压力容器大开孔补强计算

压力容器大开孔补强计算
压力容器大开孔补强计算

压力容器大开孔补强计算

【摘要】首先对压力容器大开孔补强计算中涉及的应力特点及强度分析进行阐述,然后将目前存在的三种主要的补强计算方法的计算原理、特点等做了详细的介绍,并对三种不同的方法的优缺点进行比较总结,从而要求设计的容器更加符合安全、经济等多方面的要求,实现优化设计的目的。

【关键词】压力容器大开孔补强等面积法分析法及有限元应力分析法

在设计者设计容器及压力容器的过程中通常都需要设计计算壳体的大开孔补强,gb150-2011即钢制压力容器中规定了容器壳体开孔范围,根据壳体的内径不同,分别作了明确地规定,当内径小于1500毫米时,开孔的最大直径要小于等于二分之三的内径,且不能大于520毫米;而当其内径大于1500毫米时,开孔最大直径则应当小于等于三分之二的内径,且其直径不能大于1000毫米。本文中的容器的大开孔指的是超过以上范围的开孔。

现如今,主要是通过等面积法、分析法及有限元应力分析法三种方法计算压力容器大开孔的补强。

1 大开孔应力特点及强度分析

对压力容器的壳体做开孔后,容器开孔的边缘会形成较为复杂的应力状况,以下是对会引起的三种应力的详细描述。

1.1 局部薄膜应力

一般来说压力容器的壳体承受的都是一次总体薄膜应力,指的是

(情绪管理)压力容器的开孔与补强

第13章 压力容器的开孔与补强 本章重点内容及对学生的要求: (1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求; (4) GB150-98对容器开孔及补强的有关规定。 第一节 容器开孔附近的应力集中 1、 相关概念 (1)容器开孔应力集中(Opening and stress concentration ) 在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。容器开孔接管后在应力分布与强度方面会带来下列影响: ◆ 开孔破坏了原有的应力分布并引起应力集中。 ◆ 接管处容器壳体与接管形成结构不连续应力。 ◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。 上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。 (2)应力集中系数(stress concentration factor ) 常用应力集中系数Kt 来描述开孔接管处的力学特性。若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为: σ σmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ? 研究开孔应力集中程度,估算K t 值; ? 在强度上如何使因开孔受到的削弱得到合理的补强。 2、平板开小孔的应力集中 Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension

开孔补强

目录 1前言及概念3 1.1开孔补强的适应范围和方法 (3) 1.2满足开孔条件时,可采用的三种补强方法 (3) 1.3开孔补强的目的 (4) 1.4补强结构(补强元件类型) (4) 1.4.1加强管补强 (4) 1.4.2整体锻件补强 (4) 1.4.3加强圈的补强 (4) 1.5壳体开孔的有关规定 (5) 1.5.1允许不补强时开的最大孔直径 (5) (5) 1.5.2壳体上允许开的最大孔直径d max 1.6等面积补强计算方法 (6) 1.6.1各国压力容器规范主要采用的准则(补强准则的种类) (6) 1.6.2等面积补强的原则 (6) 1.6.3等面积补强计算方法 (6) 2工艺设计 8 2.1设计要求 (8) 2.2连续釜式反应器工艺设计 (8) 2.2.1单段连续釜式反应器 (8) 2.2.2反应器直径和高度的计算 (9) 3 机械设计9 3.1手孔的开孔补强计算 (9) 3.1.1计算是否需要补强 (10) 3.1.2计算开孔失去的面积A (10) 3.1.3计算有效补强面积A (11) 3.2进料口的开孔补强计算 (11) 3.2.1计算是否需要补强 (11) 4补强结构图12 5总结13 6参考文献 13

