指数函数习题及答案

指数函数习题及答案
指数函数习题及答案

指数函数习题及答案

一.选择题

1.若函数f (x )=()x

a 1-在R 上是减函数,那么实数a 的取值范围是( )

A .a >1 且1≠a

B .1<a <2

C .a >1且2≠a

D .a >0

2.已知0>a ,41

=--a a ,则22-+a a 的值是( )

A .14

B .16

C .18

D .20

3.一套邮票现价值a 元,每过一年都将增值00b ,则10年后其价值为( ) A .()00110b a + B .()00101b a +

C .()

[

]10

001b a + D .()100

1b

a +

4.设f (x )=x

)2

1(,x ∈R ,那么f (x )是( ) A .偶函数且在(0,+∞)上是减函数

B .偶函数且在(0,+∞)上是增函数

C .奇函数且在(0,+∞)上是减函数

D .奇函数且在(0,+∞)上是增函数 5.函数y =-2

-x

的图象一定过哪些象限( )

A .一、二象限

B .二、三象限

C .三、四象限

D .一、四象限 6.函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =1

23-?x a 在[0,1]上的最大值是( )

A .3

B .1

C .6

D .

2

3 7.下列函数中值域为(0,+∞)的是( ) A .y =x

15

B .y =x )3

1( C .y =12

+-x

D .y =12-x

8.若-1<x <0,则不等式中成立的是( )

A .5-

x <5x <0.5x B .0.5x <5-

x <5x C .5x <5-

x <0.5x

D .5x <0.5x <5-

x

9.当a ≠0时,函数y a x b

=+和y b ax

=的图象只可能是( )

10.设指数函数)1,0()(≠>=a a a x f x

,则下列等式中不正确的是( )

A .)()()(y f x f y x f ?=+

B .)

()

(y f x f y x f =-)

( C .)()]([)(Q n x f nx f n

∈= D .)()]([·

)]([)(+∈=N n y f x f xy f n

n

n

二.填空题

11.已知函数f (x )=2

1)

3

1

(x -,其定义域是________________.

12.函数f (x )=a x -

1+3的图象一定过定点P ,则P 点的坐标是____________.

13.函数1

21+?

?

?

??=x y ,[]1,2-∈x 的值域是_____________.

14.函数y =x

-3的图象与函数________________的图象关于y 轴对称. 三.解答题(共6小题,共80分) 15.(本小题12分)

(1)计算:3

1

2

2726141-??? ??+?

?

?

??- (2)化简:243

3221---÷?

??

? ???a b b a

16.(12分)(1) 解不等式145

-+

(a>0且a ≠1)

(2)函数???

??>≤-=-0

,0

,12)(21x x x x f x ,求满足1)(>x f 的x 的取值范围

17.(14分) 求函数2

23

3x x y -++=的单调区间和最值(单调区间请加以证明).

18.(1)已知m x f x +-=

1

32

)(是奇函数,求常数m 的值; (2)画出函数|13|-=x

y 的图象,并利用图象回答:k 为何值时,方程k x

=-|13|无解?有一解?有两解?

19.(14分)已知函数4()42

x

x f x =+ (1)试求()(1)f a f a +-的值.

(2)求1232007(

)()()()2008200820082008

f f f f +++???+的值. 20.(14分)已知函数1

1

)(+-=x x a a x f (a >1).

(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;

(3)证明f (x )在(-∞,+∞)上是增函数.

<指数函数>参考答案

1—10 BCDAC CBDAD

9.[-1,1] 10.(1,4) 11.27 12.[4

1

,2] 13.x y 3= 14.14

15.1>a 时,x>2;10<

17.解:单调增区间:(,1]-∞;单调减区间:[1,)+∞;值域:(,81]-∞。

17.当x ≤0时,112

>--x

,得1-0时,12

1>x 得1>x .

18.解: (1)常数1=m

(2)

当0

y 的图象无交点,即方

程无解;

当0=k 或1≥k 时, 直线k y =与函数

|13|-=x

y 的图象有唯一的交点,所以方程有一解; 当10<

y 的图象有两个不同交点,所以方程有两解。 19.解:(1)a=1(;2)略;(3)略

20.解: (1)是奇函数.

