匹配滤波

匹配滤波
匹配滤波

1.5.

2. 匹配滤波器

最佳接收机还可以有另外的一种结构,即匹配滤波器。为了说明匹配滤波器的基本原理,我们从这样一个直观的分析入手。

我们知道,通信系统的误码率与输出的信噪比有关,接收端输出信噪比越大,则系统的误码率越小。因此,如果在每次判决前,输出的信噪比都是最大的,则该系统一定是误码率最小的系统。

遵从这种考虑原则,我们可以得到匹配滤波器的概念。接收机通过匹配滤波器使输出信噪比最大。

一、匹配滤波器原理

假设线性滤波器的输入端是信号与噪声的叠加)()()(t n t x t s +=,且假设噪声)(t n 是

白噪声,其功率谱密度2

)(0

N f P n =

,信号的频谱为)(f X 。 问题:设计一个滤波器使输出端的信噪比在某时刻0t 达到最大。 假设该滤波器的系统响应函数为)(f H ,系统冲击响应为)(t h ,则 输出信号)()()(0t n t s t y O += 其中,?

--=

τττd t h x t s )()()(0,)()()(f H f X f S o =

?∞

-=df e f H f X t s ft j o π2)()()(

所以在0t 时刻,信号的功率为200|)(|t s 输出噪声的功率谱密度20

|)(|2

)(f H N f P o n =

输出噪声平均功率为?∞

∞-=

df f H N Pn 2

0|)(|2

所以0t 时刻输出的信噪比为:

??∞

∞-∞

-==

df

f H N df e f H f X Pn

t s r ft j 2

02

22

000|)(|2|)()(||

)(|0π

根据Schwarts 不等式,

???∞

-∞

-∞

-≤df f Y df f X df f Y f X 22

2

|)(||)(||)()(|

20

22

|)(|N E N df f X r s

=

?∞

- 当0

2*)()(ft j e

f KX f H π-=时等式成立。

因此,如果设计一个滤波器,它的系统响应函数为

02*)()(ft j e f KX f H π-=时,滤波器输出信噪比最大。

二、匹配滤波器结构

我们再来看看,匹配滤波器的冲激响应)(t h

02*)()(ft j e f KX f H π-=

两边取傅立叶反变换,得到

*0)()(t t Kx t h -=

如果输入信号)(t x 是实信号,则)()(0t t Kx t h -=

现在,我们把以上的结论用在数字通信上。假设符号的传输速率

s

T 1

,则在接收端同样地我们需要每隔s T 时间进行一次判决,因此我们希望在每s T 时刻的输出信噪比最大,将上述的0t 用Ts 带入,我们得到匹配滤波器如下:

)()(t T Kx t h s -=。

所以,匹配滤波器的结构如下:

例1、 假设某二进制通信系统的0、1信号对应的传输波形为)(),(21t s t s ,如下图示。 问:1、该系统的匹配接收机结构如何?

四、匹配滤波器与相关接收机的关系

由匹配滤波器的冲激响应函数)()(t T Kx t h s -=,当接收端输入为

)()()(1t n t x t s +=时,在相对于)(1t x 的匹配滤波器端输出信号

??+-+=-=s

s T s T d T t Kx n x d t h s t r 0

1110

)()]()([)()()(τττττττ

??+-+-+=s

s T s s T d T t x Kn d T t x x K 0

1110

1)()()()(ττττττ

当s T t =时,得到

??+=s

s T T s d x n K d x x K T r 0

110

11)()()()()(ττττττ

dt t x t s K

s

T )()(10

?

= (相关接收机形式)

因此,在s T t =的取样点上,匹配滤波器与相关接收机的结果是等价的。

因此,如果我们说相关接收机是最佳接收机,那么匹配滤波器也是最佳的。 即最佳接收机的形式可以是相关接收机形式、也可以是匹配滤波器形式。

在实际应用中,由于匹配滤波器只要实现相应的系统响应,就可以实现最佳接收,而 相关接收机要实现乘法、积分运算,因此在实际应用中,经常是匹配滤波器的结构。 由于相关接收机在理论分析方面的方便,因此在理论分析中,经常用相关接收机的形 式。但是,这两者是等价的。

1.5.3. 相关接收机的性能分析

由上面所讲的相关接收机的理论,我们可以知道,最佳的判决准则最终是由下式决定:

?>?--

--

s

T i s

T m dt

t x t y N i dt

t x t y N m e

X P e

X P 0

20

20

)]()([1)]()([1

)()(

两边取对数,得到

)(ln )]()([1

)(ln )]()([(10

20

2

i T i m T m X P dt t x t y N X P dt t x t y N s

s

+--

>+--?

?

假设符号出现是等概的,我们可以得到如下最佳判决规则:

?

?

--

>--s

s

T i T m dt t x t y N dt t x t y N 0

20

2

)]()([1

)]()([(1,判为m X ,m i ≠

我们在第一、二节讲信号空间概念时,曾经讲到两个信号间的距离

2/122121]|)()(|[|)()(|?-=-=b

a

dt t x t x t x t x d

假设发送信号},...2,1),({M i t x i =组成的信号空间可以由正交函数集

}...2,1),({N i t f i =张成,则

∑==N

k k ik i t f s t x 1)()(,即信号)(t x i 可以由空间中的点],...,[21iN i i s s s 表示。

同理,接收信号)(t y 也可以在正交集中展开,

即∑∑∑===-++=

+=N

k k k N k k k N

k k ik

i t f n t n t f n t f s

t n t x t y 1

1

1

)()()()()()()(

)()(1

t o t f r

N

k k k

+=

∑=

我们可以证明,∑=-

=N

k k k

t f n

t n t 1

)()()(ο与k r 是不相关的,即从)(t ο中是不知道任何

关于)(t x i 的信息的,因此它对判决的结果没有影响。[证明可以参见Proakis 的《数字通信》书P237]。****

)]([)]([)]([])([t o n E t o n E t o s E r t o E k k ik k =+=

∑?