1前言及概念 在日常的压力容器设计工作中,经常会遇到压力容器开孔补强问题。压力容器开孔以后,不仅整体强度受到削弱,而且还因开孔引起的应力集中造成开孔边缘局部的高应力,加上接管上有时还有其他的外载荷所产生的应力及热应力,而容器材料、以及开孔结构在制造和焊接过程中又不可避免地会形成缺陷和残余应力,开孔和接管附近就成为压力容器的薄弱部位,于是开孔附近就往往成为压力容器的破坏源一一主要是疲劳破坏和脆性裂口。因此,按照GBl50-1998Ⅸ钢制压力容器》的规定,在压力容器设计过程中必须充分考虑开孔的补强问题。 1.1开孔补强的适应范围和方法 (1)当其内径Di≤1500mm时,开孔最大直径d≤1/2Di,且d≤520mm;当其内径D≥1500mm时, 开孔最大直径d≤l/3Di,且d≤1000mm; (2)凸形封头或球壳的开孔最大直径d≤1/2Di; (3)锥壳(或锥形封头)的开孔最大直径d≤1/3Di,Di为开孔中心处的锥壳内直径; (4)在椭圆形或碟形封头过渡部分开孔时,其孔的中心线宜垂直于封头表面。 1.2满足开孔条件时,可采用的三种补强方法 (1)补强圈补强 补强圈补强结构简单,制造方便,有一定的补强效果。但和其它补强结构相比,补强区较为分散,补强效果不佳,补强后的应力集中系数比较大。由于补强圈并未和壳体、接管形成整体,所以其抗疲劳性很差,一般常用于静压、常温下的中低压容器。对于缺口敏感性较高的低合金高强度钢制容器,采用此种补强结构时尤需慎重,高温、高压或承受变载荷的容器,则不宜采用此种补强形式。鉴于补强圈搭接结构会引起较大的局部应力,且高强度钢的淬硬性强,易产生焊接裂纹,故在超出GBl50—1998对其适用条件范围时,宜采用整锻件补强或整体加厚壳体补强。 (2)整锻件补强(包括用全焊透焊缝连接的厚壁管补强) 采用整锻件补强,所有补强区域集中在应力集中区,能有效地降低应力集中系数,故补强效果好。由于补强件和壳体、接管之间的焊接采用对接焊缝,焊接质量可保证,并使焊缝及热影响区离开最大应力点的位置,故抗疲劳性能好。常用于o S≥500MPa的容器开孔及在低温、高温或受交变载荷的大直径容器开孔。缺点是锻件供应困难,制造繁琐,成本较高,只在重要的设备中使用。采用厚壁管补强,接管的加厚部分处于最大的应为区域内,比补强圈更能有效地降低应力集中系数。这种形式结构简单,制造与检验都很方便,但必须保证全焊透焊接。对于低合金高强度钢,由于它比一般低碳钢有较高的缺口敏感性,所以一般都采用厚壁管补强型式。 (3)整体加厚壳体补强 整体加厚壳体补强结构是以增加整个简体或封头的壁厚来降低开孔附近的应力,其开孔补强计算可按等面积补强法进行计算。根据理论和实验分析,开孔后的应力集中现象有明显

压力容器常用开孔补强方法对比分析

压力容器常用开孔补强方法对比分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器常用开孔补强方法对比分析压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。对于压力容器的开孔补强计算方法一般有两种:一是等面积法,二是分析法。本文对这两种方法作以比较和分析。 在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。容器开孔后,一方面由于器壁承受载荷截面被削弱,引起局部应力的增加和容器承载能力的减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。 开孔补强基本原理 2.1.等面积法 该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,且以补强壳体的一次总体平均应力作为补强原则。当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随

着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力。 等面积法的开孔补强结构所形成的应力集中在某一区域内,当离孔边缘的距离越大,越接近薄膜应力。它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。 2.2.分析法 这种补强方法是以壳体极限分析为基础的,相对等面积法合理得多,但须受开孔壳体和补强接管的尺寸限制。这种方法优点是:克服等面积法的缺点,在转角处采用圆滑过渡,减少结构形状的突变,减小应力集中程度。将补强面积集中在应力最高点,充分利用补强面积,使补强更经济、合理。 对比分析 3.1.等面积法 等面积法顾名思义:壳体截面因开孔被削弱的承受强度的面积,须有补强材料予以等面积补偿,其实质是壳体截面因开孔丧失的强度,即被削弱的“强度面积”A乘以壳体材料在设计温度下的许用应力[σ]t,即