(2)值域为(-1,1). 11)(+-=x x a a x f 1

21121+-=+-+=x x x a a a ,再求之. (3)设x 1<x 2,则1111)()(2

21

121+--+-=-x x x x a a a a x f x f =)

1)(1()

1)(1()1)(1(212121++-+-+-x x x x x x a a a a a a =(

)

(

)(

)

1

1221

2

1++-x x x x a a a a ∵a >1,x 1<x 2,∴a 1x <a 2x

. 又∵a 1x

+1>0,a 2x

+1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 函数f(x)在(-∞,+∞)上是增函数.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数练习题

$ 指数与指数函数练习题 姓名 学号 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为 ( ) A .212- B .3 12- C .2 12- - D .6 52- 3.333 4)2 1 ()21() 2()2(---+-+----的值 ( ) ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、3 21 41()6437 ---+-=__________. 6、)3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一.选择题: 1. 函数x y 24-= 的定义域为 ( ) "

A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511.A 个 512.B 个 1023.C 个 1024.D 个 4.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( ) 5.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则 d c b a ,,,的大小顺序是 ( ) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<. | 6.函数0.(12 >+=-a a y x 且)1≠a 的图像必经过点 )1,0.(A )1,1.(B )0,2.(C )2,2.(D 7 .若01<<-x ,那么下列各不等式成立的是 ( ) x x x A 2.022.<<- x x x B -<<22.02. x x x C 222.0.<<- x x x D 2.022.<<- 8. 函数x a x f )1()(2 -=在R 上是减函数,则a 的取值范围是 ( ) 1.>a A 2.

4.2 指数和指数函数练习题及答案

指数和指数函数专题 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x (C )y=1)21(-x (D )y=x 21- 10.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51 )32 (C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2 1 )31 11.已知三个实数a,b=a a ,c=a a a ,其中0.9

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数与指数函数练习题及答案

! 2.1指数与指数函数习题 一、选择题(12*5分) 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 1 1<,(4)a 31 >b 31 ,(5)(31)a <(31)b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 5.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 6.下列函数中,定义域为R 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x . (C )y=1)2 1(-x (D )y=x 2 1- 7.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21 )32<(51)32 (C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2 1 )31 8.若函数y=3·2x-1 的反函数的图像经过P 点,则P 点坐标是( ) (A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1) 9.函数f(x)=3x +5,则f -1 (x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) )

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

指数与指数函数测试题

指数与指数函数测试题https://www.360docs.net/doc/3618537101.html,work Information Technology Company.2020YEAR

指数与指数函数测试题 编制:陶业强 审核:高二数学组 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、化简11111321684 21212121212-----??????????+++++ ?????????? ?????????,结果是( ) A 、1 132 112 2-- ? ?- ?? ? B 、 1 132 12-- ??- ?? ? C 、1 32 12-- D 、1321122-??- ??? 2 、44 等于( ) A 、16a B 、8 a C 、4a D 、2a 3、若1,0a b ><, 且b b a a -+=则b b a a --的值等于( ) A 、6 B 、2± C 、2- D 、2 4、函数()2()1x f x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2≠,下列不等式(1)22a b >;(2)22a b >;(3) b a 1 1<;(4)1133 a b >;(5)1133a b ???? < ? ????? 中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个 8、函数21 21 x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

(完整版)指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 1 1<,(4)a 31>b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x (C )y=1)21(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B )偶函数且在R + 上是减函数 (C )奇函数且在R +上是增函数 (D )偶函数且在R + 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32

指数函数练习题(包含详细答案)

1.给出下列结论: ②n a n=|a|(n>1,n∈N*,n为偶数); ④若2x=16,3y=1 27,则x+y=7. 其中正确的是() A.①②B.②③C.③④D.②④答案 B 解析 ∵2x=16,∴x=4,∵3y=1 27,∴y=-3. ∴x+y=4+(-3)=1,故④错. 2.函数y=16-4x的值域是() A.[0,+∞) B.[0,4] C.[0,4) D.(0,4) 答案 C 3.函数f(x)=3-x-1的定义域、值域是() A.定义域是R,值域是R B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对 答案 C 解析f(x)=(1 3) x-1,

∵(13)x >0,∴f (x )>-1. 4.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 答案 D 解析 y 1=21.8,y 2=21.44,y 3=21.5, ∵y =2x 在定义域内为增函数,∴y 1>y 3>y 2. 5.函数f (x )=a x -b 的图像如图,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .00 D .00,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,1] C .(1,+∞) D .R 答案 B 8.函数f (x )=3·4x -2x 在x ∈[0,+∞)上的最小值是( ) A .-112 B .0

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数函数练习题

指数函数练习题

指数与指数函数练习题 姓名 学号 (一)指数 1、化简[ 3 2 ) 5(-] 4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将 3 2 2-化为分数指数幂的形式为 ( ) A .2 12- B .3 12- C .2 1 2-- D . 6 52- 3. 3 334)2 1 ()21()2()2(---+-+----的值 ( ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、 3 2 1 41()6437 ---+-=__________.

