分离工程思考题(1)

分离工程思考题(1)
分离工程思考题(1)

(—)

?1 生物工程下游技术的主要内容、根本任务和主要目标?

?2 生物产品与普通化工产品分离过程有何不同?

?3 设计生物产品的分离工艺应考虑哪些因素?

?4 初步纯化与高度纯化分离效果有何不同?

?5 分离纯化的得率与纯化倍数如何计算?

?6 现化生物分离技术研究方向有哪些特点?

(二)

1.为什么要进行发酵液预处理?处理的目标及内容分别是什么?

①.发酵液多为黏度大的悬浮液;

②.目标产物在发酵液中的浓度常较低;

③.成分复杂,固体粒子可压缩性大,悬浮物颗粒小,相对密度与液相相差不大。

因此,不易通过过滤或离心进行细胞分离。对发酵液进行适当的预处理,以便于固液分离,使后续的分离纯化工序顺利进行。

发酵液的预处理过程包括:①发酵液杂质的去除,包括除去杂蛋白、无机盐离子以及色素、热原、毒性物质等有机物质;②改善发酵液的处理性能,主要通过降低发酵液的黏调节适宜的PH值和温度、絮凝和凝聚。

2.发酵液金属离子的去除方法分别有哪些?

(1)钙离子的去除

?加入草酸,生成草酸钙,沉淀去除。

?草酸与镁离子结合生成草酸镁,去除Mg2+

?草酸酸化发酵液,改变其胶体状态,有助于目标产物转入液相。

?在用量大时,可用其可溶性盐。

?反应生成的草酸钙还能促使蛋白质凝固,提高滤液质量。

(2)镁离子的去除

?可加入三聚磷酸钠,形成络合物。

?还可用磷酸盐处理,大大降低钙和镁离子。

(3)铁离子的去除

?一般用黄血盐去除,形成普鲁士蓝沉淀。

3.杂蛋白去除的方法和机理分别是什么?

去除方法主要有:盐析法、等电点沉淀法、加热法、有机溶剂沉淀法、吸附法等

盐析:在蛋白质溶液中加入一定量的中性盐(如硫酸铵、硫酸钠、氯化钠等)使蛋白质溶解度降低并沉淀析出的现象称为盐析(salting out)。这是由于这些盐类离子与水的亲和性大,又是强电解质,可与蛋白质争夺水分子,破坏蛋白质颗粒表面的水膜。另外,大量中和蛋白质颗粒上的电荷,使蛋白质成为既不含水膜又不带电荷的颗粒而聚集沉淀。

等电点沉淀法:处于等电点时,蛋白质分子之间的静电排斥力最小,使它失去了作为胶体体系稳定的基本因素,迅速结合成聚集体,极易沉淀析出。

有机溶剂法:有机溶剂和水的亲和力大,能夺取蛋白质表面的水分子,即破坏蛋白质胶体的水化膜,同时也可降低溶液的介电常数,导致蛋白质分子间的静电引力增大,产生凝聚和沉淀。

发酵液处理性能的改善有哪些方法?

①降低发酵液的黏度,包括加热法和加水稀释法;②调节pH值;③絮凝

絮凝和凝聚的概念、机理分别是什么?

⑴絮凝是指在某些高分子絮凝剂存在下,基于架桥作用,使胶粒形成粗大的絮凝团的过程,

是一种以物理的集合为主的过程。

⑵凝聚是指在中性盐作用下,由于双电层排斥电位的降低(或由于微粒所带电荷被加入的

带有相反电荷的高价离子中和),而使胶体体系不稳定,微粒互相黏着在一起的现象。

有哪些絮凝剂可以使用?

从化学结构看,主要分为三类:高聚物、无机盐、有机溶剂和表面活性剂。

目前最常见的高聚物絮凝剂是有机合成的聚丙烯酰胺类衍生物、壳聚糖絮凝剂、聚苯乙烯类衍生物等。高聚物絮凝剂具有长链状的结构,利用长链上的活性基团,通过静电引力,形成桥架连接,从而生成菌团沉淀。

有机溶剂如乙醇、丙酮和甲醛等对发酵液的絮凝有一定的作用。表面活性剂如三异丙醇胺聚氧乙烯聚氧丙烯醚,也可以提高絮凝处理效果。

(三)

1. 固液分离的方法有哪些?其原理分别是什么?

固液分离的方法有分离筛、悬浮分离、重

力沉降以及离心和过滤等。用于发酵液固液分离的主要是离心和过滤。

过滤就是利用多孔性介质(如滤布)截留固液悬浮液中的固体颗粒,从而实现固液分离。

离心:依靠惯性离心力的作用而实现的沉降过程。适用于两相密度差较小,颗粒粒度较细,在重力场中的沉降效率很低的非均相体系。

2. 生物产业过滤和离心分离常用的设备是什么?

在生物工业中,常用的过滤发酵液的设备主要有板框过滤机、加压过滤机和真空过滤机三类。工业生产中主要采用沉降式离心机,包括碟片式离心机、管式离心机和倾析式离心机。

3. 改善过滤过程的方法有哪些?

①絮凝;②助滤剂,助滤剂是一种不可压缩的多孔微粒,悬浮液中的大量胶体粒子吸附在助

滤剂表面,改变滤饼的结构,从而降低过滤的阻力;③反应剂,反应剂之间能互相作用或能和发酵液中的杂质反应,生成CaSO4、AlPO4等不溶性沉淀,从而提高过滤速率。

(四)

?1.微生物细胞、植物细胞的细胞壁都分别具有哪些特点?

?植物细胞壁:对于已生长结束的植物细胞壁可分为初生壁和次生壁两部分。初生壁由多

糖和蛋白质构成,多糖主要成分为纤维素、半纤维素和果胶类物质。纤维素是长链D-葡聚糖,许多这样的长链形成微纤丝。在次生壁中,纤维素和半纤维素含量比初生壁增

加很多,纤维素的微纤丝排列得更紧密和有规则,而且存在木质素的沉积。

?2.珠磨法、高压匀浆法、超声波破碎法分别是什么原理?常用什么设备?

①珠磨法原理:细胞悬浮液与极小的研磨剂[如玻璃小珠、石英砂、氧化铝(d<1mm)]一起高速搅拌,细胞与研磨剂之间相互碰撞、剪切,使细胞达到某种程度破碎,释放内含物。②高压匀浆法原理:利用高压迫使悬浮液通过针形阀,由于突然减压和高速冲撞造成细胞破裂。③超声波破碎法原理:利用频率高于20kHz的超声波在水中传播,产生能释放巨大能量的激化和突发,即空穴作用。空穴作用产生的空穴泡由于受到超声波的冲击而闭合,从而产生一个高达数百个大气压的冲击力压力,由此引起悬浮细胞上产生剪切力,使细胞液体产生流动而破碎细胞。

?3.酶溶法的原理是什么?对细菌和酵母分别常用什么酶?

酶溶法:利用酶反应分解、破坏细胞壁上特殊的化学健而达到破壁的目的。

对细菌主要采用溶菌酶;酵母和真菌由于细胞壁的组分主要是纤维素、葡聚糖、几丁质等,常用蜗牛酶、纤维素酶、多糖酶等;植物细胞壁的主要成分是纤维素,常采用纤维素酶和半纤维素酶裂解。

?1.双水相去除细胞碎片分离目标产物的原理和一般过程?

将两种不同的水溶性聚合物的水溶液混合时,当聚合物浓度达到一定值,由于高聚物之间的不相溶性,即高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向,在一定条件下即可分为二相。

双水相萃取技术的工艺流程主要由三部分构成:目的产物的萃取; PEG的循环; 无机盐的循环。

?2.膨胀床的概念?膨胀床吸附分离的特点和原理是什么?一般的操作过程?

膨胀床:通过对吸附剂本身物理性质的改进及对层析柱和流体分布器的精心设计,得到了

稳定、液固相返混程度较低的液固流化床。

膨胀床吸附技术,亦称扩张床吸附,集澄清、浓缩和初步纯化于一体的吸附分离纯化技术,它兼具流化床和填充床吸附的优点,既能比较容易地让固体颗粒通过填料层,又可以填充床的模式来吸附目标产物。

膨胀床的操作按顺序可分为五个部分:(1)平衡、(2)吸附、(3)冲洗、(4)洗脱和(5)在位清洗。

?3.何谓泡沫分离技术?其原理是什么?

泡沫分离是一项利用物质在气泡表面上吸附性质的差异进行分离的技术。

泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。

?4.比较双水相分离技术、膨胀床分离技术和泡沫分离技术的优缺点。

(五)

1、何谓超临界流体萃取?其特点有哪些?