=-=

N

i j k i T k t f n n E d f n t n E s

1

)()()()]()([τττ

0)(2

1

)(2100=-=

t f N t f N k k ***** 因此,上述的信号间距离也可以变成接收信号点与星座图中各个星座间的距离:

2

/1122

/12)(]

|)()(|[|)()(|??

?

??-=-=-=∑?=N k ik k b

a

i i s r dt t x t y t x t y d

其中,k ik k n s r +=,k n 是高斯型的噪声。 其中,0)()]([][0

==?

s

T k k dt t f t n E n E

?

?

=s

s

T T m k m k dtd f t f n t n E n n E 00

)()()]()([][τττ

?

?-=s

s

T m k T dtd f t f t N 0

00

)()()(2

1

τττδ mk N δ02

1

=

其中,

???≠==k

m k

m mk

1δ 所以,k n 是均值为0,方差为

02

1

N 的高斯变量。

相应的判决准则可以变成如下:

)(ln )]()([1)(ln )]()([(10

20

20

i T i m T m X P dt t x t y N X P dt t x t y N s

s

+--

>+--

?

?

等价于

)(ln )()(ln )(01

201

2

i N

k ik k m N

k mk k

X P N s r X P N s r

--<--∑∑==

对于等概传输的系统来说,就变成了如下:

∑∑==-<-N

k ik k N

k mk k

s r s r

1

21

2

)()(,判为m X (准则二)

一、二进制最佳接收机的性能

1、 2PSK 信号的最佳接收机性能 我们知道,2PSK 信号)()(10t s t s -=, 假设t f t g t s c π2cos )()(0-= 则)()(00t f s t s = 其中,t f t g E t f c g

π2cos )(2

)(=

,2/0g E s = 我们定义符号能量g T s E dt t s E s

2

1

)(0

20=

=?

, 所以,s E s -=0。

它们的信号距离s E d 2min =

假设经过相关接收机(或匹配滤波器后),每个抽样时刻输出

k i k n s r +=,i=0,1

其中,s E s s -=-=10,k n 是均值为0,方差为02

1

N 的高斯变量。 根据准则二,这里条件为N=1(一维信号空间)

2120)()(s r s r k k -<-,判为0。

根据上述的准则,我们可以得到错误判决的概率:

)

()|)(()()|)((112

201002102

X P n s r n n s s P X P n s r n s s n P P k k k k k k k k e +=>+-++=+->= 即(图示) )()()()(10X P E n P X P E n P P s k s k e >+>=

=

)0(2

1

)0(21>++>+-k s k s n E P n E P 其中, 0

2

1

)(N n k k e

N n f -

=

π

所以,2PSK 相干最佳接收系统的误码率为

???

?

??=????

??=????

?

?=0m i n 2002212N d Q N E e r f c N

E Q P s s

e 例题1,一2PSK 通信的接收系统如图示,在每码元期间,2PSK 信号或为 t

f t

g c π2cos )(,或为t f t g c π2cos )(-(等概出现)

。二进制码元宽度为ms T 1=, 载频MHz f 10=,)(t g 是矩形波,加性宽带白高斯噪声)(t n 的双边功率谱密度为

2

N ,问 1、如何设计)(f H ,使得在(1)处T 抽样时刻的信噪比最大,请写出滤波器的传递函数)(f H 表示式。

2、请写出在(1)处T 时刻的瞬时信号功率值及信噪比。

3、若在T 时刻的抽样值为V ,请写出在等概情况下的最佳判决门限及判决公式(判决准则)。

4、请详细推导上述解调器的误码率公式。

c

2、 2FSK 信号的最佳接收机性能 2FSK 的两个发送信号为: 0——)(2cos )()(110t f E t f t g t s s =

1——t f t g t s 212cos )()(π==)(2t f E s

可见,2FSK 信号是二维信号,它们的距离是s E d 2min =。

经过相关接收机或(匹配滤波器)后,

],[21n n E r s k +==],[21k k r r (发送0)

或],[21n E n r s k += (发送1) 判决的准则是:

2122211120222011)()()()(s r s r s r s r k k k k -+-<-+-,判为0

其中,0,11021201===

=s s E s s s

根据上述的准则,我们可以得到错误判决的概率: 判决0错误的概率:

))()(()(22212

22

100s s E n n E n n P X P P -++<+=

)(2

1

12s E n n P >-=

???

? ??==

-

∞?

020

2121210

2N E Q dy e

N s N y E s

π 同理,可以得到判决1错误的概率为

???

? ??==00121N E Q

P P s 所以,2PSK 最佳接收机的误码率为

???

?

??=????

?

?=????

??=0min 2002221N d Q N

E erfc N E Q P s s e 3、 2ASK 信号的最佳接收机性能

2ASK 信号形式)(2cos )()(,0)(10t f E t f t g t s t s s c ===π

因此,2ASK 信号是一维信号。

判决准则变成:

2120)()(s r s r k k -<-,判为0。

其中,00=s

k k n r = (发0时)

k s k n E r += (发1时)

根据上述的准则,我们可以得到错误判决的概率: 判决0错误的概率:

)2

1(21)|)((2122

0s k k k s k k E n P n r E r r P P >==->=

???

? ??=???? ??=

=

?

∞-

002

4212211210

2N

E e r f c N E Q dy e

N s

s E N y s π 同理,01P P =

所以,2ASK 系统的性能为:

???

? ??=????

??=004212N

E erfc N

E Q P s s e 2ASK 信号的最小距离为s E d =min

所以,???

?