6、 ) 3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一. 选择题: 1. 函数x y 24-=的定义域为 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分 裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511 .A 个 512 .B 个 1023 .C 个 1024 .D 个 ax x f =)(x a x g =)(的图

增,则该厂到2010年的产值(单位:万元)是( ) n a A +1(.%13 ) n a B +1(.%12 ) n a C +1(.%11 ) n D -1(9 10 . %12 ) 二. 填空题: 1、已知)(x f 是指数函数,且25 5 )23(=-f ,则=)3(f 2、 已知指数函数图像经过点P(1,3)-,则(2)f = 3、 比较大小12 2- 1 3 2- , 0.32()3 0.22 ()3 , 0.31.8 1 4、 3 1 1 2 13,32,2-?? ? ??的大小顺序有小到大依 次 为 _________ 。 5、 设10<x x x x a a 成立的x 的集合是 6、 函数 y = 7、 函数 y = 8、若函数1 41 )(++=x a x f 是奇函数,则a =_________ 三、解答题:

指数与指数函数练习题及答案

2.1指数与指数函数习题 一、选择题(12*5分) 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 11<,(4)a 31 >b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 5.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 6.下列函数中,定义域为R 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x (C )y=1)2 1(-x (D )y=x 21- 7.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32 (C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2 1)31 8.若函数y=3·2x-1 的反函数的图像经过P 点,则P 点坐标是( ) (A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1) 9.函数f(x)=3x +5,则f -1 (x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞) 10.已知函数f(x)=a x +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )

最新《指数函数和对数函数》单元测试测试题(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数 (含答案) 学校: __________ 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题 1.若函数f(x)=21 2 log ,0,log (),0x x x x >?? ?-f(-a),则实数a 的取值范围是( ) (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(2010天津理8) 2.若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是( ) (A )1,b a ?? ??? (B )()10,1a b - (C )10,1b a ?? + ??? (D ))2,(2b a (2011安徽文5) 3.对实数a 与b ,定义新运算“?”:,1, , 1.a a b a b b a b -≤??=? ->? 设函数 ()()22()2,.f x x x x x R =-?-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则 实数c 的取值范围是( )(2011年高考天津卷理科8) A .(]3,21, 2? ?-∞-?- ??? B .(]3,21,4? ?-∞-?-- ???

C .11,,44???? -∞?+∞ ? ????? D. 4 . 已 知 0, a a >≠,则 l a a 等于 ( ) A .2 B . 1 2 C . D .与a 的具体数值有关 5.若函数()|21|x f x =-,当a b c <<时,有()()()f a f c f b >>,则下列各式中正确的是( ) A.22a c > B.22a b > C.222a c +< D.2 2a c -< 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 6.方程lg(42)lg 2lg3x x +=+的解x = . 7.函数x y a log =和)1,0(log 1≠>=a a x y a 的图象关于 对称. 8.3)72.0(-与3)75.0(-的大小关系为_____________ 9.比较下列各组值的大小; (1)3 .02 2,3.0; (2)5 25 2529.1,8.3,1.4- . 10.函数)0(1 21 )(≠+-= x a x f x 是奇函数,则a = . 311,,44???? --?+∞ ?? ?????

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

高一指数与指数函数基础练习题

高一指数与指数函数基础练习试题 (一)指数 1、化简[3 2 )5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为( ) A .212- B .3 12- C .2 12 - - D .6 52- 3、化简 4 2 16 13 2 33 2)b (a b b a ab ??(a, b 为正数)的结果是( ) A . a b B .ab C . b a D .a 2b 4、化简11111321684 21212121212-----??????????+++++ ?????????? ?????????,结果是( ) A 、1 132 112 2-- ? ?- ?? ? B 、1 132 12 -- ??- ?? ? C 、1 32 12-- D 、1321122-??- ??? 5、13256)7 1 (027 .0143 23 1+-+-----=__________. 6、 32 113 2132)(---- ÷a b b a b a b a =__________. 7、48373)27102(1.0)972(032 221 +-++--π=__________。 8、)3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 9 、416 0.250 3 21648200549 -+---)()() =__________。

10、已知),0(),(21>>+= b a a b b a x 求1 22--x x ab 的值。 11、若32 12 1=+-x x ,求 2 3 222 32 3-+-+-- x x x x 的值。 (二)指数函数 一、指数函数的定义问题 1、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( ) A 、(1%)na b - B 、(1%)a nb - C 、[1(%)]n a b - D 、(1%)n a b - 2、若21(5)2x f x -=-,则(125)f = 。 3、若21025x =,则10x -等于 ( ) A 、 15 B 、15- C 、150 D 、1625 4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比 较,变化的情况是( ) A 、减少7.84% B 、增加7.84% C 、减少9.5% D 、不增不减 5、已知指数函数图像经过点)3,1(-p ,则=)3(f

相关文档
最新文档