开孔补强

目录 1前言及概念 2 1.1开孔补强的适应范围和方法 (2) 1.2满足开孔条件时,可采用的三种补强方法 (2) 1.3开孔补强的目的 (3) 1.4补强结构(补强元件类型) (3) 1.4.1加强管补强 (3) 1.4.2整体锻件补强 (3) 1.4.3加强圈的补强 (3) 1.5壳体开孔的有关规定 (4) 1.5.1允许不补强时开的最大孔直径 (4) 1.5.2壳体上允许开的最大孔直径d max (4) 1.6等面积补强计算方法 (5) 1.6.1各国压力容器规范主要采用的准则(补强准则的种类) (5) 1.6.2等面积补强的原则 (5) 1.6.3等面积补强计算方法 (5) 2工艺设计7 2.1设计要求 (7) 2.2连续釜式反应器工艺设计 (7) 2.2.1单段连续釜式反应器 (7) 2.2.2反应器直径和高度的计算 (8) 3 机械设计 8 3.1手孔的开孔补强计算 (8) 3.1.1计算是否需要补强 (9) 3.1.2计算开孔失去的面积A. (9) 3.1.3计算有效补强面积A0 (10) 3.2进料口的开孔补强计算 (10) 3.2.1计算是否需要补强 (10) 4补强结构图11 5总结12 6参考文献12

1前言及概念 在日常的压力容器设计工作中,经常会遇到压力容器开孔补强问题。压力容器开孔以后,不仅整体强度受到削弱,而且还因开孔引起的应力集中造成开孔边缘局部的高应力,加上接管上有时还有其他的外载荷所产生的应力及热应力,而容器材料、以及开孔结构在制造和焊接过程中又不可避免地会形成缺陷和残余应力,开孔和接管附近就成为压力容器的薄弱部位,于是开孔附近就往往成为压力容器的破坏源一一主要是疲劳破坏和脆性裂口。因此,按照GBl50-1998Ⅸ钢制压力容器》的规定,在压力容器设计过程中必须充分考虑开孔的补强问题。 1.1开孔补强的适应范围和方法 (1)当其内径Di≤1500mm时,开孔最大直径d≤1/2Di,且d≤520mm;当其内径D≥1500mm时, 开孔最大直径d≤l/3Di,且d≤1000mm; (2)凸形封头或球壳的开孔最大直径d≤1/2Di; (3)锥壳(或锥形封头)的开孔最大直径d≤1/3Di,Di为开孔中心处的锥壳内直径; (4)在椭圆形或碟形封头过渡部分开孔时,其孔的中心线宜垂直于封头表面。 1.2满足开孔条件时,可采用的三种补强方法 (1)补强圈补强 补强圈补强结构简单,制造方便,有一定的补强效果。但和其它补强结构相比,补强区较为分散,补强效果不佳,补强后的应力集中系数比较大。由于补强圈并未和壳体、接管形成整体,所以其抗疲劳性很差,一般常用于静压、常温下的中低压容器。对于缺口敏感性较高的低合金高强度钢制容器,采用此种补强结构时尤需慎重,高温、高压或承受变载荷的容器,则不宜采用此种补强形式。鉴于补强圈搭接结构会引起较大的局部应力,且高强度钢的淬硬性强,易产生焊接裂纹,故在超出GBl50—1998对其适用条件范围时,宜采用整锻件补强或整体加厚壳体补强。 (2)整锻件补强(包括用全焊透焊缝连接的厚壁管补强) 采用整锻件补强,所有补强区域集中在应力集中区,能有效地降低应力集中系数,故补强效果好。由于补强件和壳体、接管之间的焊接采用对接焊缝,焊接质量可保证,并使焊缝及热影响区离开最大应力点的位置,故抗疲劳性能好。常用于o S≥500MPa的容器开孔及在低温、高温或受交变载荷的大直径容器开孔。缺点是锻件供应困难,制造繁琐,成本较高,只在重要的设备中使用。采用厚壁管补强,接管的加厚部分处于最大的应为区域内,比补强圈更能有效地降低应力集中系数。这种形式结构简单,制造与检验都很方便,但必须保证全焊透焊接。对于低合金高强度钢,由于它比一般低碳钢有较高的缺口敏感性,所以一般都采用厚壁管补强型式。 (3)整体加厚壳体补强 整体加厚壳体补强结构是以增加整个简体或封头的壁厚来降低开孔附近的应力,其开孔补强计算可按等面积补强法进行计算。根据理论和实验分析,开孔后的应力集中现象有明显

压力容器常用开孔补强方法对比分析

压力容器常用开孔补强方法对比分析 压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。对于压力容器的开孔补强计算方法一般有两种:一是等面积法,二是分析法。本文对这两种方法作以比较和分析。 在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。容器开孔后,一方面由于器壁承受载荷截面被削弱,引起局部应力的增加和容器承载能力的减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。 开孔补强基本原理 2.1.等面积法 该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,且以补强壳体的一次总体平均应力作为补强原则。当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,

