纳米传感器--物理、化学和生物传感器((印)V.K.康纳主编;张文栋等译)思维导图

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

光电化学生物传感器的研究与应用

光电化学生物传感器的研究与应用 陈洪渊* 南京大学,南京,210093 *Email: hychen@https://www.360docs.net/doc/3c17145104.html, 光电化学过程是指分子、离子以及固体物质在光的作用下,因吸收光子而使电子处于激发态继而产生电荷传递的过程。光电化学传感是基于物质的光电转化特性而建立起来的一种新兴的检测技术。待测物与光电化学活性物质之间的直接/间接相互作用,或者生物识别过程前后所产生的光电流(或光电压)的变化与待测物浓度之间的关系, 是光电化学传感定量的基础。在光电化学检测中,与电化学发光检测恰好相反,光被用作激发源来激发光活性物质,通过光激发所产生的电信号作为检测信号。由于采用不同能量形式的激发与检测信号,和电化学发光检测相同的是,光电化学传感的背景信号要比传统的电化学方法低。研究表明,在采用相同或类似的流程对同一种物质进行检测时,光电化学方法获得的检测限通常要比电化学方法低一个数量级。此外,由于利用电信号响应, 同传统的光学方法相比, 光电化学检测仪器设备简单、价格低廉且易于微型化。因此,这种方法在生物分析领域具有广阔的应用前景,近年发展十分迅速。随着研究的不断深入,可以预期,光电化学传感将在生物分子测定、环境监测、食品安全、新药研究和医学卫生等诸多领域发挥重要作用。目前,光电化学应用于生物传感器的各个主要研究方向,如DNA传感器、免疫传感器以及酶催化型传感器等方面都取得了迅速的发展。 本文将以本研究组现有相关工作为例,对光电化学生物传感的基本概念、原理与应用及当前的发展趋势作一扼要的评述,以期为光电化学生物传感器的进一步发展提供一定的启示。 参考文献 [1] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13, 495—497 [2] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47, 10990—10992 [3] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, 895—897 [4] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, doi: 10.1039/C2CC17942C [5] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84, 917—923

生物传感器

生物传感器 信研1402 摘要:生物传感器是一种以生物活性单元为敏感元件,结合化学、物理转换元件,对被分析物具有高度选择性的装置,它具有灵敏度高、检测速度快、操作简便、成本低、可进行连续动态监测等优点。本文在介绍生物传感器发展现状、组成及工作原理以及输入输出信号的基础上,对生物传感器的应用进行了综述。 引言 生物传感器技术是一个非常活跃的工程技术研究领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起处在生命科学和信息科学的交叉区域,是发展生物技术必不可少的一种先进的检测与监控装置。 一、生物传感器组成 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 生物传感器利用生物活性物质选择性的识别和测定实现测量,主要由两大部分组成(如图1所示):一为功能识别物质(分子识别元件又称生物敏感膜),由其去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础;其二是电、光信号转换装置(换能器),由其把被测物所产生的化学反应转换成便于传输的电信号或光信号。 图1.生物传感器组成结构图

生物传感器识别和检测待测物的一般反应过程为:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。 二、工作原理 生物传感器工作方式分为两种:直接转换为电信号和间接转换为电信号型,间接型是将化学信号、光信号或者热信号等其他信号转换为电信号。 图2.生物传感器工作原理图 三、生物传感器的分类 根据识别元素的不同,生物传感器可分为酶免疫传感器、细胞传感器、微生物传感器、传感器等,,根据输出信号产生的方式生物传感器可分为生物亲和型传感器或催化型生物传感器等。也可依据分子的类型进行分类生物传感器的命名与其分类一一对应,为清晰描述一个传感器的性质,也可将同一传感器在不同领域的分类叠加,如以蛋白质为分子,酶为识别元素,电化学为表征手段的生物传感器可称为蛋白质酶电化学传感器或是酶电化学蛋白质传感器。根据所用换能器和监测物理量、化学量和生物量可分为电化学生物传感器光学生物传感器。 光化学生物传感器是基于待测物能够引起传感器表面某种特定指示剂光吸

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰Intermediary Technology Institutes计划投资1亿2千万英镑发展“生物传感器平台(Biosensor Platform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics' 16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

光电化学综述

光电化学传感器的应用研究进展 摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。 关键词:光电化学;传感器 一、引言 20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。由于采用电化学检测,同光学检测相比,其设备价廉。 二、光电化学的概述 1、光电化学的工作机理 要了解光电化学的工作原理,首先得研究光催化技术。光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。这里以半导体二氧化钛(TiO )为例介绍一下光电化 2 学的工作原理。 半导体TiO 具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构 2 成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面区在受到能量

生物传感器综述

生物传感器综述

————————————————————————————————作者: ————————————————————————————————日期: ?