利用超临界流体作为萃取剂的萃取操作称为超临界萃取。

优点:①操作温度低。能较好地使萃取物的由此成分不被破坏,可在接近常温下完成萃取工艺。②在高压、密闭、惰性环境中,选择性萃取分离天然产物。③萃取工艺简单,效率高且无污染。局限性:缺乏生物化合物在超临界流体中的溶解度和相平衡数据,使工艺设计不好掌握。

(原理:流体在临界区域附近,压力和温度的微小变化,会引起流体密度的大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致和流体的密度成正比,保持温度恒定,压力增加,

超临界流体的密度变大,对溶质的溶解度增大,对溶质的萃取能力也就增强。)

2、何谓双水相萃取?常见的双水相构成体系有哪些?

某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统,利用蛋白质在两个水相中的溶解度的差别进行萃取操作的技术。

常用的双水相体系有聚乙二醇/葡聚糖,聚乙二醇/盐体系。

3、反胶团的构成以及反胶团萃取的基本原理

反胶团体系由水、有机相及表面活性剂组成,是表面活性剂分散于连续有机相中自发形成的一种具有微水池结构的油包水微乳液。

原理:蛋白质能溶于反胶团的“水池”中。在有机溶剂相和水相两宏观相界面间的表面活性剂层,同临近的蛋白质分子发生静电吸引而变形,接着两界面形成含有蛋白质的反胶团,然后扩散到有机相中,从而实现了蛋白质的萃取。

(六)

?什么是沉淀法?

沉淀是指在溶液中加入沉淀剂使溶质溶解度降低,形成固相从溶液中析出从而达到分离的一种技术。

?沉淀法纯化蛋白质的优点、缺点有哪些?

优点:过程简单,成本低,原料易得,便于小批量生产,在产物浓度越高的溶液中沉淀越有利,收率越高,对大多数生物分子的分离纯化有独特优势。

缺点:过滤困难,对于复杂产品体系,分离度不高,产品质量较低,需重新精制。

?常用的沉淀方法包括哪些?

主要包括有机溶剂沉淀、盐析、高聚物沉淀和聚电介质沉淀、等电点沉淀等。

?有机溶剂沉淀法的原理是什么?

A 降低溶剂介电常数(介电常数D有机< D水),减小溶剂的极性,从而削弱了溶剂分子与蛋白质分子间的相互作用力,增加了酶、蛋白质、核酸等带电粒子之间的作用力,因相互吸引而聚合沉淀。

B 破坏水化膜:由于使用的有机溶剂与水互溶,它们在溶解于水的同时从蛋白质分子周围的水化层中夺走了水分子,破坏水化层,降低蛋白质分子的溶剂化能力,破坏蛋白质的水化层,使蛋白质沉淀。

C 相反力:疏水基团暴露,有机溶剂与疏水基团结合形成疏水层。

?影响有机溶剂沉析的主要因素有哪些?

温度、pH值、样品浓度、中性盐浓度、某些金属离子

?何谓盐析?其原理是什么?

在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。

原理:(1)破坏水化膜,分子间易碰撞聚集,将大量盐加到蛋白质溶液中,高浓度的盐离子有很强的水化力,于是蛋白质分子周围的水化膜层减弱乃至消失,使蛋白质分子因热运动碰撞聚集。

(2)破坏水化膜,暴露出疏水区域,由于疏水区域间作用使蛋白质聚集而沉淀,疏水区域越多,越易沉淀。

(3)中和电荷,减少静电斥力,中性盐加入蛋白质溶液后,蛋白质表面电荷大量被中和,静电斥力降低,导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。

?何谓“Ks”分级盐析法?何谓“β”分级盐析法?

第一类叫Ks分段盐析法,在一定PH和温度下通过改变离子强度实现,(固定pH, 温度,

改变盐浓度),由于蛋白质对离子强度的变化非常敏感,易产生共沉淀现象,用于早期的粗提液;

第二种叫β分段盐析法,在一定离子强度下通过改变PH和温度来实现,(固定离子强度,改变pH及温度),由于溶质溶解度变化缓慢,且变化幅度小,因此分辨率更高,用于后期进一步分离纯化和结晶。

?常用的盐是什么,影响盐析的主要因素有哪些?

硫酸铵影响蛋白质盐析的主要因素有盐析剂的种类和浓度,溶液的PH值和温度,蛋白质的浓度,以及溶液中各种杂质的种类和数量等。

?高聚物沉淀的原理是什么?常用的高聚物是什么?

高聚物分子上有许多可结合水分子的羟基,加入后结合自由水分子,使蛋白质表面的水化层被破坏,使疏水区域暴露出来,从而使蛋白质大分子沉淀出来。

聚乙二醇(PEG)

?等电点沉析的工作原理是什么?

处于等电点状态时,蛋白质所带的静电荷为零,蛋白质分子之间的静电排斥力最小,此时,蛋白质迅速结合成聚集体,极易沉淀析出。

(七)

?什么是膜分离技术?

膜分离技术(membrane separation)是利用天然或人工制备的、具有选择透过性的膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的方法。

?膜分离技术的原理及特点是什么?

?原理:膜具有选择透过性,低分子量的物质能通过特定的半透膜,而聚合物和其他高分

子量的物质则被截留下来。当膜两侧存在某种推动力(如压力差、浓度差、电位差等),原料侧组分选择性地透过膜从而达到分离提纯的目的。膜分离的传质过程极为复杂。通过多孔型模的模型有孔模型、微孔扩散模型、优先吸附-毛细管流动模型;通过非多孔膜的主要是溶解-扩散模型等。

?特点:(1)不发生相的变化,因而能耗低;

(2)压力驱动下常温分离,特别适合于热敏性物质;

(3)适用范围极广,从微粒级到微生物菌体,甚至是离子级等都能通过选择不同类型的膜进行分离;

(4)稳定性好,操作简单;

(5)装置简单、分离效率高,易与已有工艺结合。

膜有哪些分类?

①按孔径大小,可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等。

②按推动力的不同,可分为渗透、透析、电渗析、反渗透、纳滤、超滤、微滤。

?微滤、超滤、纳滤、反渗透的相同点和相异点?

微滤、超滤、纳滤、反渗透相同点:

①以膜两侧压力差为推动力;②按体积大小而分离;③膜的制造方法、结构和操作方式都类似。

微滤、超滤、纳滤、反渗透区别:

①膜孔径:微滤0.1~10μm > 超滤0.01~0.1μ> 纳滤0.001~0.01μm > 反渗透小于

0.001μm

②分离粒子:微滤截留固体悬浮粒子,固液分离过程;超滤、纳滤、反渗透为分子级水平

的分离;

③分理机理:微滤、超滤和纳滤为截留机理,筛分作用;反渗透机理是渗透现象的逆过程:

④压差:微滤、超滤和纳滤压力差不需很大0.1~0.6 MPa

?膜材料有哪些要求?都有哪些类别?

1)基本要求:

①耐压,膜孔径小,要保持高通量就必须施加较高的压力,一般模操作的压力范围在

0.1~0.5MPa,反渗透膜的压力更高,约为1~10MPa;

②耐高温,高通量带来的温度升高和清洗的需要;

③耐酸碱性,防止分离过程中,以及清洗过程中的水解;

④化学相容性,保持膜的稳定性;;

⑤生物相容性,防止生物大分子的变性;;

⑥低成本。

2)类别:天然材料:纤维素酯类;

人造材料:缩合系聚合物,聚烯烃及其共聚物,脂肪族或芳香族聚酰胺类聚合物,全氟磺酸共聚物和全氟羧酸共聚物,聚碳酸酯。

特殊材料:复合膜,无机膜,不锈钢膜,陶瓷膜

?膜组件有哪些种类?

膜组件:有膜、固定膜的支撑体、间隔物以及容纳这些部件的容器构成的一个单元。

微滤膜的主要性能特点是什么?过滤的机理有哪些?

微孔膜的主要性能特点包括:

(1)分离效率是微孔膜最重要的性能特性。其孔径较均一,过滤精度较高,可靠性较高。(2)孔隙率是微孔膜的又一重要特性。可达70%以上。

(3)微孔膜的厚度在90-150μm,不仅有利于过滤,而且吸附造成的损失非常少。

(4)高分子类微孔膜为一均匀的连续体。

机理:

微滤膜的分离机理主要是筛分截留。

对于悬浮液中的液固分离,微滤膜的主要作用有:

(1)筛分作用;

(2)吸附作用;

(3)架桥作用;

(4)网络作用;

(5)静电作用。

对气体中的悬浮颗粒进行分离时,微滤膜的主要作用是直接截留、惯性沉积、扩散沉积和拦集作用。

微滤膜的污染原因、预防措施、清洗措施分别有哪些?

