圆的相关定理及其几何证明(含答案)

圆的相关定理及其几何证明(含答案)
圆的相关定理及其几何证明(含答案)

圆的相关定理及其几何证明

典题探究

例1:如图,圆是的外接圆,过点C 作圆的切线交的延长线于点.若

O ABC ?O BA D ,,则线段的长是 ;圆的半径是

.

CD =2AB AC ==AD O 例2:如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E (E 在A ,O 之间),EF BC ^,垂

足为F .若6AB =,5CF CB ×

=,则AE =

例3:如图已知与圆相切于,半径,交于,若,

PA O A OC OP ⊥AC PO B 1OC =,则 , .

2OP =PA ==PB 例4:如图,从圆外一点引圆的切线和割线,已知,

O P O PA PBC 30BPA ∠=?,, 则 ,圆的半径等于

11BC =1PB =PA =O 演练方阵

A 档(巩固专练)

1.如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点E,F.若,则⊙O

的21PF PD =+=半径为

.

EFD ∠=A

B

C

O

P

D

C

B

P A

O

C

B

A

5.如图所示,以直角三角形的直角边为直径作⊙,交斜边于点,过点

ABC AC O AB D 作⊙的切线,交边于点.则

.

D O BC

E =BC

BE

6.如图,直线AM 与圆相切于点M, ABC 与ADE 是圆的两条割线,且BD ⊥AD ,连接MD 、EC 。则下面结论中,错误的结论是(

)

A .∠ECA = 90o

B .∠CEM=∠DMA+∠DBA

C .AM 2 = AD·AE

D .AD·D

E = AB·BC

7.如图,切圆O 于点,为圆O 的直径,交圆O 于点,为的中点,AB A AC BC D E CD 且则__________;__________.

5,6,BD AC ==CD =AE =

8.如图,切圆于点,割线经过圆心,,则 PC O C PAB O 4,8PC PB ==tan COP ∠=,△的面积是

OBC 9.如图,为⊙的直径,切⊙于点,且过点的割线,交的延长线AB O AC O A C CMN AB 于点,若,,则 ,

D CM MN ND =

=AC =CM =AD =10.如图,是⊙O 上的四个点,过点B 的切线与的延长线交于点E .若

,,,A B C D DC ,则( )

110BCD ?∠=DBE ∠=A. B. C. D. 75?70?60?55?

A

B C

D

M

N

O

B 档(提升精练)

1.如图,已知⊙O 的弦AB 交半径OC 于点D,若AD=4,BD=3,OC=4,则CD 的长为______

2.如图,已知圆中两条弦与相交于点是延长线上一点,且

AB CD E F ,AB ,若与圆相切,且,则

BF AF CF DF 22===CE 2

7

=

CE

=BE A

3.如图,是半圆的直径,在的延长线上,与半圆相切于点,

AB O P AB PD O C .若,,则______.

AD PD ⊥4PC =2PB =CD =4.如图,是⊙的直径,直线切⊙于点,且与延长线交于点,若

AB O DE O

D AB C ,则=

CD =1CB =ADE ∠5.如图,为⊙的AC O 直径,,弦交于

OB

AC ⊥BN AC 点.若,

M OC =

,则_______

1OM =MN

=A

B

C

O

M

N

6.如图,是圆的切线,切点为,交圆于两点,,

PA O A PO O ,B

C 1PA PB ==则=( )ABC ∠A

B

C

D 70?60?45?30?

7.如图所示,Rt △ABC 内接于圆,,PA 是圆的切线,A 为切点, PB 交AC

60ABC ∠=o

于E ,交圆于D .若

PA =AE ,PD

BD =

AP = ,AC =

E

D P C

B

A

8. 如图,以的边为直径的半圆交于点,交于点,于点

ABC ?AB AC D BC E EF AB ^,,,那么= ,=

.

F 3AF BF =22BE EC ==CDE DCD 9.如图,已知圆中两条弦与相交于点,与圆相切交延长线上于点,AB CD F CE AB E 若,,则线段的长为

DF CF ==::4:2:1AF FB BE =CE F

E

D

C B

A

10. 如图,直线PC 与e O 相切于点C ,割线PAB 经过圆心O , 弦CD ⊥AB 于点E ,

4PC =,8PB =,则CE =

C 档(跨越导练)

1. 如图,△是⊙的内接三角形,是⊙的切线,交于点,交⊙

ABC O PA O PB AC E 于点.若,,,,则

O D PA PE =60ABC ?∠=1PD =9PB =_____;_____

PA =EC =2.