生物传感器课程论文 论文题目:生物传感器技术在环境分析 与检测方面的应用研究进展专业: 分析化学 姓名:雷杰 学号:12015130529 指导教师:晋晓勇 时间:2015年10月23日

生物传感器技术在环境分析与检测方面的应用研究进展 摘要:生物传感器作为一类新兴传感器,它是以生物分子敏感元件,将化学信号、热信号、光信号转换成电信号或者直接产生电信号予以放大输出,从而得到检测结果。文章综述了生物传感器在环境监测,包括水环境、大气环境等领域的应用和最新进展,并展望了环境监测生物传感器的发展前景及发展方向。 关键词:生物传感器技术;环境分析检测;

0.前言 生物传感器这门课属于分析化学和生物化学的一门交叉学科,它涉及到生物化学、电化学等多个基础学科。就目前生物传感器研究的历史阶段,它仍然处于十分活跃的研究阶段,生物传感器的研究逐渐变得专业化、微型化、集成化、也有一些生物相容的生物传感器,生物可控和智能化的传感器制成[1]。基于生物传感器的基本结构和性能,从它的选择性,稳定性,灵敏度和传感器系统的集成化发展的特点和趋势,科研人员主要研究生物传感器在医疗、食品工业和环境监测等方面,它的发展对生产生活都有极大影响,尤其是生物传感器专一性好、易操作、设备简单、可现场检测、便携式、测量快速准确、适用范围广,从而深受研究者的青睐。本文主要概述了近三年来生物传感器在环境分析与检测方面的应用研究,从而对以后生物传感器技术的研究有所帮助与借鉴。 1.生物传感器技术 1.1生物传感器的组成及工作原理 生物传感器主要是由生物识别和信号分析两部分组成。生物识别部分是由具有分子识别能力的生物敏感识别元件构成,包括细胞、生物素、酶、抗体及核酸。信号分析部分通常叫换能器。它们的工作原理一般是根据物质电化学、光学、质量、热量、磁性等,物理化学性质将被分析物与生物识别元件之间反应的信号转变成易检测、量化的另一种信号,比如电信号、焚光信号等,再经过信号读取设备的转换过程,最终得到可以对分析物进行定性或定量检测的数据[2]。 生物传感器识别和检测待测物的工作原理:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。生物传感器的各个部分包括分析装置、仪器和系统也由此构成。生物传感器中的识别元素决定了传感器的特异性,是生物定性识别的决定因素;识别元素与待测分子的亲合力,以及换能器和检测仪表的精密度,在很大程度上决定了传感器的灵敏度和响应速度。

纳米技术在医学上的应用

纳米技术在医学上得应用 1、关键词:纳米技术医学 2、K eywords:nanotechnology medicine 3、I SI检索结果 表1-2每年得引文柱状图 从以上两个柱状图可以瞧出21世纪之前关于纳米技术在医学上得应用得研究儿乎为零,但就是一进入21世纪国内外关于纳米技术在医学上得应用逐年增加,每年得引文数更就是呈指数倍增长,在2013年更就是达到了最大出版量。虽然岀版数在2013年有所下降,但就是从总体上瞧来,2014年得相关研究数也会持 续升高。

3 从上表得数据可以瞧出,就算就是发表文献最多得研究者也只发表了12篇, 说明专攻纳米技术在医学上应用得人很少,都就是从事相关硏究得,说明此项LI 与其她项U比如说医学上得相关性很大。 4 从上表可以瞧出,关于纳米技术在医学上得应用得研究比较分散,因为取了前17个机构得数据,而其发表得文献数只占了总记录数得21、543%,而绝大部分得文献发表自大学机构,因为大学一般具有更好地设备,与充裕得资金。