(1)微滤膜的污染分为两部分,一部分是可逆污染,即通过水力冲洗等方法可以除去,包括微粒等在膜表面形成的极化层或凝胶层;另一部分是不可逆污染,即常规物理方法难以消除,包括溶质在膜表面的吸附、膜孔堵塞等。

(2)采用亲水性的膜;使用带负电荷的微滤膜;

膜污染的控制主要有以下几种方法:

①原料液的预处理;

②膜表面的改性;

③外加场对膜污染进行控制;

④高压反冲;

⑤强化传质。

(3)物理清洗法:水力学反冲洗、气体反冲洗

化学清洗法:常用的清洗剂有酸液、碱液、表面活性剂、酶、消毒剂、配合剂。(八)

1. 色谱原理

当流动相中携带的混合物流经固定相时,其与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中流出。

2.色谱法中的主要参数和关系式

1)分配系数Kp:定温定压下物质在固定相和流动相中的浓度比。

KP=[C]s / [C]m

(s-固定相;m-流动相)

(2)容量因子K':分配系数与两相体积有关的参数,表示溶质A在两相中的质量之比。

K'=[mC]s / [mC]m

=KP×Vs/Vm

(3)分离比a:色谱分析法中A、B两种物质的分离效率可用分离比表示3. 基线—经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。

峰底:基线上峰的起点至终点的距离。

峰高:峰的最高点至峰底的距离

峰宽:色谱两侧拐点上的切线在基线上的截距。W=4σ半峰宽:峰高一半处的峰宽。W h/2=2.355σ。

标准偏差(σ):0.607倍峰高处峰宽的一半。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。

4.死时间t0:不被固定相滞留的组分,从进样到出现最大峰值所需的时间。

死体积:不被固定相滞留的组分,从进样到出现最大峰值所需的流动相体积。但在实际测量时,它包括4部分:进样器至色谱柱管路体积、柱内固定相颗粒间隙(被流动相占据,Vo)、柱出口管路体积、检测器流动池体积。

5.保留时间t R:被分离样品组分从进样开始到柱后出现该组分浓度极大值时的时间。

保留体积V R:指从进样开始到被测组份在柱后出现浓度极大点时所通过的流动相体积。

调整保留时间:扣除死时间后的保留时间。t'R=t R-t0

调整保留体积V’R:扣除死体积后的保留体积

6.理论塔板数N: 通常用N来表示柱效.N=L/H,即色谱柱长/虚拟的塔板间高度

或者理论塔板数=5.54(保留时间/半高峰宽)2

7.吸附等温线:在一定温度下,平衡时吸附剂吸附溶质浓度q*与液相溶质浓度c之间的关

q和c的关系曲线为吸附等温线。

8.色谱分离度:相邻两组份色谱峰保留值之差与两个组份色谱峰低宽度总和之半的比值。

以此判断相邻两组份在色谱柱中的分离情况。它是指相邻两色谱保留值之差与两峰底宽平均值之比。R=2[t(R2)-t(R1)] / (W1+W2 )

9.影响分离度的因素:

(1)增加塔板数n,可以增加分离度,若通过增加柱长来增加塔板数,就会延长分析时间。(2)增大容量因子k2,可以提高分离度。但会延长分离时间,一般在k是在2—7之间。(3)选择性参数α(洗脱峰相临的两种溶质的容量因子之比)的微小增大,都会使分离度得到较大的改善。

10. 凝胶过滤色谱(GFC)

凝胶渗透色谱(GPC):根据流动相中所含各种组分的相对分子质量的差别进行分离。

离子交换色谱(IEC):根据荷电溶质与离子交换剂之间静电相互作用力的差别进行溶质分离反相色谱(RPC):根据溶质极性(疏水性)的差别进行溶质分离纯化。

疏水色谱(HIC):根据蛋白质与疏水性吸附剂之间的弱疏水性相互作用的差别进行蛋白质类生物大分子分离纯化

亲和色谱(AC):利用生物分子之间的专一性识别或特定的相互作用进行分离。

11.凝胶特性参数:

①排阻极限:凝胶过滤介质的排阻极限是指不能扩散到凝胶网络内部的最小分子的相对分

子质量。

②分级范围:能被凝胶阻滞并且相互之间可以得到分离的溶质的相对分子质量范围。

③溶胀率:溶胀后每克干凝胶所吸收的水分的百分数。

12.凝胶色谱应用:①分离纯化,酶解产物的分离、纯化青霉素、蛋白质再复性。②脱盐,生物大分子溶液的脱盐,以及除去其中的低相对分子质量物质。③相对分子质量的测定,在凝胶过滤介质的分级范围内蛋白质的分配系数(或洗脱体积)与相对分子质量的对数成正比,所以GFC可用于未知物质相对分子质量的测定。⑤浓缩

13.离子交换色谱的洗脱方法:

如果采用离子强度不变的流动相进行恒定洗脱,两种蛋白质的洗脱体积相差很大,甚至分配

系数大的蛋白质很难洗脱。因此,IEC操作很少采用恒定洗脱法,而多采用线性梯度洗脱法、逐次洗脱法。

(1)线性梯度洗脱法

流动相的离子强度线性增大,溶质的分配系数逐渐降低,移动速度逐渐增大,使溶质在较少的流动相内洗脱出来

(2)阶梯洗脱法

流动相的离子强度阶跃增大,溶质的分配系数也阶跃性降低,移动速度也是阶段式的。

14.凝胶色谱的应用:

(1)氨基酸和碱性肽类的分离(2)碱性水溶性抗生素的分离(3)蛋白质的分离纯化(4)多糖类的分离纯化

15.疏水色谱(HIC)和反相色谱(RPC)都是利用蛋白质上疏水基团作用的大小不同而得到分离,二者主要差别如下:(1)疏水配基的密度不同。RPC的疏水配基一般采用数量级为102微摩尔/mL胶;HIC中的密度一般为10~50微摩尔/mL胶。(2)流动相体系不同。RPC流动相一般为有机溶剂,HIC流动相则为在水溶液。(3)再生条件不同。RPC主要用于小分子或蛋白质,再生在剧烈条件下,而HIC主要针对大分子,采用降低盐浓度扥方法进行再生,条件比较温和。

16.亲和作用色谱原理及过程

(1)配基固定化:亲和的一对分子中的一方以共价键形式与不溶性载体相连作为固定相吸附剂

(2)吸附样品:当含有混合组份的样品(流动相)通过此固定相时,只有和固定相分子有特异亲和力的物质,才能被固定相吸附,其它没有亲和力的无关组份就随流动相流出(3)样品解析:然后改变流动相成份,将结合的亲和物洗脱下来

17.目标产物洗脱方式:

特异性洗脱法:利用含有与亲和配基或目标产物具有亲和结合作用的小分子化合物溶液为洗脱剂,通过与亲和配基或目标产物的竞争性结合,脱附目标产物。非特异性洗脱:通过调节洗脱液的pH值、离子强度、离子种类或温度等理化性质降低目标产物的亲和吸附作用,是使用较多的洗脱方法。

18. 分辨率高

交换容量高

快速

分辨率较高

交换容量较高

快速

分辨率高

交换容量高

快速

使用

Supha dex TM可

提高分辨率高

分辨率高

低离子强度

上样体积不限

高离子强度

上样体积不限

专一性结合

上样体积不限

上样体积受限

(小于柱体积的

5%),低速

需要有机溶剂

高离子强度

或pH改变的

浓缩组分

低离子强度

的浓缩组分

专一性洗脱

条件下的浓

缩组分

高度稀释的

稀组分

样品在有机

溶剂中可能

失活

(九)

1.电泳:荷电溶质或粒子在电场作用下发生定向泳动的现象。

2.电泳技术:是根据荷电溶质在电场中泳动速度的差别对物质进行分离的一种实验方法。

3.电泳的基本原理:(1)、带电颗粒

?溶液中任何物质由于其本身的解离或表面吸附带电荷而带电,在电场中就会发生迁移?生物大分子如蛋白质、核算、多糖等常以颗粒分散在溶液中,它们的净电荷取决于溶液的H+浓度。