而且还产生很高的弯曲应力。 等面积法的开孔补强结构所形成的应力集中在某一区域内,当离孔边缘的距离越大,越接近薄膜应力。它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。 2.2.分析法 这种补强方法是以壳体极限分析为基础的,相对等面积法合理得多,但须受开孔壳体和补强接管的尺寸限制。这种方法优点是:克服等面积法的缺点,在转角处采用圆滑过渡,减少结构形状的突变,减小应力集中程度。将补强面积集中在应力最高点,充分利用补强面积,使补强更经济、合理。 对比分析 3.1.等面积法 等面积法顾名思义:壳体截面因开孔被削弱的承受强度的面积,须有补强材料予以等面积补偿,其实质是壳体截面因开孔丧失的强度,即被削弱的“强度面积”A乘以壳体材料在设计温度下的许用应力[σ]t,即A[σ]t,应由补强材料予以补偿,当补强材料与壳体材料相同时,

压力容器常用开孔补强方法对比分析详细版

文件编号:GD/FS-2254 (解决方案范本系列) 压力容器常用开孔补强方法对比分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

压力容器常用开孔补强方法对比分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。对于压力容器的开孔补强计算方法一般有两种:一是等面积法,二是分析法。本文对这两种方法作以比较和分析。 在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。容器开孔后,一方面由于器壁承受载荷截面被削弱,引起局部应力的增加和容器承载能力的减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。

因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。 开孔补强基本原理 2.1.等面积法 该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,且以补强壳体的一次总体平均应力作为补强原则。当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力。 等面积法的开孔补强结构所形成的应力集中在某一区域内,当离孔边缘的距离越大,越接近薄膜应力。它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。 2.2.分析法

压力容器强度计算公式及说明

压力容器壁厚计算及说明 一、压力容器的概念 同时满足以下三个条件的为压力容器,否则为常压容器。 1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力; 2、容积V ≥25L ,且P ×V ≥1960×104L Pa; 3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。 二、强度计算公式 1、受内压的薄壁圆筒 当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式, δ理= P PD -σ][2 考虑实际因素, δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜; D — 圆筒内径,㎜; P — 设计压力,㎜; [σ] — 材料的许用拉应力,值为σs /n ,MPa ; φ— 焊缝系数,0.6~1.0; C — 壁厚附加量,㎜。 2、受内压P 的厚壁圆筒 ①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。 径向应力σr =--1(2 22a b Pa 22 r b ) 环向应力σθ=+-1(222a b Pa 22 r b ) 轴向应力σz =2 22 a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜; ②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为: σ1=σθ=P K K 1 122-+ σ2=σz =P K 11 2-

压力容器圆筒开孔补强计算方法研究.docx

压力容器圆筒开孔补强计算方法研究应力集中危害问题要通过正确的方式强化管理,实现补强计算分析,进而充分的保障压力容器的安全性,提升整体的经济性。通过开孔补强计算方式,可以有效的解决此种问题。 1.压力容器圆筒大开孔补强计算方法应用价值 多数工程具有复杂化、大型化以及工艺特殊的特征,在施工中一些压力容器要通过较大的开孔接管进行处理,此种方式会转变原有容器的应力状态,消弱压力容器的强度。针对与柱壳容器,开孔之后会导致其受到接管弹性约束的影响,导致容器主管的开孔附近受到薄膜应力状态轴向力以及环向力的影响,出现弯矩以及扭矩等问题。为了提升整体稳定性,在实践中针对一些大开孔设计y要通过科学合理的方式分析受力状况,进而保障施工安全性,提升整体质量。 2.压力容器圆筒大开孔补强计算方法 2.1压力面积法 通过欧盟标准压力面积法,综合我国实际状况,在被开孔削弱面积补在孔的周围,给出其需药补强的具体面积,不计孔周边的应力集中问题。开孔补强设计主要的要求就是基于结构进行静力强度分析,基于一次应力强度出发,分析开孔边缘二次应力安定性。综合其安全系数以及实践经验系统分析。此种方式对于开孔边缘的应力强度进行