??=02min 2N d Q P e 4、 二进制最佳接收机系统的性能总结

由以上的分析可以看到,对于二进制等概传输系统的误码率为

???

?

??=02min 2N d Q P e ,其中min d 是星座图中的最小距离。 1.5.4. 二进制最佳接收机与非最佳结构的区别

b E 与s E 的区别:

b E :表示平均每比特信号的能量

s E :表示平均每个符号的能量,当采用二元通信时,由于每个符号所携带的信息比特

为1比特,因此每比特能量与每符号能量是等价的。但是,当采用多(M )进制通信时,由于每个符号传输所携带的信息比特数为M 2log ,因此每符号能量不等于每比特能量,两者相差M R 2log =倍,即b s RE E =,R 称为编码率。在后续章节中,我们将讲述纠错编码,在纠错编码中,可能是1个比特被编成n 个比特,然后进行传输,因此此时每比特能量比每

符号能量大。

为了比较数字通信系统的性能好坏,我们需要一个统一的比较量。由于数字通信系统的性能与信噪比直接相关,因此在比较各种数字通信系统时,经常采用0/N E b (每比特信噪比)这个参数作为衡量性能的标准。

一、最佳系统与普通接收机的区别 普通接收机(第六章)

最佳2PSK 的接收机

两者之间的差别在普通接收机并没有充分利用码元时间内的信号,而只是取了其中的一

个点作为判决,而最佳接收机充分利用了整个码元时间内的信号(信息)。

在理想情况下(即信道是无限宽的),两者是等价的。但是在实际应用中,最佳接收机比普通接收机性能好。(请好好思考这个问题)

在书第六章中,非最佳接收机的性能由N

S

r =

信噪比来体现。 其中,B N a a r n

022

22

/2==σ(是信号经过带通后的信噪比) 例如,2PSK 普通接收系统的误码率为()r erfc P e 2

1

=

2PSK 最佳接收系统的误码率???

? ??=

021N E erfc P s e N

S

B N S N ST N E T s ===000 而非最佳系统的B N N 0=,这里B 是带通的带宽。 因此,只有当带通带宽T

B 1

=

时,第六章所述的接收机才与最佳接收机性能一样。 然而,实际系统中,带通滤波器的带宽要求信号完全通过(即对信号不造成失真)。 假设基带信号波形为矩形的话,则T /1是基带信号频谱的第一个零点,如果带通滤波

器带宽为T

B 1

=

,则信号的失真太大,达不到实际接收系统的带通要求。因此,实际 系统的性能肯定要比最佳接收系统的性能差。

最佳接收系统相当于是最小带通带宽的接收机,因此进入判决的噪声也小。 接收系统为了让信号尽可能通过,因此在接收机前端的带通滤波器带宽适当放大,而相关接收机相当于将信号全部通过,噪声进行再次的滤波,因此性能自然得到改善。

1.5.5. 多进制最佳接收机的性能(*选修内容)

1.5.6. 最佳基带系统

一、理想信道下的最佳基带系统 什么是理想信道?

理想信道就是对信号衰减为1,噪声为加性高斯白噪的信道模型。

问题的提出:在理想信道下,我们来考虑整个通信系统的传输部分,如何使整个系统传输最优。接收系统的最优化并不等于整个系统的最优化。即局部最优并不等于全局最优。

我们知道,通信系统中的干扰除了信道中的噪声外(不可避免的),同时还可能有码间干扰。最佳接收机只解决了信道干扰的最佳接收,因此如果整个传输系统被设计成无码间干扰,且又符合最佳接收的条件,则我们可以预见整个系统的性能将达到最佳。 即基带传输系统既符合码间干扰又符合最佳接收机结构形式,则我们可以预见这样设计的基带传输系统是最佳的基带系统。 即最佳基带传输系统的传递函数

)()()()(f G f C f G f H r T =要满足无码间干扰条件,又要符合最佳接收机形式。

因为是理想信道,信道的传递函数是常数,所以

)()()(f G f G f H R T =要满足奈奎斯特无码间串扰条件。

如果我们令接收滤波器fT

j T R e

f G f G π2*

)()(-=,则

接收机与发射机形成匹配形式,可以保证判决时信噪比最大。 因此综合以上结果,设计最佳基带系统应按2步设计: 1、根据频谱的要求设计无码间干扰系统的传递函数)(f H 2、令)()(f H f G T =,fT j R e f H f G π2)()(-=

举例1,

假设某二元通信系统的信息速率为1200bits/s ,采用基带传输,已知信道的带宽为1200Hz ,请设计最佳通信方式,并画出系统框图和必要的设计参数。

解:为了适应信道的带宽要求,必须设计在900Hz 带宽内无码间干扰的传输系统,根据无码间干扰的准则,我们可以得到整个系统的传递函数应为1=α的升余弦函数。因此

]cos 1[2

)(s s

fT T f H π+=

)()(f H f G T =,fT j R e f H f G π2)()(-=

二、非理想信道下的最佳基带系统

非理想信道下的最佳基带系统设计与理想信道下一样,只不过由于信道非理想,通常在设计无码间干扰传递函数前,先对信道进行理想化,这在实际系统中一般用均衡技术解决。然后按照理想信道的最佳基带传输系统进行设计。

本章小结:

要求掌握的内容:

1、概念(信号空间、噪声空间、似然函数、先验概率、后验概率、符号能量、比特能量)

2、最佳接收准则(MAP 准则、最大似然准则)

3、最佳接收机的两种结构(相关接收机、匹配滤波器)

4、二进制最佳接收机的性能分析

5、最佳基带传输系统的设计

最佳接收机的性能分析实际上是一个数学问题,问题就是已知

n x y +=,且x 是一个二元的随机变量,取+V 、-V 的概率分别为p ,1-p 。问y 判决错误的概率是多少?

