初中几何反证法专题(编辑)

初中几何反证法专题(编辑)
初中几何反证法专题(编辑)

初中几何反证法专题

学习要求

了解反证法的意义,懂得什么是反证法。

理解反证法的基本思路,并掌握反证法的一般证题步骤。

知识讲解

对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。

1.反证法的概念:

不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。

2.反证法的基本思路:

首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。

3.反证法的一般步骤:

(1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾;

(3)由矛盾判定假设不正确,从而肯定命题的结论正

简而言之就是“反设-归谬-结论”三步曲。

例题:

例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明:

假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。

∵OA=OB,M是AB中点

(1)

∴OM⊥AB (等腰三角形底边上的中线垂直于底边)

同理可得:

OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM

这与已知的定理相矛盾。

故AB与CD不能互相平分。

例2.已知:在四边形ABCD中,M、N分别是AB、DC的

中点,且MN=(AD+BC)。

求证:AD∥BC

(2)

证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。

在△ABD中

∵BM=MA,BP=PD

∴MP AD,同理可证PN BC

从而MP+PN=(AD+BC)①

这时,BD的中点不在MN上

若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,

于是M、P、N三点不共线。

从而MP+PN>MN ②

由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)

相矛盾,

故假设AD BC不成立,所以AD∥BC。

课堂练习

1.求证:三角形中至少有一个角不大于60°。

2.求证:一直线的垂线与斜线必相交。

已知:设m,n分别为直线l的垂线

和斜线(如图),垂足为A,斜足为B。

求证:m和n必相交。

3.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,

求证:AD与BE不能被点H互相平分。

4.求证:直线与圆最多只有两个交点。

5.求证:等腰三角形的底角必为锐角。已知:△ABC中,AB=AC,求证:∠B、∠C必为锐角。

参考答案:

1.证明:假设△ABC中的∠A、∠B、∠C都大于60°

则∠A+∠B+∠C>3×60°=180°

这与三角形内角和定义矛盾,所以假设不能成立。

故三角形中至少有一个角不大于60°。

2.证明:假设m和n不相交则

m∥n

∵m⊥l ∴n⊥l

这与n是l的斜线相矛盾,所以假设不能成立。

故m和n必相交。

3.证明:假设AD、BE被交点H互相平分,则ABDE是平行四边形。

∴AE∥BD,即AC∥BC

这与AC、BC相交于C点矛盾,

故假设AD、BE被交点H平分不能成立。

所以AD与BE不能被点H互相平分。

4.证明:假设一直线l与⊙O有三个不同的交点A、B、C,

M、N分别是弦AB、BC的中点。

∵OA=OB=OC

∴在等腰△OAB和△OBC中

OM⊥AB,ON⊥BC

从而过O点有两条直线都垂直于l,这是不可能的,故假设不能成立。

因此直线与圆最多只有两个交点。

5.证明:假设∠B、∠C不是锐角,

则可能有两种情况:

(1)∠B=∠C=90°

(2)∠B=∠C>90°

若∠B=∠C=90°,则∠A+∠B+∠C>180°,

这与三角形内角和定理矛盾。

若∠B=∠C>90°,则∠A+∠B+∠C>180°,

这与三角形内角和定理矛盾。

所以假设不能成立。

故∠B、∠C必为锐角。

本讲小结

对于一个几何命题,当用直接法证比较困难或甚至不能证明时,则可采用简接证法,反证法就是一种最常见的间接证明方法、掌握并运用好这种方法,对思维能力的提高大有裨益。

所谓反证法,就是先假设命题的结论不成立,从结论的反面入手,进行正确的逻辑推理,导致结果与已知学过的公理、定理,从而得出结论的反面不成立,于是原结论成立。

反证法证题的一般步骤是:

(1)反设:将结论的反面作为假设;

(2)归谬:由“反设”出发,利用已学过的公理、定理,推出与已知矛盾的结果;

(3)结论:由推出的矛盾判断“反设”错误,从而肯定命题的结论正确。

运用“反证法”的关键:

反证法的主要手段是从求证的结论的反面出发,导出矛盾的结

果,因此,如何导出矛盾,就

成了使用反证法的关键。

“反证法”宜用于证明否定

性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地

说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。

课后作业

1.求证:在平面上,不存在这样的凸四边形ABCD,使△ABC、△BCD、△CDA、△DAB都是锐角三角形。

2.在△ABC中,AB=AC,P是内部一点且∠APB>∠APC,求证:PB<PC。

3.求证:在一个三角形中,至少有一个内角大于或者等于60°。

4.求证:在△ABC的BC边上任取一点D、AC边上任意取一点E,连结AD、BE,则AD 和BE必定不能互相平分。

5.已知△ABC为不等边三角形,AD⊥BC于D点,求证:D点到AB、AC边的距离必不相等。

参考答案:

1.证明:假设存在凸四边形ABCD,

使△ABC、△BCD、△CDA、△DAB都是锐角三角形。

则∠A+∠B+∠C+∠D<360°。

这与四边形ABCD中

∠A+∠B+∠C+∠D=360°矛盾。

故假设不能成立,所以原命题成立。

2.证明:假设PB PC,即PB>PC或PB=PC (1)当PB>PC时(如图)

在△PBC中,可得<PCB>∠PBC

∵AB=AC

∴∠ABC=∠ACB,从而∠ABP>∠ACP ①

在△BAP与△CAP中

∵AB=AC,AP=AP,PB>PC

∴∠BAP>∠CAP ②

由①②和三角形内角和定理,可得∠APB<∠APC,这与已知∠APB>∠APC相矛盾。

(2)当PB=PC时,在△APB与△APC中

∵AP=AP,BP=CP,AB=AC

∴△ABP≌△ACP,∴∠APB=∠APC

这与已知∠APB>∠APC相矛盾,

由(1)(2)可知假设PB PC不成立。

故PB>PC。

3.证明:不妨设三角形的三个内角为∠A、∠B、∠C假设∠A、∠B、∠C中设有一个大于或等于60°,

则它们都小于60°。

即∠A<60°、∠B<60°、∠C<60°

∴∠A+∠B+∠C<180°这与三角形内角和定理矛盾,这说明假设不成立。

故∠A、∠B、∠C中至少有一个大于或等于60°。

4.证明:假设AD和BE互相平分于P点,则ABDE应是一个平行四边形。所以AE∥EB,即AC∥BC

这与AC与BC相交于C点矛盾,

故假设AD与BE互相平分不能成立。

所以AD和BE必定不能互相平分。

5.证明:作BE⊥AB于E,DF⊥AC于F

假设DE=DF,则∠1=∠2

∵AD⊥BC

∴∠B=90°-∠1

∠C=90°-∠2

∴∠B=∠C

∴AB=AC这与△ABC为不等边三角形矛盾。

故假设不能成立,即D点到AB、AC边的距离必不相等。

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

初中数学几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

(完整版)初中平面几何知识点汇总(一)

平面几何知识点汇总(一) 知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.

二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形 ①多边形的对角线 2)3 ( n n条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

初中数学几何题(超难)及答案分析

几何经典难题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三) 2、已知:如图,P 是正方形ABCD 内点, ∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B · A D H E M C B O

P C G F B Q A D E 6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E , 直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三) 7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 ) 8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · G A O D B E C Q P N M · O Q P B D E C N M · A

初中平面几何辅助线专题复习

初中平面几何辅助线专题复习 目录 第01讲辅助线的初步认识 第02讲截长补短法 第03讲中点模型——倍长中线 第04讲三垂直模型 第05讲角平分线模型(一) 第06讲角平分线模型(二) 第07讲手拉手模型——全等 第08讲最短路径问题 第09讲平面直角坐标系中的几何问题