如图,的直径与弦交于点,,则O e AB CD P 7

, 5, 15

CP PD AP =

===___ DCB D

___

B

3.

如图,是圆的直径,于,且,为的中点,连接

AB O CD AB ⊥D 2AD BD =E AD CE

并延长交圆于.若

_______, _________

O F CD =

AB =EF =4. 如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP 交圆于D ,若AB =2,AC =1,则PC =______,PD =______

5.

是圆O 的直径,为圆O 上一点,过作圆O 的切线交延长线于点,若

AB D D AB C =, ,则

DC 222=BC =∠DCA

sin A

B

6.

如图,已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到

AC 的距离为22,3AB =,则切线AD 的长为

7. 如图,是半径为的圆的直径,点 在的延长线上,是圆的切线,BC 2O P BC PA O 点在直径上的射影是的中点,则=

A BC OC ABP ∠P

B P

C ?

=

8. 如图,从圆外一点引圆的切线和割线,已知,,O P O PA PBC PA =4PC =圆

心到,则圆的半径为_____

O BC O 9. 如图,是圆的直径,在的延长线上,切圆于点.已知圆半径为

AB O P AB PD O C O

,则______;的大小为______

2OP =PC =ACD ∠10. 如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B ,

D 是与⊙O 的交点.若

CE ,则______;若,,则

.

?=∠70BAC =∠CBE 2=BE 4=CE =CD

典题探究

例1:答案: 1,2

解析:已知,,由圆幂定理得,

CD =

2AB AC ==2CD DA DB =?,所以,可以求出,而,取DB DA AB =+2CD ()DA DA AB =?+1AD =CD AD ⊥的中点E ,连接OC 和OE ,则半径.

AB R=OC=2例2:答案:1

解析:三角形CEF 与三角形CBE 相似,对应边成比例,所以

,即CF CE

CE CB

=

,所以,而,所以,所2CE CB CF =?CE =1

OC=

32

AB =O 2E ==以.

1AE =

例3:答案:PA PB =

= 解析:延长PO 与圆O 分别交于点D 和点E ,则,

1PD OP OD =-=

,由圆幂定理得,所以A 点作

3PE PD DE =+=23PA PD PE =?=PA =

交OP 于点F ,则,所以.AF OP ⊥1OF=231PB=+22

例4:答案:R=7

解析:由圆幂定理得,所以,设AO 与PC 交于点

2

PA =PB PC=12?D ,延长AO 交圆于E ,则,所以,,所以

AD DE=BD DC ??2DE=24DE=12,.

2R=2+12R=7演练方阵

A 档(巩固专练)

1:答案:EFD=15

∠。

解析:由圆幂定理得,,2

PD =PE PF ?1=PE ?

,,所以,所以

OP=2PD=,1,

POD=30∠o 1

EFD=POD=152

∠∠。

2:答案:

45

解析: 由圆幂定理得,所以,所以

2

AP =PB PD=PB(PB+BD)?2

75(5)BD =?+245

BD =

3:答案:D 解析:

由圆幂定理得,所以

2

2

()(2)3PC PA PA AB PA PA PA PA =+=+=

,所以D 选项错误

PC =4:答案:半径7.5,5

R BP ==

解析: .所以,由三角形相似得

,6,10,CD CP ==8DP ==CD OC

DP CP

=所以

,所以,由圆幂定理得,所以6810OC =3107.54

R OC ==?=2PC BP AP =?,所以100(15)BP BP =+5

BP =5:答案:

1

2

解析:连接CD ,AC 是圆的直径,所以,BC 经过半径OC 的端点C ,而O CD AB ⊥且,所以是圆的切线,而DE 是圆O 的切线,所以EC=ED ,所以

BC AC ⊥BC O ,所以12BE CE BC ==

12

BE BC =6:答案:D

解析:因为四边形BDEC 是圆的内接四边形,所以,因为

180BDE BCE ∠+∠=。

,所以,A 正确;直线AM 与圆相切,由弦切角定理得

=90BDE ∠。C =90B E ∠。,而,所以

AMD=MED ∠∠ABD=CED ∠∠,所以B 正确;由圆幂定理得

CEM=MED+CED=DMA+DBA ∠∠∠∠∠,所以选项C 正确

2AM AD AE =?