y 是信号经过接收机接收后,在T 时刻的抽样值,它由两部分组成,信号+噪声。因此,分析这样的系统时,可以信号归信号、噪声归噪声进行分析。

补充:通信系统的仿真

假设我们要通过计算机仿真的方法来验证我们推导的2PSK 最佳接收系统性能公式

)(21

N E erfc P b e

源产生:(随机产生二进制数据,且-1、1等概)

sign(randn(1,1000)) 一次产生1000个随机等概的-1、+1信号。

Randn(1,N) 产生N 个均值为0,方差为1的高斯分布随机变量的样本。 此时Eb = 1;

噪声:sqrt(N0)*randn(1,N),均值为0,方差为N0 判决:>0,判决为1;<0判决为0

统计误码:即将1000个源输入,得到1000个输出,比较两者的差异的个数。 误码率=误码个数/总传输比特数。

现在,要作出Eb/N0与Pe 的图,改变不同的N0就可以得到不同Eb/N0下的Pe 值。

通信原理课程项目报告 匹配滤波器

上海大学2012~2013学年春季学期本科生 课程项目报告 课程名称:《通信原理B(2)》课程编号: 07275129 题目: 匹配滤波器分析 学生姓名: 王子驰(组长)学号: 10124021 学生姓名: 蒋子昂学号: 10124022 学生姓名: 徐璐学号: 10124040 学生姓名: 陈张婳学号: 10123773 学生姓名: 张晨学号: 10123743 评语: 成绩: 任课教师: 评阅日期:

匹配滤波器分析 日期(2013年5月1日) 摘要:在最佳线性滤波器的设计中有一种是使滤波器输出信噪比在某一特定时刻达到最大,由此而导 出的最佳线性滤波器称为匹配滤波器。匹配滤波器对信号做的两种处理:1、去掉信号相频函数中的任 何非线性部分;2、按照信号的幅频特性对输入波形进行加权,即当信号与噪声同时进入滤波器时,它 使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。本文介绍了匹配滤波器的原理,利用MATLAB 软件,设计了一种匹配滤波器,并对其在二进制确知信号最佳接收中的应用进行了分析。 1.引言 在数字通信系统中,信道的传输特性和传输过程中噪声的存在是影响通信性能的两个主要因素。人们总是希望在一定的传输条件下,达到最好的传输性能,最佳接收就是在噪声干扰中如何有效地检测出信号。所谓最佳是在某种标准下系统性能达到最佳,最佳接收是个相对的概念,在某种准则下的最佳系统,在另外一种准则下就不一定是最佳的。在某些特定条件下,几种最佳准则也可能是等价的。在数字通信中,最常采用的是输出信噪比最大准则和差错概率最小准则。 在数字信号接收中,滤波器的作用有两个方面,第一是使滤波器输出有用信号成分尽可能强; 第二是抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号判决的影响。 通常对最佳线性滤波器的设计有两种准则:一种是使滤波器输出的信号波形与发送信号波形之 间的均方误差最小,由此而导出的最佳线性滤波器称为维纳滤波器;另一种是使滤波器输出信噪比 在某一特定时刻达到最大,由此而导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤 波器具有更广泛的应用。 2.课程项目的目的 (1)掌握匹配滤波器的基本概念、基本原理和基本设计方法; (2)具备对简单通信系统进行建立模型、定性分析、定量计算的能力; (3)对实验过程中存在的问题能够进行分析和排除; (4)对规定任务有一定的创新能力。 3.基本原理介绍 由数字信号的判决原理我们知道,抽样判决器输出数据正确与否,与滤波器输出信号波形和发 送信号波形之间的相似程度无关,也即与滤波器输出信号波形的失真程度无关,而只取决于抽样时 刻信号的瞬时功率与噪声平均功率之比,即信噪比。信噪比越大,错误判决的概率就越小;反之,Array 信噪比越小,错误判决概率就越大。

各种滤波器及其典型电路.(DOC)

第一章滤波器 1.1 滤波器的基本知识 1、滤波器的基本特性 定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。 功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。 类型: 按处理信号形式分:模拟滤波器和数字滤波器。 按功能分:低通、高通、带通、带阻、带通。 按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器 按传递函数的微分方程阶数分:一阶、二阶、…高阶。 如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线 .2、模拟滤波器的传递函数与频率特性 (一)模拟滤波器的传递函数 模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。 (二)模拟滤波器的频率特性 模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui 是角频率为w 的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性 (三)滤波器的主要特性指标 1、特征频率: (1)通带截止频f p=wp/(2)为通带与过渡带边界点的频率,在该点信号增益 下降到一个人为规定的下限。 (2)阻带截止频f r=wr/(2)为阻带与过渡带边界点的频率,在该点信号衰耗 (增益的倒数)下降到一人为规定的下限。 (3)转折频率f c=wc/(2)为信号功率衰减到1/2(约3dB)时的频率,在很多 情况下,常以fc 作为通带或阻带截频。 (4)固有频率f0=w0/(2)为电路没有损耗时,滤波器的谐振频率,复杂电路 往往有多个固有频率。 2、增益与衰耗 (1)对低通滤波器通带增益Kp 一般指w=0时的增益也用A (0)表示;高 通 指w→∞时的增益也用表示;带通则指中心频率处的增益。 (2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ()A

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本 次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1. 低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20 02 2 )(ω αωω++= s s K s H p , ,其中 2 221102 12100 1111; 1;1C R K R R C C C R R R R K K f f p -+???? ??+= = + ==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时,)(ωj H 减小,;w 趋 近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV

范围10~6kHz 输出不失真 绘出的幅频特性图如下: 2、高通滤波器 其电路图如下: 其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K 高通的传递函数为20 02 2 )(ω αω++= s s s K s H p ,()() 2 220 2 2 )(ωαωω ω ωω+-= p K j H , 1121 2 021******** ; 1 ; 1C R K C C R C C R R R R K K f f p -+???? ??+= = +==αωω带入数值 后,Kp =1.8, W=0时 )(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时,)(ωj H 保持不变。 对于不同的α,滤波器的幅频特性也不相同 绘制的幅频特性图如下: 3带通滤波器 其电路图如下所示: 其中R1=R2=R3=R=10K,C1=C2=0.01uF ,Ro=8K , 带通的传递函数为 2 02 0)/()/()(ω ωω++= s Q s s Q K s H p ,()H j ω; ()1 223131102 13212 101 213 1211111; ; 111C R K C R C R C R Q C C R R R R R R R K R R C C K K f f f p -+++=+= ??????-+???? ??++=-ωω

匹配滤波器的研究与设计

毕业设计(论文) 课题名称匹配滤波器的研究与设计 学生姓名刘燕 学号0540826084 系、年级专业信息工程系、通信工程 指导教师陈延雄 职称工程师 2009年5月22日

摘要 本文针对扩频接收机中伪码捕获部分为研究重点,分析了几种基匹配滤波器实现方于FPGA的常用案,其中包括:直接形式的匹配滤波器、转置结构的匹配滤波器、采用分布式算法的匹配滤波器和折叠式匹配滤波器。通过比较这些方案的优缺点,最终选定了以折叠式匹配滤波器为最优方案来进行设计。折叠式匹配滤波器实际上就是以静止的本地扩频码作为累加器的系数,匹配滤波器相关过程就相当于接收信号滑过本地序列,当滑动到两个序列相位对齐时,就必有一个相关峰值输出。该匹配滤波器采用VHDL语言,通过模块划分来进行设计,整个过程都在Xilinx公司开发的ISE集成软件系统中完成,最后在Modelsim仿真软件上进行了各个模块的仿真。本论文所设计的折叠式匹配滤波器,能够根据实际需要来设置不同的扩频码长度,很好的完成伪码的相关捕获效果。该折叠式匹配滤波器结构能够节省FPGA资源,提高伪码捕获时间和效率,有很好的实际效果。 关键词:匹配滤波器;M序列;伪码捕获;折叠式FIR结构;FPGA

ABSTRACT Based on this background , making the PN code capture part as a point of the spread spectrum receiver , this paper analyze several common used Matched Filter programs on FPGA , including : the direct form of matched filter , the transposed structure of matched filter , the distributed arithmetic structure of matched filter , and folded structure of matched filter . Compared with the advantages and the disadvantages of these programs , finally we choose the folded structure of matched filter as the best one to complete this design . The folded filter is actually using the PN code as the accumulator coefficients , and then , matched filter correlation process is equivalent to the receiving signal spreading the PN code . When the sliding of two phase sequence is the same , this implies that making a result of correlation . The designs of the matched filter using VHDL and modules . The whole process completed in the development of the company Xilinx ISE Integrated Software System . Finally , every modules simulated in the Modelsim simulation software . The design on this paper , according to the actual need , can set up a different PN code length , and make a good effect on the PN code capture of the spread spectrum receiver . The folded matched filter can reduce the cost on FPGA resources or the PN code capture time , and improve the efficiency of the capture process , it also can make a very good practical effects . Key words:Matched filter ;M series;Acquisition of Pseudo-code;Folded FIR structure;Transposed FIR structure;FPGA

滤波器的主要特性指标

电子知识 1、特征频率: ①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 滤波器在通带内的增益并非常数。 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。 ②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。 阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。 4、灵敏度 滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变

化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。 该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。 5、群时延函数 当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

滤波器幅频特性的测试

实验一 1-1 滤波器幅频特性的测试 一.实验目的 1.了解无源和有源滤波器的工作原理及应用。 2.掌握滤波器幅频特性的测试方法。 二.实验原理 滤波器是一种选频装置,可以使某给定频率范围内的信号通过而对该频率范围以外的信号极大地衰减。 1.RC 无源低通滤波器 RC 无源低通滤波器原理如图1-1所示。这种滤波器是典型的一阶RC 低通滤波器,它的电路简单,抗干扰性强,有较好的低频性能,构成的组件是标准电阻、电容,容易实现。其传递函数为 =)(s H 1 1 )()(+= s s u s u i o τ (1-1) 式中:τ=RC 。 低通滤波器频率特性为 ωτ ωj j H += 11 )( (1-2) 图1-1 RC 低通滤波器 其幅频特性 )(ωA 为 2 )(11)(ωτω+= A (1-3) 低通滤波器的截止频率为 RC f c π21 = (1-4) 图1-2 一阶有源低通滤波器 2.RC 有源低通滤波器 RC 有源低通滤波器原理如图1-2所示。它是将一阶RC 低通滤波网络接入运算放大器输入端构成的。运算放大器在这里起隔离负载影响、提高增益和带负载能力的作用。有源低通滤波器的传递函数为 1 )()()(+= = s K s u s u s H i o τ (1-5) 式中:1 1R R K F + =(R 1、R F 参数可参考图1-2,也可自选)。 频率特性为 ωτ ωj K j H += 1)( (1-6) R