?带电粒子在电场中的迁移方式主要依据分子尺寸大小和形状、分子所带电荷或分子的生物学与化学特性。

(2)、电泳迁移率:即单位电场强度下的迁移速度。

(3)、泳动速度:在一定的条件下,任何物质都有自己特定的泳动速度,泳动速度是胶体颗粒的一个物理常数。

4.影响电泳速度的主要因素:(1)颗粒性质

由公式可见,颗粒带的静电荷越多,直径越小,而且形状越接近球形,其泳动速度越快;(2)电场强度电场强度越大,泳动速度越快

(3)溶液性质主要指的是电解质和蛋白质样品溶液的pH值、离子强度和溶液粘度(4)pH值:决定了蛋白质的解离度及其所带的静电荷量,溶液的pH远离其pI的蛋白质的泳动速度越快。(5)离子强度:离子强度一般在0.02-0.2之间时,电泳比较合适。一般选择较低的离子强度,原因是在保证一定缓冲能力的情况下,低离子强度溶液中相反电荷离子对电泳颗粒的静电引力作用,泳动速度较快

(6)溶液粘度η:与泳动速度成反比(7)电渗,当颗粒的泳动方向跟电渗方向一致时,则加快颗粒的泳动,反之则降低颗粒的泳动速度。(8)焦耳热;(9)支持物筛孔的大小

5.按照有无支持介质可将电泳分为:

自由界面电泳:溶质颗粒经过电泳后,在胶体颗粒和缓冲溶液之间形成界面,带电颗粒的泳动速度通过光学方法观察界面的移动来测定。

区带电泳:样品在一惰性物质上进行电泳的的过程。因电泳后样品中不同的成分可形成独立的带状区间而命名。

6.凝胶电泳:凝胶电泳利用凝胶的分子筛作用使分子大小不同的电解质得到分离:相对分子质量大的溶质受凝胶阻滞作用大,泳动速度较慢,小分子溶质泳动速度较快。

7.凝胶电泳的支持介质:

–聚丙烯酰胺凝胶(PAG)

–琼脂糖凝胶

8.SDS-PAGE原理:由于加入了SDS和强还原剂(DTT等),破坏了蛋白质分子的高级(二级、

三级、四级)结构,并与蛋白质形成荷大量负电荷的聚合物,消除了不同

蛋白质分子电荷及分子形状差异,而仅将分子量差异作为分离依据,常用

于测定未知蛋白质的亚基分子量。

9.不连续PAGE凝胶电泳:浓缩胶:为大孔胶,凝胶浓度和pH值跟样品一致。作用是使样品进入分离胶之前,被浓缩成窄的区带,提高分离效果。

分离胶:为小孔胶,样品迁移受阻而形成很小的区带

在这样一个不连续的系统里,存在三种物理效应,即样品的浓缩效应,凝胶的分子筛效应和电荷效应,由于这三种物理效应,使样品分离效果好,分辨率高。

10.等电聚焦(IEF)原理:利用蛋白质分子或其他两性分子的等电点不同,电泳时待分离的两

性分子可以在一个稳定的、连续的、线性的pH梯度中迁移,直到聚集于与其等电点相同的区域,从而进行蛋白质的分离和分析。

11.IPG:固定化pH梯度等电聚焦介质

IPG胶条的泡胀:让样品能完全以可溶性的形式进入IPG内,为IEF做准备,常用的泡胀液的成分为:8M尿素,2%的去污剂、15mM DTT, 0.5% IPG buffer。

(十)

1.包涵体:蛋白质多肽链在细胞内发生错误折叠和聚集,形成没有生物活性的无定形聚集。形

成机制:(1)电荷平均数小、转角形成残基含量较高的蛋白易形成包涵体。(2)表达产物周围的环境不适,高温易形成包涵体;(3)缺少某些折叠辅助因子(分子伴侣)的作用

2.融球态理论:在蛋白折叠途径中存在着某个或某些能垒,阻碍蛋白最稳定分子构象的获得,

从而使得蛋白质结构处在某种亚稳态,这种亚稳态称为“熔球态”,“熔球态”中间体不存在特定的牢固侧链基团,但其结构仍是紧密的,二级结构已经形成,重要驱动力是疏水侧链内埋。

3.包涵体分离纯化和蛋白复性的一般过程:(1)包涵体的提取,包括细胞破碎和离心回收(2)包涵体的洗涤,Tris-HCl 缓冲溶液,含低浓度变性剂(尿素、盐酸胍)、弱去污剂(Triton X-100)、脱氧胆酸盐、蛋白酶抑制剂(PMSF)等。洗涤离心回收,反复多次。

(3)包涵体的溶解(变性):

①变性剂:如尿素(6-8M)、盐酸胍(5-6M),一般可采用高浓度变性剂去折叠使包涵体变性。

②去垢剂:SDS、CTAB、Triton X-100、Tween、CHAPS等。

③还原剂: -疏基乙醇、二硫苏糖醇(DTT)、二硫赤苏糖醇(DTE)等

④蛋白酶抑制剂:PMSF(苯甲基磺酰氟化物)

⑤设置pH和温度pH8左右维持包涵体去折叠、还原状态

(4)包涵体蛋白的体外复性和纯化,纯化步骤可以置于复性之前,也可置于复性之后。(5)复性蛋白的检测

4.蛋白质体外复性:

(1)传统方法(通过去除变性剂使蛋白质在体外自发的再折叠)

稀释复性: 将变性蛋白质溶液直接稀释到水或者适宜的复性缓冲液中,变形剂浓度减小。透析复性:将变性蛋白溶液对水或复性缓冲溶液进行透析。

超滤复性: 通过跨膜的压力差去除变性剂。

纳滤反渗透膜分离

纳滤反渗透膜分离实验指导书

纳滤反渗透膜分离实验 一、实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 二、基本原理 2.1膜分离简介 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.2纳滤和反渗透机理 对于纳滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的孔径大小和膜表面的化学

化工分离工程复习题及答案..

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V = SL)。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

《生化分离工程》思考题与答案

第一章绪论 1、何为生化分离技术?其主要研究那些容?生化分离技术是指从动植物组织培养液和微生物发酵液中分离、纯化生物产品的过程中所采用的方法和手段的总称。 2、生化分离的一般步骤包括哪些环节及技术?一般说来,生化分离过程主要包括4 个方面:①原料液的预处理和固液分离,常用加热、调PH、凝聚和絮凝等方法;②初步纯化(提取),常用沉淀、吸附、萃取、超滤等单元操作;③高度纯化(精制),常选用色谱分离技术;④成品加工,有浓缩、结晶和干燥等技术。 3、生化分离工程有那些特点,及其重要性? 特点:1、目的产物在初始物料(发酵液)中的含量低;2、培养液是多组分的混合物,除少量产物外,还有大量的细胞及碎片、其他代物(几百上千种)、培养基成分、无机盐等;3、生化产物的稳定性低,易变质、易失活、易变性,对温度、pH 值、重金属离子、有机溶剂、剪切力、表面力等非常敏感;4、对最终产品的质量要求高重要性:生物技术产品一般存在于一个复杂的多相体系中。唯有经过分离和纯化等下游加工过程,才能制得符合使用要求的产品。因此产品的分离纯化是生物技术工业化的必需手段。在生物产品的开发研究中,分离过程的费用占全部研究费用的50 %以上;在产品的成本构成中,分离与纯化部分占总成本的40~ 80 %;精细、药用产品的比例更高达70 ~90 %。显然开发新的分离和纯化工艺是提高经济效益或减少投资的重要途径。

4、生物技术下游工程与上游工程之间是否有联系? 它们之间有联系。①生物工程作为一个整体,上游工程和下游工程要相互配合, 为了利于目的产物的分离与纯化,上游的工艺设计应尽量为下游的分离纯化创造条件,例如,对于发酵工程产品,在加工过程中如果采用液体培养基,不用酵母膏、玉米浆等有色物质为原料,会使下游加工工程更方便、经济;②通常生物技术上游工程与下游工程相耦合。发酵- 分离耦合过程的优点是可以解除终产物的反馈抑制效应,同时简化产物提取过程,缩短生产周期,收到一举数得的效果。 5、为何生物技术领域中往往出现“丰产不丰收”的现象? 第二章预处理、过滤和细胞破碎 1、发酵液预处理的目的是什么?主要有那几种方法? 目的:改变发酵液的物理性质,加快悬浮液中固形物沉降的速率;出去大部分可溶性杂质,并尽可能使产物转入便于以后处理的相中(多数是液相),以便于固液分离及后提取工序的顺利进行。 方法:①加热法。升高温度可有效降低液体粘度,从而提高过滤速率,常用于粘度随温度变化较大的流体。控制适当温度和受热时间,能使蛋白质凝聚形成较大颗粒,进一步改善发酵液的过滤特性。使用加热法时必须注意加热温度必须控制在不影响目的产物活性的围,对于发酵液,温度过高或时间过长可能造成细胞溶解,胞物质外溢,而增加发酵液的复杂性,影响其后的产物分离与纯化;②调节悬浮液的pH 值,pH 直接影响发酵液中某些物质的电离度和电荷性质,适当调节pH 可以改善其过滤特性;③凝聚和絮凝;④使用惰性助滤剂。