分析是否满足一次总体以及局部中对于薄膜应力静力强度要求。通过对补强范围材料平均薄膜应力控制的方式达到进行应力强度的控制与管理,要保障其在一倍的许用应力。综合压力在壳体受压面积产生的荷载以及有效补强范围中的课题、接管。补强材料面积承载能力平衡的相关静力平衡条件则可以确定其进行接管补强计算的方式。在壳体以及接管、补强材料相同的时候要根据以下公式进行补强计算公式为:P表示的是设计压力。 2.2分析法 分析法就是根据弹性薄壳理论获得的应力分析方式。主要就是在内压作用之下其具有径向接管圆筒开孔的补强设计分析。分析法设计准则与压力面积法之间具有一定的差别。此种方式的模型假定接管以及壳体属于连续性的整体型结构,其计算模型如下图所示。在应用分析法的时候,要保障焊接接头的质量,保障其整体焊透性。分析法在设计中主要就是基于塑性极限以及安定分析确定,通过保障其一次加载的时候具有充足的塑性承载能力,具有反复加载的安定要求,进而确定其开孔安全性。此种方式有效的拓展了圆柱壳开孔补强设计的适用范围。圆柱壳开孔接管理论中的力学技术主要就是综合Morley方程,通过导出并且利用两正交相贯圆柱壳位于交贯线位置中精确的连续条件,则可以确定在内压以及外载作用之下圆柱壳开孔接管中的薄

压力容器的强度计算].doc

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

使用SW6―2011计算压力容器开孔补强的几个问题-2019年文档

使用SW6―2011计算压力容器开孔补强的几个问题 0 引言 为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。虽然标准和规范对设计和计算都作了较为详细的规定,但在使用SW6-2011过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。 1 补强方法及适用范围 1.1 计算时应注意的问题 在使用SW6-2011计算开孔补强之前要先判断接管的直径和壁厚是否满足GB150.3-2011中6.1.3不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区B=2d范围内还有其他开孔,形成孔桥的,则应按孔桥处理。在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线

垂直距离计算是不正确的。 1.2 补强计算方法及适用范围的理解 SW6-2011补强计算方法给出四种:等面积补强法、另一补强方法、分析方法和压力面积法。 计算软件中的等面积补强法是指单个开孔的等面积法,联合补强法是指多个开孔的等面积法。等面积法是开孔补强计算方法中最广泛应用的计算方法,该法是以补偿开孔局部截面的一次拉伸强度作为补强准则的,是以无限大平板上开有小圆孔时孔边的应力集中作为理论基础的,即仅考虑容器壳体中存在的拉伸薄膜应力,对开孔边缘的二次应力的安定性问题是通过限制开孔形状,长短径之比和开孔范围(开孔率)间接考虑的[2],使用该法应考虑开孔是否满足GB150.3-2011中6.1.1的规定。对于承受静载的压力容器开孔,长期实践证明该法在允许使用范围内,其补强结果是比较安全可靠的。分析法是根据弹性薄壳理论得到的应力分析法用于内压作用下具有径向接管圆筒的开孔补强设计,其开孔率可达0.9。压力面积法为HG20582-2011大开孔的补强计算[3]中介绍的补强方法,其开孔率可达0.8。分析法和压力面积法都是适用于大开孔径向接管补强计算的,不能计算斜接管。大开孔即超出等面积补强法适用范围的开孔。而且分析法只能用在筒体上的开孔,封头上的大开孔应用压力面积法计算,但在我国压力面积法尚不能作为合法的设计依据,该方法只能参考使用。压力面积法和等面积法一样,都不适用于有疲劳强度要

压力容器考试题库带答案

《压力容器设计考核题》 姓名:分数: 一、填空题(每空1分,共40分) 1.设计盛装液化石油的储罐容器,使用法兰连接的第一个法兰密封面,应采用 高颈对焊法兰,金属缠绕垫片(带外环 )和高强度螺栓组合。 2.气密性试验应在液压试验合格后进行。对设计图样要求做气压试验的 压力容器,是否需再做气密性试验,应在设计图样上规定。 3.压力容器的壳体,封头,膨胀节,开孔补强,设备法兰,球罐的球壳板,换热器的管板和换热管, M36(含M36)以上的设备主螺栓,公称直径大于等于 250mm的接管和管法兰等均作为主要受压元件。 4.压力容器设计单位不准在外单位设计的图样上加盖压力容器设计资格印章; 5.用于制造压力容器壳体的钛材应在退火状态下使用。 6.压力容器投用后,首次内外部检验周期一般为 3 年 7.GB150.1-2011使用于设计压力不大于 35 Mpa的压力容器的 设计,制造,检验与验收。 8.计算压力是指在相应设计温度下用以确定元件厚度的压力。 9.设计温度指容器在正常工作情况下,设定的元件的元件金属温度。在任 何情况下,元件金属的表面温度,不得超过钢材的允许使用温度。10.只设置一个安全阀的压力容器,根据压力高低依次排列:设计压力、工作压力、 最高工作压力、开启压力、试验压力: (1) 工作压力 (2) 最高工作压力 (3) 开启压力 (4) 设计压力 (5) 试验压力。 11.两个不同垫片,他们的形状和尺寸均相同且都能满足密封要求,则选用m(垫 片系数)值小的垫片较好。 12.在法兰设计计算中比压力y是考虑预紧状态下需要的最小螺栓截 面计算时使用,垫片系数m是考虑操作状态下需要的最小螺栓截面