INDIA 59 5、 230% SPAIN 49 4、344% SWITZERLAND 39 3、457% CANADA 36 S、191% JAPAN 33 2、936% AUSTRALIA 26 2、305% FRANCE 25 2、216% 总合1002 88、838% 1-5 从上表中可以瞧出,美国、中国与英国占总发表数得53、635%,其中美国就占了38、475%,说明美国研究纳米技术在医学上应用得水平站在世界得顶端,其次就就是中国,说明中国在这方面得研究也比较先进。从另一方面来说,纳米技术在医学上得应用将会被广泛得应用,我们得健康水平也能相应得提高。 4、合成路线 ①With tetrabutylammomium bromide, dihydrogen peroxide, bromine in water, Time= 8h, T=65°C, 92% ②With copper(1) iodide, potassium iodide, Time= 5h, T= 200°C , Inert atmosphere, Finkelstein reaction, 100%、 ③With potassium fluoride, Pd(3wt)/C in N, N-dimethyl-formamide, Time=7h, T=130°C, p= 1500> 15Torr, Inert atmosphere, Hiyama Coupling, 92%、 ?With hydrogen bromide, tri-n-butylhexadecylphosphonium bromide, Time二0、2h, T=115°C, 93%> &r P t Cr

光电化学传感器的研究进展_王光丽

中国科学B辑:化学 2009年 第39卷 第11期: 1336~1347 https://www.360docs.net/doc/3c17145104.html, https://www.360docs.net/doc/3c17145104.html, 1336 《中国科学》杂志社SCIENCE IN CHINA PRESS 光电化学传感器的研究进展 王光丽, 徐静娟, 陈洪渊* 生命分析化学教育部重点实验室, 南京大学化学化工学院, 南京210093 * 通讯作者, E-mail: hychen@https://www.360docs.net/doc/3c17145104.html, 收稿日期: 2009-08-11; 接受日期: 2009-09-03 摘要光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置. 光电化学检测方法灵敏度高、设备简单、易于微型化, 已经成为一种极具应用潜力的分析方法. 本文主要介绍光电化学传感器的基本原理、特点、分类, 并对有代表性的研究和发展前景做了总结和评述. 关键词光电化学传感器综述 1引言 光电化学过程是指分子、离子或半导体材料等因吸收光子而使电子受激发产生的电荷传递, 从而实现光能向电能的转化过程. 具有光电化学活性的物质受光激发后发生电荷分离或电荷传递过程, 从而形成光电压或者光电流. 具有光电转换性质的材料主要分为4类. (1)无机光电材料: 这类材料主要指无机化合物构成的半导体光电材料, 如Si、TiO2、CdS、CuInSe2等[1]. (2)有机光电材料: 常用的有机类光电材料主要是有机小分子光电材料和高分子聚合物材料. 小分子材料如卟啉类、酞菁类、偶氮类、叶绿素、噬菌调理素等[2~4]; 高分子聚合物材料主要有聚对苯撑乙烯(PPV)衍生物、聚噻吩(PT)衍生物等[5]. (3)复合材料: 复合材料主要是由有机光电材料或者配合物光电材料与无机光电材料复合形成, 也可以是两种禁带宽度不同的无机半导体材料复合形成的材料. 复合材料比单一材料具有更高的光电转换效率. 常见的复合材料体系有C dS-TiO2、ZnS- TiO2[1]、联吡啶钌类配合物-TiO2[6~9]等. 基于TiO2的复合材料是目前研究最多的一种, 也有用ZnO[10~12]、SnO2[13]、Nb2O5[14]、Al2O3[15]等其它宽禁带的半导体氧化物进行复合的. 后来, 利用金纳米粒子或者碳纳米结构的导电性, 人们发展了基于金纳米粒子或者碳纳米结构-半导体复合物以提高半导体光生电子的捕获和传输能力. 富勒烯/CdSe[16,17]、碳纳米管/CdS[18~21]、碳纳米管/ CdSe[22,23]、卟啉/富勒烯/金纳米粒子[24]、CdS/金纳米粒子[25]等体系具有较高的光电转换效率. 另外, 某些生物大分子如细胞、DNA等也具有光电化学活性, 可以通过它们自身的光电流变化研究生物分子及其它物质与它们的相互作用. 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系, 是传感器定量的基础. 以光电化学原理建立起来的这种分析方法, 其检测过程和电致化学发光正好相反, 用光信号作为激发源, 检测的是电化学信号. 和电化学发光的检测过程类似, 都是采用不同形式的激发和检测信号, 背景信号较低, 因此, 光电化学可能达到与电致化学发光相当的高灵敏度. 由于采用电化学检测, 同光学检测相比, 其设备价廉. 根据测量参数的不同, 光电化学传感器可分为电位型和电流型两种. 2光寻址电位型传感器 电位型光电化学传感器主要指光寻址电位传感器(light addressable potentiometric sensor , LAPS), 它

