漆酶处理印染废水,降解染料化合物的研究在环境保护中具有十分重要的意义。应用漆酶来实现纸浆的生物漂白正是研究的一个热点【3】;另外,漆酶还具有降解氯化有机物去除环境中有毒污染物毒性的作用,本文就漆酶的这一性质做一介绍。

1 漆酶的催化机理 一般认为生物法降解主要有两种机理在起作用:吸附和降解,以降解为主。生物降解又分为两步:一是染料分子吸附到菌体上,部分透过细胞膜进入细胞体内;二是利用微生物产生的酶催化氧化还原染料分子,破坏不饱和共轭体系,达到去色的目的,中间产物进一步氧化还原分解并最终分解为C02和水或转化为所需的营养物质,组成新的原生质【4】。 根据对漆酶光谱学、动力学和晶体衍射的研究,漆酶催化底物的方式可能如下:底物结合于酶活性中心的I型铜原子位点,通过cys.His途径将其传递给三核位点,该位点进一步把电子传递给结合到活性中心的第二底物氧分子,使之还原为水。整个反应过程需要连续的单电子氧化作用来满足漆酶的充分还原,还原态的酶分子再通过四电子转移传递给分子氧,因此漆酶又被称为分子电池。在此过程中,氧还原很可能分两步进行,两个电子转移产生过氧化氢中间体,该中间体在另两单电子作用下被还原为水。 2 漆酶的主要用途 2. 1 环境治理 生物整治包括染料脱色、工业废水处理和土壤修复等领域。因漆酶对底物的专一性要求不高,含介体的酶催化系统能氧化大范围的化合物,所以在环境污染控制中有广泛的应用。由于合成染料广泛的用于印染工业,目前已超过10,000种。合成染料被人们设计成防水、抗光照、抗氧化的生物难降解化合物,以通常的活性污泥方法处理纺织废水很难达到预期目的,同时存在着花费高和污泥再处理的问题。而筛选的染料降解细菌,对降解的染料结构有高度的专一性,不适用于化学结构多样性的纺织废水处理【5】。 由于漆酶具有降解残余木素、氧化去除有毒氯酚化台物的作用.因此不少研究者尝试将漆酶用于处理含酚的工业废水。效果还是比较显著的。木材剥皮废水中含有有色的酚型化台物,使用漆酶处理该废水。通过催化氧化聚合反应,可去除90%以上的鞣酸类和其他酚型化台物,废水经硫酸铝絮凝后,色度下降82%;同样的混台废水经漆酶处理lh随后经硫酸铝絮凝,由色谱分析证实86%的氯代酚,99%的氯代愈疮木酚和80%的氯代香草醛,92%的氯代儿荣酚可被去除掉。漆酶还可以降低造纸厂漂白车间碱抽提段废水,漆酶经固定化后,可进一步提高漆酶处理废水脱色的有效性,每一单位酶活所降低的废水色度值.就白腐菌处理废水与漆酶处理废水的脱色效果比较而言,白腐菌处理3天可使废水脱色30%-50%,与漆酶处理几小时的脱色效果相近。但随着处理时间的延长,白腐菌总的废水脱色率达到70%一80%,比用漆酶处理的废水的脱色率高20%~30%,这可能是由于白腐菌处理时,分泌出的多种酶所起的协同作用。因此结合使用两种或多种酶可能提高处理废水的效果【6】。

真菌漆酶的研究进展

真菌漆酶的研究进展 宋瑞(安徽大学生命科学学院合肥230039) 【摘要】漆酶是一种蓝色多铜氧化酶,和植物中的抗坏血酸氧化酶,哺乳动物的血浆铜蓝蛋白属同族,能够催化多种有机底物和无机底物的氧化[1,2],同时伴随分子氧还原成水。漆酶广泛分布于真菌、高等植物、少量细菌和昆虫中,尤其在白腐真菌中普遍存在。漆酶特有的结构性质和作用机理使其具有巨大的应用价值。本文就真菌漆酶结构,功能的研究进展作一综述,并对其应用作简单介绍。 【关键词】真菌漆酶三维结构功能应用 1真菌漆酶结构特征 1.1 漆酶的组成 漆酶是一种糖蛋白,肽链一般约由500个氨基酸组成[3],糖基含量差异较大,占整个分子质量的10%—80%[4],据相关报道,漆酶的热稳定性可能与其糖基化有关。糖组成包括半乳糖、葡萄糖、甘露糖、岩藻糖、氨基己糖和阿拉伯糖等。Mayer[5]认为漆酶并不均一,它由多条5000~7000分子量的糖肽链基本结构单元组成。由于结构单元之间的缔合度不同,造成了各种漆酶分子量的不同。另外,分子中的糖基的差异,也会引起漆酶的分子量随来源不同会有很大的差异,从59—390ku不等。真菌漆酶约含19种氨基酸,绝大部分为单体酶,但也有例外,如双孢蘑菇和长绒毛栓菌漆酶由两个亚基组成[6],而柄孢壳漆酶I由四个亚基组成。漆酶种类繁多,不同种类的真菌产生的漆酶种类不同,即使同一种真菌在不同环境下也产生不同种漆酶。

1.2漆酶的晶体结构 由于漆酶是含糖蛋白质,且糖质量分数较高,一直以来很难获得X-衍射分析所用的单晶体,因此阻碍了关于漆酶结构的研究进展。1998年第一个漆酶晶体是Ducros V[7]制备的来自灰盖鬼伞(Coprinus cinereusv)T1Cu缺失型漆酶晶体,并分析了其结构。至今为止,Bacillus subtilis(CoA)[8];Melanocarpus albomyces(MaL)[9];Rigidoporus lignosus(RiL)[10];Pycnoporus cinnabaricus(PcL)[11];Coprinus cinereus(CcL)[12]和Trametes versicolor(TvL)[13]漆酶的三维结构已相继被报道。 漆酶分子整体由3个杯状结构域所组成,分别称作结构域A、B、C,每个结构域主要由β-折叠桶,α-螺旋,loop结构所组成。三者紧密结合形成球状结构。这是铜蓝蛋白家族所共有的结构形式[7,9]。分子当中含有二硫键,漆酶种类不同,二硫键数目也不一样,MaL 漆酶分子由3个二硫键,分别是位于结构域A Cys4~Cys12、结构域A和C界面上Cys114~Cys540、结构域C Cys298~Cys332,而CcL,RiL漆酶中则含有两个二硫键。在CcL漆酶分子中,由结构域A的Cys85和结构域B的Cys487形成一个二硫键,另一个二硫键存在于结构域A和结构域B(Cys117—Cys204)之间。一个伸展的loop(氨基酸284—327)连接结构域B和结构域C。Asn343上有N连接的N—乙酰葡萄胺。 1.3 漆酶的催化中心 真菌漆酶分子中一般都含有4个Cu原子,根据磁学和光谱学性

相关文档
最新文档