压力管道设备开孔补强计算方法探讨

压力管道设备开孔补强计算方法探讨 发表时间:2019-05-23T11:32:04.523Z 来源:《防护工程》2019年第1期作者:国健 [导读] 对几种常用的补强方式进行了对比研究,主要包括补强板、补强管和焊台补强三种形式。 中石化第十建设有限公司山东青岛 266555 摘要:随着工艺要求的提高,管线开孔在没有标准管件可用的情况下,大口径管道上直接开孔焊接支管是管道设计时经常会遇到的问题,由于开孔面积较大,需要对开孔处进行详细核算以确定是否需要补强。若需要补强,要根据具体情况、相关标准规范来进行计算和判断,找出最适合的补强方式,并根据计算补强的具体参数要求进行开孔补强,核算结果的准确与否及开孔补强是否足够将影响管道的安全平衡运行。 关键词:压力管道;设备;开孔补强;计算方法; 压力管线开孔接管和补强结构作为管道系统中常用的结构方式,在石化领域广泛应用。在对国内外开孔补强设计的主要原则进行分析后,对几种常用的补强方式进行了对比研究,主要包括补强板、补强管和焊台补强三种形式。 一、开孔补强理论概述 管道开孔并带有接管后和未开孔管道相比,引起了三个问题,即:一是由于开孔而使主管承载截面积的削弱,其值为d iδn;二是主管上因开孔而引起的孔边应力集中,其存在范围(从接管外侧起量),大致为d i/2;三是因接管和主管构成了不连续结构,因而在主管上引起了附加的不连续应力,其存在范围(从接管外侧起量),大致和不连续应力的衰减范围成正比:这三者对主管管体(对接管,则是从主管表面起的接管不连续应力存在范围内接管应力增大)的最终影响是,在接管周围一定范围内应力的增大,暂不讨论如何对这些应力进行分类,接管周围应力的增大总会降低壳体的承载能力,所以必须“补强”。 二、开孔补强设计方法 1.等面积补强。GB50253《输油管道工程设计规范》5.4.9所介绍的补强计算法即为等面积补强法,也是目前计算压力管道开孔补强最常用的一种计算方法。等面积补强法从补强角度讲,壳体由于开孔丧失的拉伸承载面积应在孔边有效补强范围内等面积的进行补强。当补强材料与壳体相同时,所需的补强面积就与壳体开孔削弱面积的强度面积相等。等面积补强法是以补强开孔局部截面积的拉伸强度作为补强准则的,为此其补强只涉及静力强度问题。等面积补强的力学基础是无限大平板开小孔,忽略了开孔处应力集中和开孔系数的影响,粗略的认为在补强范围内补强金属的均匀分布降低了孔边缘的应力集中作用。对于开孔边缘的二次应力的稳定性问题是通过限制开孔形状和开孔范围加以考虑的。等面积法基于无限大平板开孔小孔的假设,未能体现局部弯曲应力影响,这种基于板壳理论的简化方法,不适合大开孔的计算,因此GB50253规定开孔直径不大于主管直径的1/2。 2.压力面积法。压力面积法是G20582-2011《钢制化工容器强度计算规定》介绍的大开孔计算方法,来源于西德AD规范B9补强设计的规定,这是一种近似的分析方法,基本上是一种经验的极限分析方法。它根据试验应变测量,对具有各种尺寸的开孔与带有齐平径向接管的圆筒形容器上做了一系列压力试验,以壳体开孔接管处产生0.2%的应变所需的压力导出削弱系数,并绘制成曲线。