7:答案:4,CD AE ==解析:设,则根据圆幂定理得,而,CD x =2AB BD BC =?22

(5)36AB CD =+-所以,所以,所以,而

2

(5)365(5)CD CD +-=?+2

5360CD CD +-=4CD =

AE =AE =8:答案:418tan ,35

OBC COP S ∠=

=V 解析:由圆幂定理得,所以,所以,所以半径

2

PC PA PB =?168PA =2PA =,所以正切值,所以三角形OBC 的面积3,R =3,OC =5OP =4

tan 3

COP ∠=

118

sin 25

OBC S OB OC COP ?=???∠=

9:答案:CM=2, 解析:由圆幂定理得,所以,所以,2AC =CM CN=CM 2CM ??2

8=2CM CM=2

而10:答案:B

解析:因为ABCD 四点共圆,所以,而,所以

A+BCD=180∠∠。

BCD=110∠。

,又因为BE 与圆相切于点B ,所以,所以选项B 是正确的。

A=70∠。DBE=A=70∠∠。B 档(提升精练)

1:答案:CD=2

解析:延长CD 交圆于点E ,由相交弦定理得,所以

AD DB=CD DE ??,求出,因为CD 是小于4的,所以43=CD(8-CD)?CD=26或CD=2

2:答案: 1BE=

2

解析:

由相交弦定理得,所以,所以,所以

BF AF=DF FC ??2

2BF =2BF=1,而,所以,所以AF=22CE =BE EA ?7=BE (3)4BE ?+1

BE=

2

3:答案:12

CD=

5

解析:设半径为R ,连接OC ,则由圆幂定理得,已知,2

PC =PB PA ?PC=4,PB=2而且,所以,所以,而

,所以,OC PD ⊥2

4=2(2+2R)R=3PC PO CD OA =45

3

CD =12

5

CD =

4:答案:60ADE ∠=。

解析:

由圆幂定理得,而AC=3,AB=2,所以

CB=12CD =CB CA ?

OC=2,连接,则,在中,,,,所以

OD OD CD ⊥Rt ODC ?OD=1CO=2,而在三角形BOD 中,已知OB=OD ,所以有,60DOC ∠=。BD 60O ∠=。

ADE=ABD=60∠∠。5:答案:MN=1

解析:延长BO 交圆于点D ,连接DN ,则,而,由BND=90∠。

2BM =

圆幂定理可得 ,所以,所以MC MA MB MN ?=?1)2MN -=1

MN =6:答案:B

解析:由圆幂定理可得,所以,,连接2

PA PC PB =?3PC =2,1BC R ==OA ,所以三角形OPA 是直角三角形,B 是OP 中点,所以,AB OB OA ==60

ABC ∠=。

7:答案:P A =

解析:由圆幂定理可得,所以,2P PB PD A =?2

P 12A =

+=

,所以,所

A B 6AB =

=

sin 60=6AC AB =。

8.答案:DE 60C ∠=。

,解析:设圆心是O ,半径为R ,连接OE 与AE ,所以,所以,AF+FB=2R 1FB=R 2

又因为,,所以是等边三角形,,

EF AB ⊥OE=EB OEB ?ABE=60∠。

,所以 ,所以,由圆

CDE=ABE=60∠∠。AE=BE tan 60。

幂定理得 ,所以CD CA=CE CB ??

9.答案:解析:由圆幂定理得,而,所以,22CE =EB EA=7EB ?DF FC=FB FA ??2

8=8EB

所以,所以,EB=12

CE =710.答案:12CE=

5

解析:由圆幂定理得,所以,所以,又因为

2

PC =PA PB ?16=8PA PA=2,所以,所以

AB=2R=6R=3312

CE=PCsin P=455

∠?=

C 档(跨越导练)

1:答案: PA=3,EC=4

解析:依题意根据圆幂定理得,所以,,

2

PA =PB PD ?2

PA =9PA=3 , , ,所以 ,在三角形ADE 中,PA=PE=3DE=2BE=6PAC=ABC=60∠∠。

,所以三角形APE 是等边三角形,,所以 ,

PE=PA PE=PA=AE=3BE=PB-PE=6 ,而弦AC 与BD 相交于点E ,所以 ,所以DE=PE-PD=2BE DE=AE CE ??CE=4

2:答案:DCB=45

∠。

解析: 由相交弦定理,所以,,,CP PO=AP PB ??PB=72R=AP+PB=8R=4所以,,连接OD ,则有,所以,然后连接OP=OA AP=32

2

2

OP +OD =PD POD=90∠。

BD ,则,由正弦定理得,所以,是

BD

=2R sin DCB

∠sin DCB ∠=DCB ∠锐角,所以45

DCB ∠=。

3:答案:AB=3,解析:已知,根据圆幂定理得,因为,所

ACB=90∠。

2

CD =AD DB ?AD=2DB

以,所以,所以,,所以22

CD =2DB BD=1

AB=AD+DB=3DE=1

,所以 EA EB=EC EF ??