式(1-5)与式(1-1)相似,只是增益不同。 3.幅频特性的测试 本实验是对以上两种低通滤波器进行幅频特性测试。滤波器的幅频特性采用稳态正弦激励试验的办法求得。对滤波器输入正弦信号x(t)=x0sinωt,在其输出达到稳态后测量输出和输入的幅值比。这样可得到该输入信号频率ω下滤波器的传输特性。逐次改变输入信号的频率,即可得到幅频特性曲线。 三.实验仪器和设备 1.低频信号发生器一台 2.毫伏表一台 3.直流稳压电源一台 4.RC无源滤波器接线板一块 5.有源低通滤波器线路板一块 四.实验步骤 1.将RC滤波器接线板低通滤波器部分的R值调到适当的位置。将低频信号发生器输出端接入RC低通滤波器输入端,双路毫伏表中的一路接低通滤波器的输入端,另一路接输出端。 2.由信号发生器输出一定幅度的正弦信号电压。先检查低频信号发生器幅值调节旋钮,使之在最小(逆时针旋转到底)位置,输出信号频率调到20Hz,然后逐渐调大信号电压使监测毫伏表指示约1伏,记下滤波器输入和输出的信号电压值。 3.不断由小到大改变滤波器输入信号频率,每改变一次信号频率,待毫伏表读数稳定了以后读取一组滤波器输入和输出信号电压值,记录到原始数据记录纸上。 4.将信号发生器幅值调节旋钮调到最小,按图1-3连接测试系统。考虑到有源低通滤波器具有放大作用,注意监测滤波器输出信号的毫伏表测量档位要比监测输入信号的相应加大。 图1-3 5.重复实验步骤2、3。 五.实验数据处理 1.用对数坐标纸绘出RC无源低通滤波器和有源低通滤波器的幅频特性曲线。 2.比较两种滤波器的特性,分析有源滤波器的优点。 六.思考题 1.若要能自动绘出滤波器的幅频特性曲线,实验系统如何设计?试绘出仪器组合框图,并作简要说明。 2.滤波器的建立时间T e如何测定?

滤波器分类及原理..

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。 因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其 传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网 络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性, 对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、 数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应 用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它 可以使信号中低于f2的频率成分几乎不受衰 减地通过,而高于f2的频率成分受到极大地 衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅 频特性平直。它使信号中高于f1的频率成分 几乎不受衰减地通过,而低于f1的频率成分 将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中 高于f1而低于f2的频率成分可以不受衰减地 通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

匹配滤波器原理

数字通信课程设计 匹配滤波器

摘要 ?在通信系统中,滤波器是重要的部件之一,滤波器特征的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线性滤波器的设计有一种准则是使滤波器输出信噪比在特定时刻到达最大,由此导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特征取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。本文设计并仿真了一种数字基带通信系统接收端的匹配滤波器。 一、课程设计的目的 通过本次对匹配滤波器的设计,让我们对匹配滤波器的原理有更深一步的理 解,掌握具体的匹配滤波器的设计方法与算法。 二、课程设计的原理 设接收滤波器的传输函数为)(f H ,冲击响应为)(t h ,滤波器输入码元)(t s 的持续时间为s T ,信号和噪声之和)(t r 为 )()()(t n t s t r += s T t ≤≤0 式中,)(t s 为信号码元,)(t n 为白噪声。 并设信号码元)(t s 的频谱密度函数为)(f S ,噪声)(t n 的双边功率谱密度为 2/0n P n =,0n 为噪声单边功率谱密度。 假定滤波器是线性的,根据叠加定理,当滤波器输入信号和噪声两部分时,滤波器的输出也包含相应的输出信号和输出噪声两部分,即 )()()(00t n t s t y += 由于:)()()()()()(2 * f P f H f P f H f H f P R R Y == )(f P R 为输出功率谱密度,)(f P R 为输入功率谱密度,2/)(0n f P R = ?这时的输出噪声功率0N 等于 ? ?∞ ∞ -∞ ∞ -=?=df f H n df n f H N 2 02 0)(22)( 在抽样时刻0t 上,输出信号瞬时功率与噪声平均功率之比为

四种滤波器的幅频特性教程文件

四种滤波器的幅频特 性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+= +12V,

Vcc-=-12V ,低通滤波器的传递函数20 02 2 )( ω αωω++=s s K s H p , ,其中 2 221102 121001111; 1; 1C R K R R C C C R R R R K K f f p -+???? ??+== +==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548

五数字滤波器幅频特性的测试

实验三 低通、高通滤波器的幅频特性 一、实验目的 ㈠ 进一步熟悉DSP 实验系统的结构、组成及使用方法。 ㈡ 了解数字低通、高通滤波器的特点,学习数字滤波器幅频特性的测量方法。 ㈢ 观察数字滤波器频响特性的周期延拓性。 二、实验原理 ㈠ 用DSP 实验系统实现数字滤波器 一个线性时不变离散系统,或者说一个数字系统可以用系统函数来表示: ∑∑=-=--= N i i i N i i i z a z b z H 1 01)(

也可以用差分方程表示: ∑∑==-+-= N i i N i i i n y a i n x b n y 1 )()()( 由以上两个公式中,当i a 至少有一个不为0时,表达的是一个IIR 数字滤波器;当i a 全都为0时,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器i a 全都为0时的一个特例。 通常,我们把FIR 滤波器的系统函数表示为 H Z h n Z n N n ()()= =--∑01 其差分方程表示为 y n h i x n i i N ()()()= -=-∑0 1 例如:已知一个用双线性变换法设计的三阶低通IIR 数字滤波器,采样频率F s =4KHz,其3dB 截止频率为1KHz,它的传递函数 2 3 21333121)(----++++=z z z z z H 为了用数字信号处理实验系统实现这个滤波器,我们对上式还需进行处理,将其化成一 般表示式 2 32123213333.0116667.05.05.016667.03 1161212161)(--------++++=++++=z z z z z z z z z H 由上式可知,传递函数的各系数为 16667.00=b 5.01=b 5.02=b 16667 .03=b 01=a 3333.02-=a 03=a 相应的差分方程为 ) 2(3333.0)3(16667.0)2(5.0)1(5.0)(16667.0)3()2()1()3()2()1()()(3213210---+-+-+=-+-+-+-+-+-+=n y n x n x n x n x n y a n y a n y a n x b n x b n x b n x b n y 将以上差分方程的计算过程及采样频率Fs 、电路阶数N =3编写成TMS320Cxx 执行程序,输入实验系统,即可实现这个IIR 数字低通滤波器。图7-5-1为实现IIR 数字滤波器的DSP 汇编程序流程图。 ㈡.数字滤波器幅频特性的测量 任一电信网络幅频特性的测量均可采用两种方法:逐点描绘法和扫频测量法。