纳米技术医学运用前景

纳米技术医学运用前景 一、在诊断技术方面的应用 扫描探针显微镜,其探针可以沿样品表面逐点扫描,针尖能随样品的高低起伏作上下运动,用光学方法测量针尖的运动,就可以得到分子的图像。目前已经用于人体多种正常组织和细胞的超微形态学观察,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结 构改变,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具———光学相干层析术(OCT)已研制成功,OCT的分辨率可达纳米级,较CT 和核磁共振的精密度高出上千倍。它不会像X线、CT、磁共振那样杀 死活细胞。通过应用纳米技术,在DNA检测时,可免去传统的PCR扩增 步骤,快速、准确。美国NASAAmesCen-terforNanotechnology与中南 大学卫生部纳米生物技术重点实验室合作,将碳纳米管用于基因芯片, 可以在单位面积上连接更多的更高,样本需要量低于1000个NDA分子(传统DNA检测的样本需要量超过106个DNA分子);需要的样品量更少,可以免去传统的PCR扩增步骤;结果可靠,重复性好;操作简单,易实现 检测自动化。其基本原理是:连接在碳纳米管上的DNA探针通过杂交 捕获特异性的靶DNA或RNA,靶DNA或RNA中的尿嘧啶将电荷转到碳纳米管电极,电荷的转移通过金属离子媒介的氧化作用变成信号并放大。国外在80年代末开始着手研究超顺磁性氧化铁超微颗粒的研究,90年代把这种造影剂应用于临床。 其技术要点是:制备出高顺磁性氧化铁纳米颗粒,在其表面耦连肝癌 组织靶向性物质(如肝肿瘤特异性单克隆抗体、肝肿瘤细胞表面特异性受体的配体)制成特异性的MRI造影剂。我国科学家也成功开发了应用超顺磁氧化铁脂质体纳米粒进行肝癌诊断的技术,可以发现直径3mm以下的肝肿瘤,还能发现更小的肝转移癌病灶。目前不加造影剂的磁共振检查能发现直径1.0cm的肝癌病灶,因此该成果大大提升了肝癌早期诊断的敏感性。国家863资助课题“纳米复合包裹生物微系统制备、超 声造影和控制释药”,研制了纳米包膜微米微泡超声造影剂与包裹药物和气体的微球,造影后对比效果明显增强,有利于疾病的早期诊断和鉴

光化学传感器及其最新进展

文章编号:100525630(2004)0420057205 光化学传感器及其最新进展 Ξ 徐艳平,顾铮先,陈家璧 (上海理工大学光电功能薄膜实验室,上海200093) 摘要:从传感器材料、检测方法及传感器结构几方面,围绕光化学传感器的灵敏度、选 择性和稳定性展开讨论,总结了光化学传感器近年来的最新进展,并对其今后的发展方向 做出展望。 关键词:光化学传感器;光纤传感器;表面等离子体激元共振 中图分类号:T P 212.14 文献标识码:A Recen t develop m en ts of optica l che m ica l sen sors X U Y an 2p ing ,GU ZH eng 2x ian ,CH EN J ia 2bi (L abo rato ry of Pho to 2electric Functi onal F il m s ,U niversity of Shanghai fo r Science and Techno logy ,Shanghai 200093,China ) Abstract :T he state 2of 2the 2art of op tical chem ical sen so rs is stated in th is p ap er abou t sen so r m aterials ,detecti on m ethods and sen so r structu res .T he p rop erties of op tical chem ical sen so rs such as sen sitivity ,selectivity and stab ility are discu ssed .Fu tu re p ro sp ects of op tical chem ical sen so rs are discu ssed . Key words :op tical chem ical sen so rs ;fiber op tic sen so rs ;su rface p las m on resonance 1 引 言 光化学传感器是利用敏感层与被测物质相互作用前后物理、化学性质的改变而引起的传播光诸特性的变化检测物质的一类传感器[1]。光化学传感器与其它原理的传感器相比,具有安全性好、可远距离检测、分辨力高、工作温度低、耗用功率低、可连续实时监控、易转换成电信号等优点。随着光纤技术及光集成技术的迅猛发展,光化学传感器引起了人们的极大关注,并且已经广泛地应用于工业、环境、生物医学的检测中[2]。 现首先总结了无机材料(氧化物半导体)和有机材料的应用,并介绍了溶胶凝胶工艺制备光化学传感器敏感材料方面的最新进展以及生物敏感材料。其次介绍了光谱法、干涉法、表面等离子体激元共振(su rface p las m on resonance ,SPR )等传感器检测方法的最新进展。最后对今后光化学传感器的发展做出展望。 2 传感器材料 敏感材料作为光化学传感器的重要组成部分,将直接影响传感器的各种性能,如稳定性、选择性、灵敏度和响应时间。现在研究最多的是氧化物半导体、有机半导体材料、生物识别材料等。现将从无机材料、有 第26卷 第4期 2004年8月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .26,N o.4 A ugu st,2004 Ξ收稿日期:2003209211 基金项目:上海市曙光计划资助项目(02SG 01),上海市科技发展基金资助项目(01F 032) 作者简介:徐艳平(19772),男,山东烟台人,在读博士生,主要从事光电功能薄膜及其传感器、光电精密测量与工程方面的研究。