南大化工膜分离实验报告

膜分离实验报告 一、实验目的 1.了解不同膜分离工艺的原理、设备及流程。 2.掌握RO、NF的适用范围和对象。 二、实验原理 1.反渗透(RO) 反渗透膜的孔径在0.1-1nm之间。反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。 为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。 实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示反渗透膜的处理效果。 图1 反渗透(RO)示意图

2.纳滤(NF) 纳滤膜的孔径范围介于反渗透膜和超滤膜之间。纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。 纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。 为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。 实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示纳滤膜的处理效果。同时将纳滤和反渗透对一价和二价离子的截留效果进行比较,可以知道纳滤膜出水中保留了比反渗透出水中更多的有益矿物离子。 三、实验流程与设备 整套膜分离装置的四个单元共同安装在一个支架上,由微滤单元和反渗透单元组成设备的1/2,超滤单元和纳滤单元组成设备另外的1/2。

化工分离工程习题答案简介

分离工程习题 第一章 1. 列出5种使用ESA 和5种使用MSA 的分离操作。 答:属于ESA 分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA 分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M ,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm 3的海水中制取纯水,M=31.5,操作温度为298K 。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M =8.314×298×0.035/31.5=2.753kPa 。 所以反渗透膜两侧的最小压差应为2.753kPa 。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1) 总变更量数Nv; (2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni; (4) 固定和可调设计变量数Nx , Na ; (5) 对典型的绝热闪蒸过程,你 将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个 热量衡算式1个 相平衡组成关系式C 个 1个平衡温度等式 1个平衡压力等式 共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx =C+2,加上节流后的压力,共C+3个 可调设计变量Na =0 解: (1) Nv = 3 ( c+2 ) V-2 F zi T F P F V , yi ,Tv , Pv L , x i , T L , P L 习题5附图

生物分离工程期末考试试卷B

试卷编号: 一、名词解释题(本大题共3小题,每小题3分,总计9分) 1.Bioseparation Engineering:回收生物产品分离过程原理与方法。 2.双水相萃取:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相, 并且在两相中水分均占很大比例,即形成双水相系统(two aqueous phase system)。 利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于50年代 后期开发了双水相萃取法(two aqueous phase extraction),又称双水相分配法(two aqueous phase partitioning)。 3.电渗:在电场作用下,带电颗粒在溶液中的运动。 二、辨别正误题并改正,对的打√,错的打×(本大题共15小题,每小题2分,总计30分) 1.壳聚糖能应用于发酵液的澄清处理是由于架桥作用。错(不确定) 2.目前国内工业上发酵生产的发酵液是复杂的牛顿性流体,滤饼具有可压缩性。错 3.盐析仅与蛋白质溶液PH和温度有关,常用于蛋白质的纯化。错 4.超临界流体是一种介于气体和液体之间的流体,可用于热敏性生物物质的分离。 对 5.膜分离时,当截留率δ=1时,表示溶质能自由透过膜。错 6.生产味精时,过饱和度仅对晶体生长有贡献。对 7.阴离子纤维素类离子交换剂能用于酸性青霉素的提取。对 8.卡那霉素晶体的生产可以采用添加一定浓度的甲醇来沉淀浓缩液中的卡那霉 素。 9.凝胶电泳和凝胶过滤的机理是一样的。错 10.PEG-硫酸钠水溶液能用于淀粉酶的提取。对 11.乙醇能沉淀蛋白质是由于降低了水化程度和盐析效应的结果。对 12.冷冻干燥一般在-20℃—-30℃下进行,干燥过程中可以加入甘油、蔗糖等作为保 护剂。对 13.反相层析的固定相和流动相都含有高极性基团,可用来分离生物物质。错 14.大网格吸附剂由于在制备时加入致孔剂而具有大孔径、高交联度,高比表面积 的特点。错(不确定) 15.PEG沉淀蛋白质是基于体积不相容性。错 三、选择题(本大题共10小题,每小题2分,总计20分) 1.对于反胶束萃取蛋白质,下面说法正确的是:A A 在有机相中,蛋白质被萃取进表面活性剂形成的极性核里 B 加入助溶剂,可用阳离子表面活性剂CTAB萃取带正电荷的蛋白质 C 表面活性剂浓度越高越好 D 增大溶液离子强度,双电层变薄,可提高反胶束萃取蛋白质的能力 2.能进行海水脱盐的是:C A 超滤 B 微滤

膜分离实验吧

题目:膜分离实验 0 前言 (一)实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 3.掌握膜分离流程,比较各膜分离过程的异同。 4.掌握电导率仪、紫外分光光度计等检测方法。 (二).基本原理 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF )、超滤(UF )、纳滤(NF )与反渗透(RO )都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径围为0.05~10μm ,所施加的压力差为0.015~0.2MPa ;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差围约为0.1~0.5MPa ;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa 左右,也有高达10MPa 的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 1微滤与超滤 微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。本实验中,以含颗粒的混浊液或悬浮液,经压差推动通过微滤膜组件,改变不同的料液流量,观察透过液测清液情况。 对于超滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的孔径大小和膜表面的化学性质将分别起着不同的截留作用。 2膜性能的表征 一般而言,膜组件的性能可用截留率(R )、透过液通量(J )和溶质浓缩倍数(N )来表示。 (1—1) 式中, R -截流率; Co -原料液的浓度,kmol/m3; Cp -透过液的浓度,kmol/m3。 对于不同溶质成分,在膜的正常工作压力和工作温度下,截留率不尽相同,因此这也是工业上选择膜组件的基本参数之一。 100R =?0P c -c % c

分离工程习题解答

[例2-3] 求含正丁烷(1)0.15、正戊烷(2)0.4、和正已烷(3)0.45(摩尔分数)之烃类混合物在0.2MPa 压力下的泡点温度。B. 露点温度 a. 解:因各组分都是烷烃,所以汽、液相均可看成理想溶液, K i 只取决于温度和压力。如计算要求不高,可使用烃类的 p -T -K 图(见图 2-1)。 假设 T = 50℃, p =0.2MPa ,查图求 K i , 组分 xi Ki yi=Kixi 正丁烷 0.15 2.5 0.375 正戊烷 0.40 0.76 0.304 正已烷 0.45 0.28 0.126 说明所设温度偏低,选正丁烷为K G ,95.0805 .076 .03==∑= i G y K K 。 查p-t-k 图t 为58.7, 再设 T = 58.7℃,重复上述计算得 故泡点温度为 58.7℃。 解:B. 露点温度, 假设 T = 80℃, p =0.2MPa ,查图求 K i , 组分 xi Ki yi/Ki=xi 正丁烷 0.15 4.2 0.036 正戊烷 0.40 1.6 0.25 正已烷 0.45 0.65 0.692 1978.0≠=∑ =∑∴i i i K y x 选正戊烷为参考组分,则 56.1978.06.14=?=∑?=i G x K K 由56.14=K ,查图2-1a 得t=78℃ K 1=4,K 2=1.56, K 3=0.6, 1053.175.0267.00375.0≈=++=∑ =∑∴i i i K y x

故混合物在78℃。 [例2-7] 进料流率为 1000kmol/ h的轻烃混合物,其组成为:丙烷 (1)30% ;正丁烷 (2)10% ;正戊烷 (3)15% ;正已烷 (4)45%( 摩尔 ) 。求在50 ℃和 200kPa 条件下闪蒸的汽、液相组成及流率。 解:该物系为轻烃混合物,可按理想溶液处理。由给定的T 和p ,从p - T - K 图查K i ,再采用上述顺序解法求解。 (1)核实闪蒸温度 假设50℃为进料泡点温度,则 假设50℃为进料的露点温度,则 说明进料的实际泡点和露点温度分别低于和高于规定的闪蒸温度,闪蒸问题成立。 (2)求Ψ,令Ψ 1 =0.1(最不利的初值) =0.8785 因f (0.1)>0,应增大Ψ值。因为每一项的分母中仅有一项变化,所以可以写出仅含未知数Ψ的一个方程: 计算R - R 方程导数公式为:

化工分离工程Ⅰ期末复习试试题库及答案

分离工程复习题库 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。

15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis提出了等价于化学位的物理量(逸度)。 18设计变量与独立量之间的关系可用下式来表示(Ni-Nv-Nc 即设计变量数-独立变 量数-约束关系) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越咼对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V - SL )。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递), (通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度 的质量传递或者不同化学位物流的直接混合) 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数), 为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。 29、分离要求越高,精馏过程所需的最少理论板数(越多)。 30、回流比是(可调)设计变量。 第二部分选择题 1下列哪一个是速率分离过程() a. 蒸馏 b.吸收 c.膜分离 d.离心分离

膜分离实验

实验三膜分离实验装置 一、实验目的 1.了解超滤膜分离的主要工艺设计参数。 2.了解液相膜分离技术的特点。 3.训练并掌握超滤膜分离的实验操作技术。 4.熟悉浓差极化、截流率、膜通量、膜污染等概念。 二、实验原理 膜分离是近数十年发展起来的一种新型分离技术。常规的膜分离是采用天然或人工合成的选择性透过膜作为分离介质,在浓度差、压力差或电位差等推动力的作用下,使原料中的溶质或溶剂选择性地透过膜而进行分离、分级、提纯或富集。通常原料一侧称为膜上游,透过一侧称为膜下游。膜分离法可以用于液-固(液体中的超细微粒)分离、液-液分离、气-气分离以及膜反应分离耦合和集成分离技术等方面。其中液-液分离包括水溶液体系、非水溶液体系、水溶胶体系以及含有微粒的液相体系的分离。不同的膜分离过程所使用的膜不同,而相应的推动力也不同。目前已经工业化的膜分离过程包括微滤(MF)、反渗透(RO)、纳滤(NF)、超滤(UF)、渗析(D)、电渗析(ED)、气体分离(GS)和渗透汽化(PV)等,而膜蒸馏(MD)、膜基萃取、膜基吸收、液膜、膜反应器和无机膜的应用等则是目前膜分离技术研究的热点。膜分离技术具有操作方便、设备紧凑、工作环境安全、节约能量和化学试剂等优点,因此在20世纪60年代,膜分离方法自出现后不久就很快在海水淡化工程中得到大规模的商业应用。目前除海水、苦咸水的大规模淡化以及纯水、超纯水的生产外,膜分离技术还在食品工业、医药工业、生物工程、石油、化学工业、环保工程等领域得到推广应用。 表10-1、各种膜分离方法的分离范围

超虑膜分离基本原理是在压力差推动下,利用膜孔的渗透和截留性质,使得不同组分得到分级或分离。超虑膜分离的工作效率以膜通量和物料截流率为衡量指标,两者与膜结构、体系性质以及操作条件等密切相关。影响膜分离的主要因素有:a 、膜材料,指膜的亲疏水性和电荷性会影响膜与溶质之间的作用力大小;b 、膜孔径,膜孔径的大小直接影响膜通量和膜的截流率,一般来说在不影响截流率的情况下尽可能选取膜孔径较大的膜,这样有利于提高膜通量;c 、操作条件(压力和流量);另外料液本身的一些性质如溶液PH 值、盐浓度、温度等都对膜通量和膜的截流率有较大的影响。 从动力学上讲,膜通量的一般形式: ) (f c m V R R R P R P J ++= = ∑μμ△ 式中,J V 为膜通量,R 为膜的过滤总阻力,R m 为膜自身的机械阻力,R c 为浓差极化阻力,R f 为膜污染阻力。 过滤时,由于筛分作用,料液中的部分大分子溶质会被膜截留,溶剂及小分子溶质则能自由的透过膜,从而表现出超虑膜的选择性。被截留的溶质在膜表面出积聚,其浓度会逐渐上升,在浓度梯度的作用下,接近膜面的溶质又以相反方向向料液主体扩散,平衡状态时膜表面形成一溶质浓度分布的边界层,对溶剂等小分子物质的运动起阻碍作用,如图所示。这种现象称为膜的浓差极化,是一可逆过程。 膜污染是指处理物料中的微粒、胶体或大分子由于与膜存在物理化学相互作用或机械作用而引起的在膜表面或膜空内吸附和沉积造成膜孔径变小或孔堵塞,使膜通量的分离特性产生不可逆变化的现象。 膜分离单元操作装置的分离组件采用超滤中空纤维膜。当欲被分离的混合物料流过膜组件孔道时,某组分可穿过膜孔而被分离。通过测定料液浓度和流量可计算被分离物的脱除率、回收率及其他有关数据。当配置真空系统和其他部件后,可组成多功能膜分离装置,能进行

分离工程练习题样本

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 《分离工程》练习题 第一章绪论 ( 一) 填空题 1、分离作用是由于加入_______而引起的, 因为分离过程是熵________过程。 2、分离过程是________的逆过程, 因此需加入__________来达到分离目的。 3、衡量分离的程度用____________表示, 处于相平衡状态的分离程度是_________________.。 4、分离因子表示任一分离过程所达到的____________, 其定义为_____________________。 5、分离因子____________, 则表示组分i及j之间不能被分离。 6、分离剂能够是___________或____________, 有时也可两种同时应用。 7、平衡分离的分离基础是利用两相平衡_____________的原理, 常采用____________作为处理手段, 并把其它影响归纳于___________。 8、速率分离的机理是利用溶液中不同组分在某种___________作用下经过某种介质时的__________差异而实现分离。 9、分离过程是将一混合物转变为组成__________的两种或几种产品的哪些操作。 10、分离工程研究分离过程中分离设备的___________。 11、传质分离过程分为____________和____________两类。 12、速率分离可分为__________和__________两大类。 13、分离过程中按有无物质传递现象发生来划分, 分离过程可分为__________和__________。 ( 二) 简答题 1、列出5种使用ESA和5种使用MSA的分离操作。 2、比较使用ESA与MSA分离方法的优缺点。 3、平衡分离过程和速率分离过程各有何特点? 4、怎样用分离因子判断分离过程进行的难易程度? 5、根据两相状态不同 , 平衡分离过程可分成几类 6、为什么要进行分离过程的的耦合及集成, 有何好处?

分离工程课程 思考题

分离工程课程 思考题 1.气液相平衡系统分几类?各类相应的i K 的计算式怎样? 2.工程计算中求取相平衡常数的常用途径有哪两条?各自的i K 计算式怎样? 3.应用状态方程计算L i ?和V i ?的方程相同,那么如何确定算得的结果是L i ?和V i ?? 4.现有乙烷,丙烷和异丁烷组成的三元混合物,采用SRK 状态方程计算它们的相平衡常数i K ,试问需要查取哪些基础数据才能计算它们的i K ? 5.现有乙醇,水,正丙烷组成的三元混合物,采用Wilson 活度系数和Virial 方程计算气相逸度系数,试问需要查取哪些基础数据才能计算它们的i K ? 6.何谓真实气体的理想溶液?当气液两相均可作为理想溶液处理时,i K 取决于哪些因素? 7.以局部组成概念为基础的活度系数方程用来预计多元系的气液平衡,比起Wohl 型一类方程有哪些优点? 8.教材介绍的泡点计算的框图用来计算压力不十分高系统泡点十分有效,试分析原因。 9.如何比较简单地判别一个混合物状态?试归纳相态判别的关系式。 10.等温闪蒸计算机的计算,采用目标函数何迭代变量是什么?用它们有什么优点? 11.构成一个计算机计算的要点是什么?试以Wang - Hanke 法为例进行剖析并由此说明算法的局限性。 12.试推导多级分离过程的MESH 方程组。 13.三对角线的BP 法何SR 法的框图怎样?两法各自适用的物系是哪些? 14.精馏塔的操作压力的上,下限各由什么因素决定?增大操作压力对分离效果和能耗有何影响? 15.何谓关键组分?精馏分离的多元混合物可能含有哪些组分? 16.有A ,B ,C ,D (以挥发度递减次序排列)四组分组成的料液加入精馏塔中进行分离。试对A ,B : B ,C 或C ,D 是轻重关键组分时,塔在m R 下操作时塔中的恒沸区位置进行分析。因为什么组分的变化而引起恒浓区位置的变化? 17.估算精馏塔塔顶和塔底产品的量和组成有哪两种方法?各自的基本假定有哪些? 18.试应用教材中推导的s /12α计算式(式2-175),说明萃取精馏中溶液的作用。如果原料中两组分的相对挥发度十分接近1,靠加入溶剂的什么作用才可能使s /12α