匹配滤波

1.5. 2. 匹配滤波器 最佳接收机还可以有另外的一种结构,即匹配滤波器。为了说明匹配滤波器的基本原理,我们从这样一个直观的分析入手。 我们知道,通信系统的误码率与输出的信噪比有关,接收端输出信噪比越大,则系统的误码率越小。因此,如果在每次判决前,输出的信噪比都是最大的,则该系统一定是误码率最小的系统。 遵从这种考虑原则,我们可以得到匹配滤波器的概念。接收机通过匹配滤波器使输出信噪比最大。 一、匹配滤波器原理 假设线性滤波器的输入端是信号与噪声的叠加)()()(t n t x t s +=,且假设噪声)(t n 是 白噪声,其功率谱密度2 )(0 N f P n = ,信号的频谱为)(f X 。 问题:设计一个滤波器使输出端的信噪比在某时刻0t 达到最大。 假设该滤波器的系统响应函数为)(f H ,系统冲击响应为)(t h ,则 输出信号)()()(0t n t s t y O += 其中,? ∞ ∞ --= τττd t h x t s )()()(0,)()()(f H f X f S o = ?∞ ∞ -=df e f H f X t s ft j o π2)()()( 所以在0t 时刻,信号的功率为200|)(|t s 输出噪声的功率谱密度20 |)(|2 )(f H N f P o n = 输出噪声平均功率为?∞ ∞-= df f H N Pn 2 0|)(|2 所以0t 时刻输出的信噪比为: ??∞ ∞-∞ ∞ -== df f H N df e f H f X Pn t s r ft j 2 02 22 000|)(|2|)()(|| )(|0π 根据Schwarts 不等式, ???∞ ∞ -∞ ∞ -∞ ∞ -≤df f Y df f X df f Y f X 22 2 |)(||)(||)()(|

滤波器主要参数与特性指标(优.选)

滤波器的主要参数(Definitions): 中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv> 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比。 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。 从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)]。 回波损耗愈大愈好,以减少反射光对光源和系统的影响。 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB<1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等)。滤波器阶数越多矩形度越高——即K越接近理想值1,制作难度当然也就越大。 延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即

(精品)概率实验四--匹配滤波器

《概率论与随机信号分析》实验报告 一、实验目的与任务 1. 了解匹配滤波器的原理; 2. 实现LFM 信号的相关接收。 二、实验原理 1.匹配滤波器 匹配滤波器是一种用于检测噪声中某个确定信号是否存在的最佳滤波方法。 ()()()X t s t N t =+ ()()*()()*()()*()Y t X t h t s t h t N t h t ==+ 使Y(t 0)中的信号与噪声比最大化,这样在Y(t 0)大于某个合适的门限时,就有把握地认为Y(t)中包含有s(t)。 2020()()s out s y t S N E Y t ??= ??????? 02201()()()2j t s y t S j H j e d ωωωωπ+∞-∞??=???? ? 00**()()()j t j t H j c S j e cS j e ωωωωω-??==??令: 2222001()()2()42out s S j d H j d S N N H j d E N ωωωωπωωπ+∞+∞-∞-∞+∞-∞?? ?????= ????? ???= ??? 从时域来说,匹配滤波器的冲击响应为: 0()()h t cs t t =- 2.线性调频信号是大时宽带宽积信号,常用在雷达和通信信号中来提高系统的抗干扰能力,采用匹配滤波器,可以在强噪声背景环境中发现信号。 20001()sin(2),222T T s t A f t ut t π??=+∈-????

其中:0 2B u T π=为调频斜率 其时宽带宽积为BT 0>>1 当信号淹没在强噪声背景里时,可以通关相关接收,即匹配滤波的方法检测信号,而降低噪声的影响。 三、实验内容与结果 %信号和噪声经过匹配滤波器 close all clear all f01=30e+6; %中心频率 b1=8e+6; %信号带宽 t0=10e-6; %信号时宽 fs=150e+6; %采样频率 %系统带宽和中心频率 b2=8e+6; f02=30e+6; c2=30; subplot(2,1,1) [bl al]=butter(4,b2/2/(fs/2));%滤波器归一化带宽1对应于fs/2 [hfl f2]=freqz(bl,al,100,fs); plot(f2,abs(hfl)); title('系统低通频率响应'); grid on subplot(2,1,2); [bb ab]=butter(4,[(f02-b2/2)/(fs/2) (f02+b2/2)/(fs/2)]); [hf f2]=freqz(bb,ab,100,fs); plot(f2,abs(hf)); title('系统带通频率响应'); grid on figure; t=0:1/fs:t0; u=pi*b1/t0; subplot(2,2,1); s=sin(2*pi*(f01-b1/2)*t+u.*t.*t); plot(t,s); title('LFM 信号'); grid on subplot(2,2,3); n=length(s); n1=n/2; f1=(0:n1-1)/n*fs;

常用滤波器的频率特性分析

常用滤波器的频率特性分析 摘要:滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。滤波器对实现电磁兼容性是很重要的。本文所述内容主要有滤波器概述及原理、种类等。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。故对常见滤波器中低通滤波器、高通滤波器、带通滤波器和带阻滤波器,EMI 滤波器,从频率出发,进行特性分析。 一、引言 滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 二、原理 滤波器一般有两个端口,一个输入信号、一个输出信号 利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。 滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为 XL·XC=K2 故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率