在确定补强设计时,需将削弱系数值代入壳体厚度公式中进行计算,并将开孔率限制在0.8。该法在本质上仍与等面积法相同,对于开孔边缘应力只考虑满足一次总体及局部薄膜应力的静力要求。压力面积法的基本出发点是,对于内压壳体,是以压力载荷的面积和壳体、接管、补强件的承载截面积之间相互平衡为基础的,即由压力载荷的面积对压力乘积所表示的载荷和壳体、接管、补强件承载横截面积对材料许用应力的乘积之间相互平衡,在工程实践中往往应用于低压容器开孔补强的计算中,该方法在计算高压管道大开孔补强时,其结果往往是偏冒进的,随着新版G20582的发布,其方法的适用范围受到更加严格的限制,因此压力面积法不适合压力管道开孔补强计算。 3.有限元分析法。使用ASME法计算分析了一受内压模型压力管道大开孔补强结构,用极限分析法求出其极限载荷和设计载荷,并用分析设计法进行了验证,是一种安全可靠的计算方法。但是如采用有限元分析,对设计人员要求高,如果从设计成本、人员资质和效率上考虑,有限元分析法很难满足工程要求。 三、压力容器的开孔补强计算 压力容器的开孔补强计算方法主要采用的是等面积补强法,其指导思想是使简体上多余金属的截面积A1、接管上多余金属的截面积A2、焊缝金属的截面积A3之和作为有效补强范围内补强的截面积Ae。若Ae大于等于因开孔而削弱的截面积A,则开孔不需要补强;若Ae 小于A,则开孔需要补强,需要补强的面积A4>A—Ae。该方法使用的开孔范围为,当筒体内径Di≤1 500 mm时,开孔最大直径d≤Di/2,且d≤520 mm;当简体内径Di>1 500 mm时,开孔最大直径d≤Di/3,且d≤1 000 mm。 四、算方法比较 按照压力容器开孔补强方法和按照压力管道设备有关标准要求进行补强的基本理论都是以等面积补强法为基础的,最大的不同在于前者属于压力容器范畴,而后者则不属于压力容器范畴。 1.适用的开孔范围不同。如果按前者方法计算,当筒体内径Di≤1 500 mm时,开孔最大直径d≤Di/2,并且d≤520mm;而当筒体内径Di>I 500 mm时,开孔最大直径d≤1/3D。,并且d≤1 000 mm。也就是说,对于较大的开孔,这种计算方法是不适用的。而采用后者计算方法就没有这个限制,例如用文献来计算开孔接管直径与简体相同的设备、等径的清管三通等是可行的。 2.许用应力取值方法不同。采用前者方法计算时的许用应力可以在文献中直接查取,而采用后者计算方法时则通过查取材料的屈服强度后乘上设计系数得出。这两种方法会使同种材料许用应力的取值有不小的差异,导致简体的计算壁厚也相差不少。另外,如果在文献[1]中查取材料的许用应力,那么文献中没有列出的材料就无法查到相应的许用应力值。而采用后者计算方法,只要知道材料的屈服强度和设计系数就可以计算出许用应力值。适用范围广泛。 3.有效补强高度不同。采用前者方法的有效补强高度按式(2)和式(3)计算,并分别取式中较小者。而采用后者方法计算时则分为两种情况,如果是挤压引出接管的补强。那么有效补强高度H=;如果是焊接接管的开孔补强,那么有效补强高度H=。在实际计算中。两种计算方法得到的有效补强高度相差不小.对最终计算结果影响也较大。对于挤压引出接管的补强,同属压力管道设备标准的文献[3]和文献[4]的要