第01讲辅助线的初步认识 【知识提要】 初中辅助线的添加时几何部分学习的重要内容,同时也是学生学习的难点之所在。当 问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立 已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 辅助线的添加通常有两种情况: 1.按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线 段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往 往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫 做“补图”!这样可防止乱添线,添辅助线也有规律可循。 本节课我们就以启东作业中的问题为例,来介绍常见的辅助线的画法. 【典型例题】 例1:小春在做数学作业时,遇到一个这样的问题:如图,AB=CD,BC=AD,请说明 ∠A =∠C 的道理. BC=AD,所以只需连接BD,构造全等三角形即可. D

例2. 如图,O 是△ABC 内一点,连接OB 和OC. 你能说明OB +OC < AB + AC 的理由吗? 【思路点拨】要证明线段之间的不等关系,要将线段放在三角形中,利用三边关系来证明。△ABC 和△OBC 中无法解决,所以只需要将OB (OC )延长交AC (AB )于点D ,在△ABD (△ACD )和△OCD (△OBD )利用三边关系解决即可. 归纳:构造线段时辅助线的写法: 1. 连接**。例如:连接AB 2. 延长**。①例如:延长AB 交CD 于E 点;②延长AB 到E ,使BE = AB . 例题3:已知:如图AB ∥DE . 求证:∠B +∠C +∠D = 360° 【思路点拨】要证明这三个角的和是360°,可以 构造周角,2个180度或四边形的内角和来证明。 通过作平行线就可实现角的位置的转移,将角移动到 适当的位置。 归纳:构造平行线时辅助线的写法: 1. 过*作* ∥ *。例如:过点A 作AB ∥CD. 练习:叙述并证明三角形内角和定理。 例题4:已知:如图,△ABC 的∠B 的外角的平分线BD 和∠C 的外角平分线CE 相交于点P 求证:点P 也在∠BAC 的平分线上。 【思路点拨】已知CP 和BP 为外角平分心线,要证明P 角平分线上,只需要过P 向AM 、AN 、BC 归纳:构造垂线,中线,角平分心线时辅助线的写法: 1. 垂线:过*作*⊥*于点*。例如:过点A 作AB ⊥CD 于点B . C E A N B

初二几何专题训练整理

初中几何综合测试题 一.填空题 1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为_______. 2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是_________. 4.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为________. 5.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 . 6.梯形上底长为2,中位线长为5,则梯形的下底长为________. 7.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA, 8.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于_________. 二.选择题 1.一个角的余角和它的补角互为补角,则这个角是 [ ] A.30° B.45° C.60° D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]

A.1∶2∶3 B.1∶1∶1 C.1∶4∶9 D.1∶3∶5 4.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°, 则∠BCF的度数是 [ ] A.160° B.150° C.70° D.50° 5.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和 BC相交于E,图中全等三角形共有 [ ] A.2对 B.3对 C.4对 D.5对 6.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段 三.解答题

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

小学奥数几何专题训练附答案

学习奥数的重要性 1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。 2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助 3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。 4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。 六年级几何专题复习 如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接 而成,那么阴影部分的面积是_____cm2。(π取3.14)(几何) 有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。(结头处绳长不计,π取3.14) 图中的阴影部分的面积是________平方厘米。(π取3)

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

初中数学平面几何建系专题

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自 己的座位。 分析以上情景,他们分别利用那些数据找到位置 的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置? (2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2 )在同一

位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

中考数学几何专题训练

专题八圆

8.正多边形的有关计算: (1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例: (1) n = n 360 ;

(2)有关计算在Rt ΔAOC 中进行. (2) n 1802n ? = α 二 定理: 1.不在一直线上的三个点确定一个圆. 2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算: (1)圆的周长C=2πR ;(2)弧长L= 180 R n π;(3)圆的面积S=πR 2 . (4)扇形面积S 扇形 =LR 2 1 360R n 2=π; (5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21 =πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径) 四 常识: 1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

A B C 第5 A B C 第6 O E 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r ) 两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 圆中考专题练习 一:选择题。 1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的 度数为( ) ° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53 3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( ) A 1个 B 2个 C 3个 D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A .19 B .16 C .18 D .20 5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠ BAC =90°,AB =3, BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所 得圆锥的侧面积等于 ( )

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

相关文档
最新文档