电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例 摘要:生物电化学传感器是生物传感器中研究最早、种类最多的一个分支, 它具有专一、高效、简便、快速的优点, 已应用于生物、医学及工业分析等方面。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 关键词:生物传感器,应用 引言 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。 最早的生物传感器发明于1962年,英国Clark[1]利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 1 工作原理及其分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。Rogers[2]等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。(2)根据生物传感器的信号转换器分类

生物传感器在医学上的应用

生物传感器在医学上的应用 [摘要]:生物传感器作为一项新兴的科学技术已应用于医学检验分析领域中, 是近来国际上医学检测技术的热点之一[1]。生物传感器具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等特点[2]。本文综述了生传感器的基本概念、基本原理、特点、分类,并对国内外近几年光学、电化学和压电3种生物传感器及其应用。 [关键词] 生物传感器医学应用发展前景 1、引言 传感器是一种可以获取并处理信息的特殊装置, 如人体的感觉器官就是一套完美的传感系统,通过眼、耳、皮肤来感知外界的光、声、温度、压力等物理信息, 通过鼻、舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器, 它以生物活性单元( 如酶、抗体、核酸、细胞等) 作为生物敏感单元, 对目标测物具有高度选择性的检测器。生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续监测, 特别是它的高度自动化、微型化与集成化的特点, 使其在近几十年获得蓬勃而迅速的发展。在国民经济的各个部门如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合, 正改变着传统医学、环境科学、动植物学的面貌。生物传感器的研究开发, 已成为世界科技发展的新热点, 形成21 世纪新兴的高技术产业的重要组成部分, 具有重要的战略意义[2]。 2、生物传感综述 2. 1 生物传感器的基本概念[3] 生物传感器是用固定化的生物活性材料( 酶、蛋白质、DN A、抗体、抗原、生物膜等) 与物理化学换能器有机结合的一门交叉学科, 是发展生物技术必不可少的一种先进的检测方法与监控方法, 也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构: 包括一种或数种相关生物活性材料( 生物膜) 及能把生物活性表达的信号转换为电信号的物理或化学换能器( 传感器) , 二者组合在一起, 用现代微电子和自动化仪表技术进行生物信号的再加工, 构成各种可以使用的生物传感器分析装置、仪器和系统。 2. 2 生物传感器的工作原理及特点[3]

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________ 院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号:20114209033 授课教师: 考试日期:2012 年 1 月10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电

酶生物传感器

酶生物传感器得应用进展 摘要:酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器。与传统分析方法相比,酶生物传感器具有独特得优点:选择性高、反复多次使用、响应快、体积小、可实现在线监测、成本低,便于推广普及。本文主要论述生物酶传感器得特征、发展及酶传感器中应用得新技术。 关键词:酶生物传感器;进展;应用新技术 1概述 生物传感器(Biosensor)就是一类特殊得化学传感器,通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间得反应,然后将反应得程度用离散或连续得信号表达出来,从而得出被测物得浓度[1]。自1962年Clark[2]等人提出把酶与电极结合来测定酶底物得设想后,1967年Updike与Hicks[3]研制出世界上第一支葡萄糖氧化酶电极[2],用于定量检测血清中葡萄糖含量、此后,酶生物传感器引起了各领域科学家得高度重视与广泛研究,得到了迅速发展、 酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器、与传统分析方法相比,酶生物传感辑就是由固定化得生物敏感膜与与之密切结合得换能系统组成,它把固化酶与电化学传感器结合在一起,因而