4.答案:

解析:连接,在中,,所以,

CB ABC ?AB=2AC=1,,过点B 和点C 的切线交于点P ,所以,所以

A 60C

B ∠=。PCB=P

C 60B ∠∠=。

中,Rt APB ?

,所以2

PB PD PA =?2PB PD PA ==

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

初中数学所有几何证明定理

初中数学所有几何证明 定理 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

证明题要用到哪些原理? 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

牛顿几何三大定理及证明

精品文档 . 牛顿三大定理 牛顿定理1:完全四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线。这条直线叫做这个四边形的牛顿线。 证明:四边形ABCD,AB∩CD=E,AD∩BC=F,BD中点M,AC中点L,EF中点N。取BE中点P,BC 中点R,PN∩CE=Q R,L,Q共线,QL/LR=EA/AB,M,R,P共线。RM/MP=CD/DE,N,P,Q共线,PN/NQ=BF/FC 三式相乘得:QL/LR*RM/MP*PN/NQ=EA/AB*CD/DE*BF/FC 由梅涅劳斯定理 QL/LR*RM/MP*PN/NQ=1 由梅涅劳斯定理的逆定理知:L,M,N三点共线 故牛顿定理1成立 牛顿定理2圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。 证明:设四边形ABCD是⊙I的外切四边形,E和F分别是它的对角线AC和BD的中点,连接EI只需证它过点F,即只需证△BEI与△DEI面积相等。 显然,S△BEI=S△BIC+S△CEI-S△BCE,而S△DEI=S△ADE+S△AIE-S△AID。注意两个式子,由ABCD外切于⊙I,AB+CD=AD+BC,S△BIC+S△AID=1/2*S四边形ABCD,S△ADE+S △BCE=1/2*S△ACD+1/2*S△ABC=1/2*S四边形ABCD。即S△BIC+S△AID=S△ADE+S△BCE,移项得S△BIC-S△BCE=S△ADE-S△AID,由E是AC中点,S△CEI=S△AEI,故S△BIC-S △CEI-S△BCE=S△ADE-S△AIE-S△AID,即S△BEI=△DEI,而F是BD中点,由共边比例定理EI过点F即EF过点I,故结论成立。证毕。 牛顿定理3圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。精品文档

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

几何定理证明

几何定理证明 1、重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边 中点距离的2倍。该点叫做三角形的重心。 先证明交于一点,如图一中线AD、BE交于G,延长CG 交AB于F,即证明F为AB中点即可,延长GD至H使 GD=DH,又BD=DC∴BDCG为平行四边形,∴BE∥CH, CF∥BH,又E为AC中点,EG为中位线,∴G为AH中 点,又CF∥BH,∴FG为中位线,即F为AB中点,∴三 条中线交于一点。 再证明2倍问题 证明1:如图:△ABC的中线AD、BE交于G(重心),求 证:AG=2GD 取CE的中点F,连接DF, 则CE=2EF=AE , ∴DF是△BCE的中位线, ∴GE∥DF , AG/GD=AE/EF=2, ∴AG=2GD 。 证明2:面积法(三条中线将三角形分成6个面积相等 的三角形) △ABC,AB、BC、CA中点分别为D、E、F,交于一点G。 ∵D、E、F为中点 ∴S△CAD=S△CDB=S△ABE=S△ACE=S△ABF=S△BCF =S△ABC/2 ∴S△ADG=S△CEG=S△BEG 同理S△BDG=S△BEG ∴S△ABG=2S△BEG ∴AG/GE=2即AG=2GE 证明3:相似三角形 △ABC,AB、BC、CA中点分别为D、E、F,交于一点G。 ∴DF//BC,DF=BC/2 ①(中位线定理)。 ∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF) ∴HF=DF/2 , BE=BC/2,又可由①知HF=BE/2 ∴HF//BE. 又∵∠BGE=∠FGH。 ∴△BGE∽△FGH ∴BG/GF=BE/HF=2。∴BG=(2/3)BF

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行 实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面 平行实现 l

βααβ//',',' //'//??? ?? ? ? ? ??且相交且相交m l m l m m l l 。βαβαα//,////??? ????且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初中几何证明题要用到的一些定理

初中几何证明题要用到的一些定理 证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的

弧对的圆周角。 *7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。

相关文档
最新文档