压力容器壳体的开孔与补强

压力容器的开孔与补强 本章重点容及对学生的要求: (1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求; (4) GB150-98对容器开孔及补强的有关规定。 第一节 容器开孔附近的应力集中 1、 相关概念 (1)容器开孔应力集中(Opening and stress concentration ) 在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。容器开孔接管后在应力分布与强度方面会带来下列影响: ◆ 开孔破坏了原有的应力分布并引起应力集中。 ◆ 接管处容器壳体与接管形成结构不连续应力。 ◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。 上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。 (2)应力集中系数(stress concentration factor ) 常用应力集中系数Kt 来描述开孔接管处的力学特性。若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为: σ σmax = t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ? 研究开孔应力集中程度,估算K t 值; ? 在强度上如何使因开孔受到的削弱得到合理的补强。 2、平板开小孔的应力集中 Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension

ASME压力容器强度计算软件.

ASME 压力容器强度计算软件 一.运行环境 1、中文Windows 操作系统和Word2000字处理软件。 2.CPU为586以上的PC计算机,喷墨或激光打印机,鼠标。 二.软件计算内容 A,元件类 1.内压筒体、封头; 2.外压筒体、封头; 3.圆锥体; 4.平盖; 5.管颈厚度及开孔补强; 6.法兰; 7.浮头法兰;8.U型管式、浮头式管板;9.固定管板及TEMA膨胀节;10.换热管壁厚;11.换热器分程隔板厚度;12.设备的最低设计金属温度;13.夹套与容器间封闭件;14.EJMA膨胀节。 B.设备类 1.卧式容器; 2.立式设备 四.材料库 软件材料库包含ASME规范的所有材料,用户只需使用鼠标点取材料名称,软件将快速查出有关机械性能。对于非ASME规范材料,用户可在相应窗口栏位直接输入材料名称及有关机械性能或在材料库中增加材料性能。 五.数据的输入、修改、输出特点 1.在数据输入方面:数据输入界面以中文提示与图形示意结合的方式;双击数据输入界面可将用户所输入的数据打印输出,以供校对。 2.在数据存储与修改方面:同种元件或设备以记录方式存储在相应的数据文件中,用户对已输入的数据可根据图号进行查询、删除、修改等操作。 3.在计算结果输出方面:形成图表格式的英文计算结果,并以Word文档文件输出。 六.软件安装

用户应运行Setup安装,在安装过程中,必须使用指定缺省目录。 七.元件及设备具体功能与特点 1.内压、外压筒体与封头计算:本模块可根据用户需要按ASME标准的内径公式或外径公式进行内、外压设计或校核计算。 2.平盖计算:本模块根据ASME标准有关公式对螺栓连接平盖和整体焊接平盖行设计或校核计算。 3.圆锥体计算:本模块可对承受内压、外压、轴向外载荷的无折边锥体、一端有折边锥体、两端有折边锥体进行设计或校核计算。

压力容器无量纲计算

综合题 、2000m 3丙烯球形储罐 该球罐2003年投入使用,今年首次全面检验时,在赤道带两支柱之间的一块球壳板上发现了一个380X30mm折皱,经过打磨消除后,形成一个长 420mm,宽80mm最深处6mm凹坑。在其周围未发现其它表面缺陷及隐藏缺陷,若不考虑介质的腐蚀和材质劣化,问该凹坑是否需要补焊?回答:1、是否可以根据无量纲参数G0值来判断,该凹坑是否需要补焊?首先判断该凹坑条件是否符合,进行无量纲参数G 0计算的凹坑条件。答:(1)如果在壁厚余量范围内,则该凹坑允许存在。否则,将凹坑按其外接矩形规则化为 2A、2B、C,计算无量纲参数,如果小于0.10,贝U凹坑在允许范围内。

总的比较结果结论:该凹坑条件适合进行无量钢参数GO计算 (2)计算无量纲常数: G o=C/T >A/」RT=6/42 X210/ 7842 M2=0.037<0.10 经无量钢计算不需要补焊

二、综合应用 某中压空气缓冲罐2004年制造,内径=1300mm壁厚14mm,出厂质量证明文件显示A、B类焊缝实际进行了24%射线检测,川级合格,不要求进行焊后热处理,今年在进行首次全面检验发现如下问题: (1 )、位于筒体上的空气进出口管内径为750mm,强度计算表明接管按照HG20582-1998《钢制化工容器强度计算规定》中的压力面积进行了强度计算,经对进出口接管与筒体连接的焊接接头进行磁粉检测未见缺陷显示,焊接接头超声波检测和开口附近壁厚未见异常。 (2)、本次检验中对制造过程未进行射线检测的射线焊接接头进行了部分 X射线检测,发现缺陷的底片评定如下表中片号“ H”代表环焊缝Z”代表纵焊缝探伤人员已按JB/T4730.2-2005进行评定 对发现的条状夹渣采用《TOFD衍射时差法超声检测》方法反复测试等到缺陷厚度方向的高度Z3-1位置长6mm,夹渣的自身高度小于1mm °Z3-2 位置长20mm夹渣自身高度为3mm,两处条状夹渣均无开裂扩展迹象。 如何针对上述所有情况如何按压力容器定期检验规则评定该容器的安全状况等级?并说明各种情况的安全状况等级的评定过程 需要考虑的情况及评级过程(不考虑“如果能采用有效方式确认缺陷是否活动,则表5表6中的缺陷长度容限值可以增加50%”情况)答:(1)因

压力容器强度计算

压力容器强度计算 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于 工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附录),超压泄放装置。)

相关文档
最新文档