分离工程期末A卷试题答案

2007 —2008 学年第1、2学期分离工程课程期末考试试卷(A 卷)答案及评分标准 二、选择题(本大题20分,每小题2分) 1、由1-2两组分组成的混合物,在一定T 、P 下达到汽液平衡,液相和汽相组成分别为 11,y x ,若体系加入10 mol 的组分(1),在相同T 、P 下使体系重新达到汽液平衡,此时汽、液相的组成分别为 ' 1'1,y x ,则 ( C ) (A )1'1x x >和 1'1y y > (B )1'1x x <和1'1y y < (C )1'1x x =和1'1y y = (D )不确定 2、对于绝热闪蒸过程,当进料的流量组成及热状态给定之后,经自由度分析,只剩下一个自由度由闪蒸罐确定,则还应该确定的一个条件是 ( D ) (A )闪蒸罐的温度 (B )闪蒸罐的压力 (C )气化率 (D )任意选定其中之一 3、某二元混合物,其中A 为易挥发组分,液相组成5.0=A x 时泡点为1t ,与之相平衡的气相组成75.0=A y 时,相应的露点为2t ,则 ( A ) (A )21t t = (B )21t t > (C )21t t < (D )不能确定 4、用郭氏法分析可知理论板和部分冷凝可调设计变量数分别为 ( A ) (A )1,1 (B )1,0 (C )0,1 (D )0,0 5、如果二元物系有最高压力恒沸物存在,则此二元物系所形成的溶液一定是 ( A ) (A )正偏差溶液 (B )理想溶液 (C )负偏差溶液 (D )不一定 6、用纯溶剂吸收混合气中的溶质,逆流操作,平衡关系满足亨利定律。当入塔气体浓度y 1上升,而其它入塔条件不变,则气体出塔浓度y 2和吸收率的变化为 ( C ) (A )y 2上升,下降 (B )y 2下降,上升 (C )y 2上升,不变 (D )y 2上升,变化不确定 7、逆流填料吸收塔,当吸收因数A 1且填料为无穷高时,气液两相将在哪个部位达到平衡 ( B ) (A) 塔顶 (B)塔底 (C)塔中部 (D)塔外部 8、平衡常数较小的组分是 ( D ) (A )难吸收的组分 (B )较轻组份 (C )挥发能力大的组分 (D )吸收剂中的溶解度大 9、吸附等温线是指不同温度下哪一个参数与吸附质分压或浓度的关系曲线。 ( A ) (A) 平衡吸附量 (B) 吸附量 (C) 满吸附量 (D)最大吸附量 10、液相双分子吸附中,U 型吸附是指在吸附过程中吸附剂 ( A ) (A) 始终优先吸附一个组分的曲线 (B) 溶质和溶剂吸附量相当的情况 (C) 溶质先吸附,溶剂后吸附 (D) 溶剂先吸附,溶质后吸附

膜分离实验报告

. . 膜分离实验 一.实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 3. 了解和熟悉超滤膜分离的工艺过程。 二.基本原理 膜分离技术是最近几十年迅速发展起来的一类新型分离技术。膜分离是以对组分具有选择性透过功能的人工合成的或天然的高分子薄膜(或无机膜)为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.1微滤与超滤 微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。本实验中,以含颗粒的混浊液或悬浮液,经压差推动通过微滤膜组件,改变不同的料液流量,观察透过液测清液情况。 对于超滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而

分离工程复习题

1、什么是清洁工艺? 2、实现清洁工艺的要点是 、 。 3、传质分离过程分为 和 分离过程。 4、平衡分离过程所加的ESA 是指 ,如 ;MSA 是指 ,如 。 5、醋酸和水的分离过程中,加入醋酸丁酯作为 。正庚烷和甲苯的分离过程中加入苯酚作为 。 6、从稀溶液中分离出有机溶质,通常用解吸的方法。这种解吸过程也叫汽提,汽提过程的ESA 是 ;MSA 是 。 7、C8芳烃中对二甲苯和间二甲苯沸点的沸点非常接近,工业上采用 方法加以分离。 8、要从含氢的烃类混合物中分离获得纯氢,常采用吸附和 联合操作的方法。 9、谈谈分离过程和反应过程集成化对分离工程的意义。 10、平衡分离过程是借助于 ( 如:热能, 或 等 )使均相混合物系统变成两相系统,以混合物中各组分在两相中不同的平衡分配为依据实现组分分离。 11、速率分离式借助于 ( 如:浓度差, 或 等 )的作用下,同时在 配合下,利用各组分扩散速率的差异实现组分分离。 12、常用的膜分离技术有: 、 、 、 和 。 13、膜分离过程不受平衡的限制,能耗低,适用于特殊物系或特殊范围的分离。( ) 14、反应精馏过程,可以提高反应效率,同时也可以提高分离效率。( ) 15、达到相平衡的物系,整个物系的自由焓处于 状态,相间的表观传递速率为 。 16、相平衡常数表征了物系在一定条件下相变过程进行的方向和限度。( ) 17、相平衡常数仅仅是物系温度和压力的函数,与物系的组成无关。( ) 18、相平衡常数是任意条件下,组分i 在不同相中的摩尔分数的比值,即:i i i x y k = ( ) 19、相平衡的判据有三个,即: 、 和 。 20、化学势的定义为:( ) A 、j n P T i i n G ,,???? ????=μ B 、j n P T i i n H ,,???? ????=μC 、j n P i T G ,??? ????=μD 、j n T i P G ,??? ????=μ 21、非理想气体的压力与相应的理想气体的压力的差异可以用 定量的衡量。 22、实际气体混合物的逸度系数的定义为:( ) A 、 ?p y f i i i =? B 、 ??p y f i i i =? C 、 ?p f i i =?D 、 ?i i i p f =? 23、如果确定了压缩因子Z 与压力P 的关系,纯组分逸度系数可用( )计算, A 、?-=P P p dp Z 0)1(ln ?B 、?-=P P dp Z 0)1(ln ? C 、? -= P P dp Z RT 0 )1(1ln ?D 、 ? -= P P p dp Z RT ) 1(1 ln ? 24、当纯液体处于饱和状态时,其逸度等于 的逸度。

分离工程期末习题

一、填空题(每空2分,共30分) 1.相对挥发度依次降低顺序排列的混合物ABCDEFG分离,要求馏出液中D组 分的浓度≤2.5mol%,釜液中C组分的浓度≤5.0mol%,则轻关键组分 是,重关键组分是。假定为清晰分割,则馏出液中的组分 为 ,釜液中的组分为。 2.利用状态方程法计算汽液相平衡常数K i的公式为;活度系数法 计算汽液相平衡常数的通式是,当汽相为理想气体,液相 为非理想溶液时,活度系数法计算汽液相平衡常数的通式简化 为。 3.萃取精馏中溶剂的作用可以概括为两点: 和,当原有两组分的沸点接近,非理想性不大时,加入溶剂主要目 的是。 4.多组分多级分离严格计算平衡级的理论模型,简称为 方程,分别是、、和 方程。 二、选择题(每题1分,共10分) 1.按所依据的物理化学原理不同,传质分离过程可分为两类,即速率分离过程和( C )两大类。 A.机械分离;B.膜分离;C.平衡分离。 2.在多组分精馏中,最小回流比下由于非关键组分的存在使塔中出现( C )个恒浓区。 A.3; B.2; C.1; D.4。 3.在化工生产中常常会遇到欲分离组分之间的相对挥发度接近于1或形成共沸 物的系统,如向这种溶液中加入一种新组分,该新组分和被分离系统中的一 个或几个组分形成最低共沸物从塔顶蒸出,这种特殊精馏称为( D )。 A.热泵精馏;B.萃取精馏; C.普通精馏;D.共沸精馏。 4.多组分吸收和精馏同属于传质过程,多组分吸收过程中,对操作起关键作用的关键组分有( C )个。 A.2; B.3; C.1; D.0。 5.萃取塔内两相之间的相际传质面积愈大,传质效率( B )。 A.愈大; B.愈小; C.不变; D.先增大后减小。 6.在给定温度下进行闪蒸计算时,先需核实闪蒸问题是否成立,可采用泡点方 第 1 页共3 页