常用7种软件滤波

随机误差是有随机干搅引起的,其特点是在相同条件下测量同一个量时,其大小和符号做无规则变化而无法预测,但多次测量结果符合统计规律。为克服随机干搅引入的误差,硬件上可采用滤波技术,软件上可以采用软件算法实现数字滤波,其算法往往是系统测控算法的一个重要组成部分,实时性很强,采用汇编语言来编写。 采用数字滤波算法克服随机干搅引入的误差具有以下几个优点: (1)数字滤波无须硬件,只用一个计算过程,可靠性高,不存在阻抗匹配问题,尤其是数字滤波可以对 频率很高或很低的信号进行滤波,这是模拟滤波器做不到的。 (2)数字滤波是用软件算法实现的,多输入通道可用一个软件“滤波器”从而降低系统开支。 (3)只要适当改变软件滤波器的滤波程序或运行参数,就能方便地改变其滤波特性,这个对于低频、脉冲 干搅、随机噪声等特别有效。 常用的数字滤波器算法有程序判断法、中值判断法、算术平均值法、加权滤波法、滑动滤波法、低通滤波法和复合滤波法。 1.程序判断法: 程序判断法又称限副滤波法,其方法是把两次相邻的采样值相减,求出其增量(以绝对值表示)。然后与两次采样允许的最大差值△Y进行比较,△Y的大小由被测对象的具体情况而定,若小于或等于△Y,则取本次采样的值;若大于△Y,则取上次采样值作为本次采样值,即 yn - yn-1|≤△Y,则yn有效, yn -yn-1|>△Y,则yn-1有效。 式中yn ——第n次采样的值; Yn-1——第(n-1)次采样的值; △Y——相邻两次采样值允许的最大偏差。 设R1和R2为内部RAM单元,分别存放yn-1和yn,滤波值也存放在R2单元,采用MCS-51单片机指令编写的程序判断法子程序如下:付表 2.中值滤波法即对某一参数连续采样N次(一般N为奇数),然后把N次采样值按从小到大排队,再取中间值作为本次采样值。

匹配滤波器的仿真实验报告

实验一 匹配滤波器的仿真验证 一、实验目的:利用matlab 验证匹配滤波器的特性 二、实验要求:设二进制数字基带信号s (t )=∑a n a g (t-s nT ),加性高斯白噪声的功率谱 密度为0.其中n a ∈{+1,-1},g (t )={10 s T t <<0其他(1)若接收滤波器的冲击响应函数h (t ) =g (t ),画出经过滤波器后的输出波形图:(2)若H (f )={ 10)2/(5||s T f <其他 画出经过滤波器后的输出波形图。 三、实验原理: 匹配滤波器原理:匹配滤波器是一种以输出信噪比为最佳判决准则的线性滤波器。它的冲击响应h (t )=S (t0-t );y0(t )=h (t )*s (t );在最佳判决时刻t0时输出信噪比r 最大。 四、实验源码 clear all; close all; N =100; N_sample=8; Ts=1; dt =Ts/N_sample; t=0:dt:(N*N_sample-1)*dt; gt =ones(1,N_sample); d = sign(randn(1,N)); a = sigexpand(d,N_sample); st = conv(a,gt); ht1 =gt; rt1 =conv(st,ht1); ht2 =5*sinc(5*(t-5)/Ts); rt2 =conv(st,ht2); figure(1) subplot(321) plot(t,st(1:length(t))); axis([0 20 -1.5 1.5]);ylabel('输入双极性NRZ 数字基带波形'); subplot(322) stem(t,a); axis([0 20 -1.5 1.5]);ylabel('输入数字序列'); subplot(323)

滤波器的频响特性测定实验

广州大学 《信号与系统实验》 综合设计性实验 报告册 实验项目模拟滤波器的特性测定 一实验目的: 1.了解RC无源和有源滤波器的种类、基本结构及其特性。 2.对比研究无源和有源滤波器的滤波特性。 3.学会列写无源和有源滤波器的方法。 4.推导RC无源和有源滤波器的系统函数。 5.用扫频法测试各个滤波器的幅频特性。 6.绘制滤波器的幅频特性曲线。 二实验原理 1.滤波器是对输入信号的频率具有选择性的一个双口网络,它允许某些基本频率(通常是某个频带范围)的信号通过,而其他频率的信号受到衰

减或是抑制,这些网络可以是由RLC 元件或RC 元件构成的无源滤波器,也可以是由RC 元件和有源器件构成的有源滤波器。 2. 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 为低 通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )和带阻滤波器(BEF )四种。把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带和阻带的分界点的频率fc 成为截止频率或转折频率。图2-6-1中的Aup 为通带的电压放大倍数,fc 为截止频率,fo 为中心频率,fl 和fh 分别为低端和高端截止频率。其中, 低通滤波器的通频带为: ()(0)20C c BW f ωπ==::。 高通滤波器的通频带为:()()2C c BW f ωπ=∞=∞::。 带通滤波器的通频带为:2()H L H L BW f f ωωπ=-=-。 带阻滤波器的通频带为:2(0)2()L H BW f f ππ=∞:U :。 3. 滤波器的频响特性定义

滤波器的频响特性()H j ω,又称为传递函数或系统函数,它全面反映了滤波器的幅频和相频特性: ()()222111 ()U U H j A U U ?ωω?ω?∠= = =∠∠ g ,式中()2211 m m U U A U U ω==g g 为滤波器的幅频特性;()() ()21?ω??=-为滤波器的相频特性。 4. 本实验中四种滤波器的实验线路 无源低通 有源低通 无源高通 有源高通 无源带通 无源带阻

相关文档
最新文档