具有独特得优点:(1)它既有不溶性酶体系得优点,又具有电化学电极得高灵敏度;(2)由于酶得专属反应性,使其具有高得选择性,能够直接在复杂试样中进行测定、因此,酶生物传感器在生物传感器领域中占有非常重要得地位、生物传感器具有多样性、无试剂分析、操作简便、灵敏、快速、价廉、可重复连续使用等特点,已在食品发酵工业、临床医学、环境监测、军事科学等领域展现出十分广阔得应用前景[4-9]。 2酶生物传感器得基本结构 酶生物传感器得基本结构单元就是由物质识别元件(固定化酶膜)与信号转换器(基体电极)组成、当酶膜上发生酶促反应时,产生得电活性物质由基体电极对其响应、基体电极得作用就是使化学信号转变为电信号,从而加以检测,基体电极可采用碳质电极(石噩电板、玻碳电极、碳棚电极)、R电极及相应得修饰电极、 3酶生物传感器得分类 生物传感器按换能方式可分为电化学生物传感器与光化学生物传感器2种。 3、1电化学酶传感器 基于电子媒介体得葡萄糖传感器,具有响应速度快、灵敏度高、稳定性好、寿命长、抗干扰性能好等优点,尤为受到重视。二茂铁由于有不溶于水、氧化还原可逆性好、电子传递速率高等优点,得到了广泛得研究与应用。

纳米孔生物传感器研究 - 东南大学

东南大学 seminar课程简介 课程名称纳米孔生物传感器研究(Nanopore biosensor research) 任课教师刘全俊工作单位生医学院职称教授 Email 联系电话 任课教师教学科研简介: 任课教师自1999年研究生毕业后在东南大学生物科学与医学工程学院任教,同年进入分子与生物分子电子学教育部重点实验室(现生物电子学国家重点实验室)从事科研与教学工作。2004年、2005年分别赴香港中文大学与匈牙利科学院作短期访问研究,并于2010年赴美国斯坦福大学进行了为期一年的访问学者的研究工作。2008年获全国百篇优秀博士学位论文奖,2009年入选教育部“新世纪优秀人才计划”,江苏省高校“青蓝工程”中青年学术带头人,江苏省生物技术协会第六届理事。 作为项目负责人,近年来已经主持完成国家自然科学基金项目2项(60341002,60671019),国家863高技术项目2项(2003AA2Z2070,2012AA02A103),中匈政府科技合作项目1项(CHN26/2006),国际合作项目1项(2009DFA32750),江苏省科技攻关项目2项,南京市科技攻关项1项。目前在研国家自然科学基金项目1项(61071050),国家重大基础研究计划项目973子课题1项(2011CB707605-01)。发表论文30余篇,参与编写专著2部,参与翻译专著1部,申请专利二十余项.其中国际发明专利1项,已授权专利十余项。

主要研究方向为新一代基因测序、基因芯片、生物与化学传感器、单分子检测研究。近年集中在纳米孔生物传感器、纳米孔单分子检测器件、新型单分子检测系统的专项研究。已经建立完成了纳米孔基因测序系统测试平台,纳米孔加工技术及信号分析基础软件。 课程简介(含对学生基础的要求等,特别注明拟上课所在校区):本课程是一门研讨(Seminar)课程,主要是为对纳米孔生物传感器研究有兴趣的学生开设的参与讨论、表达自己观点的课程。它将提供适当的研究素材,组织修课学生就基于纳米孔生物传感器的单分子检测研究的热点问题,进行主动思考、探索或研究。 本课程的教学目标:着重培养学生科学的思维方法和研究方法,有效拓宽学生跨学科的知识面,培养学生根据所研讨的课题进行调研、查阅资料、提出解决问题的思想、方法和技术路线等的能力,同时通过研讨培养学生的表达和交流能力。 本课程面向全校学生,特别欢迎生物、医学学科以及对纳米孔传感器和单分子检测技术有兴趣的学生参加,班级规模为20人左右。拟在四牌楼校区上课。 教学设计方案: 本课程选取纳米孔生物传感器研究领域的前沿科学创新,介绍纳米孔测序技术的起源,阐明该技术发展过程中的优缺点,及其未来发展方向和函待解决的科学难题。 本课程的总学时为32学时(其中6学时为课堂讲授,10学时为课堂讨论,16学时为课外学时,用于学生准备课题讨论所做的查阅资料等自学活动)。

相关文档
最新文档