实验十 膜分离试验

实验十 膜分离实验 一、实验目的 1.了解不同膜分离工艺的原理、设备及流程。 2.掌握EM 、UF 、RO 和NF 的适用范围和对象。 二、实验原理 1.微滤(EM ) 微滤米的微孔直径为0.22μm ,当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>0.22μm 的悬浮颗粒物质就被截流在膜的一面,粒径小于0.22μm 的悬浮颗粒物质与水分子一起透过微滤膜排除出。从而达到分离水体的部分悬浮颗粒物质的目的。 实验采用含有少量悬浮颗粒物质的水进行实验,通过测定进水和出水的浊度来表示微滤膜的处理效果。 2.超滤(UF ) 超滤膜的微孔直径在10nm —0.1μm ,截流分子量在2—5万,范围根据需要进行选择。当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>膜孔径的颗粒物质被截流在膜的一面。为了防止被截流下来的颗粒物质越来越多而堵塞滤膜,往往采用动态过滤的方法进行超滤,即将进行超滤的同时,利用一股液体连续冲刷膜的表面的截流物,以保持超滤表面始终具有良好的通透性。因此,超滤膜设备出水与两股,一股为透过水(淡水),一股为截流物液(浓水)。参见下面的图示: 超滤液 浓缩液 原液 (图一)超滤膜示意图 静态过程 (图二) 动态过程 图10-1超滤(UF )示意图 超滤膜可以截流溶液中的细菌病毒、热源、蛋白质、胶体、大分子有机物等等。 实验采用含有少量染料物质的水进行实验,通过测定水、“淡水”和“浓水”的色度变化表示超滤膜的处理效果。 3.反渗透(RO) 反渗透膜的孔径在0.1-1nm 之间。反渗透技术是利用高压液体的高压作用,库夫渗透膜的渗透压,使溶液中的分子逆向渗透过渗透膜到达离子浓度较低的一端,从而到达去除溶液只能够大部分例子的目的。 为了防止被截流下来的其他例子越积越多儿堵塞RO 膜,同样采用动态的方法来进行反渗透,即将进行反渗透的同时,利用一股液体连续冲刷膜的表面的截流物,以保持反渗透表面始终具有良好的通透性。因此,反渗透膜设备出水与 流动方向 形成 滤饼 透过液 流动方向 透过液

《生物分离工程》复习题(解答版)

《生物分离工程》复习题 《绪论细胞分离》 1.在细胞分离中,细胞的密度ρS越大,细胞培养液的密度ρL越小,则细胞沉降速率越大。 2.表示离心机分离能力大小的重要指标是 C 。 A.离心沉降速度 B.转数 C.分离因数 D.离心力 3.过滤中推动力要克服的阻力有介质阻力和滤饼阻力,其中滤饼占主导作用。 4.简答:对微生物悬浮液的分离(过滤分离),为什么要缓慢增加操作压力? 5.判断并改错:在恒压过滤中,过滤速率会保持恒定。(×)改:不断下降。 6.简答:提高过滤效率的手段有哪些? 7.判断并改错:生长速率高的细胞比生长速率低的细胞更难破碎。(×)改:更易破碎。 8.简答:采用哪种方法破碎酵母能达到较高的破碎率? 9.简答:蛋白质复性收率低的主要原因是什么? 10.简答:常用的包含体分离和蛋白质复性的工艺路线之一。 11. B 可以提高总回收率。 A.增加操作步骤 B.减少操作步骤 C.缩短操作时间 D.降低每一步的收率 12.重力沉降过程中,固体颗粒不受 C 的作用。 A.重力 B.摩擦力 C.静电力 D.浮力 13.过滤的透过推动力是 D 。 A.渗透压 B.电位差 C.自由扩散 D.压力差 14.在错流过滤中,流动的剪切作用可以 B 。 A.减轻浓度极化,但增加凝胶层的厚度 B.减轻浓度极化,但降低凝胶层的厚度 C.加重浓度极化,但增加凝胶层的厚度 D.加重浓度极化,但降低凝胶层的厚度 15.目前认为包含体的形成是部分折叠的中间态之间 A 相互作用的结果。 A.疏水性 B.亲水性 C.氢键 D.静电 16.判断并改错:原料目标产物的浓度越高,所需的能耗越高,回收成本越大。(×)改:原料目标产物的浓度越低。 17.菌体和动植物细胞的重力沉降操作,采用 D 手段,可以提高沉降速度。 A.调整pH B.加热 C.降温 D.加盐或絮状剂 18.撞击破碎适用于 D 的回收。 A.蛋白质 B.核酸 C.细胞壁 D.细 胞器 19.重力沉降过程中,固体颗粒受到重力,浮 力,摩擦阻力的作用,当固体匀速下降时,三 个力的关系重力=浮力+摩擦阻力。 20.为了提高最终产品的回收率:一是提高每一级的 回收率,二是减少操作步骤。 21.评价一个分离过程效率的三个主要标准是:① 浓缩程度②分离纯化程度③回收率。 22.区带离心包括差速区带离心和平衡区带 离心。 23.差速区带离心的密度梯度中最大密度 B 待分 离的目标产物的密度。 A.大于 B.小于 C.等于 D.大于或 等于 24.简答:管式和碟片式离心机各自的优缺点。 25.单从细胞直径的角度,细胞越小,所需的 压力或剪切力越大,细胞越难破碎。 《沉淀》 1.防止蛋白质沉淀的屏障有蛋白质周围的水化层 和双电层。 2.判断:当蛋白质周围双电层的ζ点位足够大时,静 电排斥作用抵御蛋白质分子之间的分子间力,使蛋 白质溶液处于稳定状态而难以沉淀。(√) 3.降低蛋白质周围的水化层和双电层厚度, 可以破坏蛋白质溶液的稳定性,实现蛋白质沉淀。 4.常用的蛋白质沉淀方法有:盐析沉淀,等 电点沉淀,有机溶剂沉淀。 5.判断并改错:蛋白质水溶液中离子强度在生理离子 强度(0.15~0.2mol·kg-1)之外,蛋白质的溶解 度降低而发生沉淀的现象称为盐析。(×)改:离 子强度处于高离子强度时。 6.在Cohn方程中,logS=β-KsI中,盐析常数Ks 反映 C 对蛋白质溶解度的影响。 A.操作温度 B.pH值 C.盐的种类 D. 离子强度 7.在Cohn方程中,logS=β-KsI中,β常数反映 B 对蛋白质溶解度的影响。 A.无机盐的种类 B.pH值和温度 C.pH 值和盐的种类 D.温度和离子强度 8.Cohn方程中,Ks越大,β值越小,盐析 效果越好。 9.蛋白质溶液的pH接近其等电点时,蛋白质的溶解 度 B 。 A.最大 B.最小 C.恒定 D.零 10.蛋白质溶液的pH在其等电点时,蛋白质的静电 荷数为0 。 11.判断并改错:在高离子强度时,升温会使蛋白质 的溶解度下降,有利于盐析沉淀,因此常采用较高 的操作温度。(×)改:只在离子强度较高时才出 现。 12.判断并改错:利用在其等电点的溶液中蛋白质的 溶解度最低的原理进行分离,称为等电点沉淀,而 不必考虑溶液的离子浓度的大小。(×)改:在低 离子强度条件下。 13.等电点沉淀的操作条件是低离子强度和 pH=pI 。 14.判断并改错:无论是亲水性强,还是疏水性强的 蛋白质均可采用等电点沉淀。(×)改:适用于疏 水性强的蛋白质(酪蛋白)。 15.有机溶剂沉淀时,蛋白质的相对分子质量越 大,则有机溶剂用量越少;在溶液等电点附 近,则溶剂用量越少。 16.变性活化能 A 的蛋白质可利用热沉淀法分 离。 A.相差较大 B.相差较小 C.相同 D. 相反 17.在相同的离子强度下,不同种类的盐对蛋白质盐 析的效果不同,一般离子半径 A 效果好。 A.小且带电荷较多的阴离子 B.大且带电荷 较多的阴离子 C.小且带电荷较多的阳离子 D.大且带电荷 较多的阳离子 18.盐析沉淀时,对 A 蛋白质所需的盐浓度低。 A.结构不对称且高分子量的 B.结构不对称且 低分子量的 C.结构对称且高分子量的 D.结构对称且低 分子量的 19.盐析常数Ks随蛋白质的相对分子量的增高 或分子结构的不对称性而增加。 《萃取》 1.溶质在液—液两相中达到萃取平衡时,具有化学位 相等,萃取速率为0 的特征。 2.溶质在液—液两相中达到萃取平衡时,萃取速率为 B 。 A.常数 B.零 C.最大值 D.最小 值 3.溶质在两相达到分配平衡时,溶质在两相中的浓度 C 。 A.相等 B.轻相大于重相中的浓度 C. 不再改变 D.轻相小于重相中的浓度 4.萃取分配定律成立的条件为 C 。

相关文档
最新文档