基于神经网络方法的字符识别方法

基于神经网络方法的字符识别方法
基于神经网络方法的字符识别方法

论文写作与规范

题目:基于神经网络方法的字符识别方法

学号: 210802102

专业:计算机系统结构

姓名:靳飞飞

2009 年 1 月 9日

基于神经网络方法的字符识别方法

靳飞飞

(中国海洋大学信息科学与工程学院, 山东青岛266071)

摘要:字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而字符识别的研究仍具有理论和实践意义。这里讨论的是用神经网络方法实现基于照相的数字图像的字符识别的问题。并且通过模板匹配的方法作为参照,以体现神经网络在处理模式识别问题上的优势。由于人工神经网络的非线性以及并行性和鲁棒性等特点,在上述领域,其取得了以往传统算法无法获得的成功。

关键词:神经网络;字符识别;图像处理

Character recognition based on neural network

Jin Feifei

(College of Information Science and Engineering,Ocean University of China,Qingdao 266071,China)

Abstract:Character recognition is a traditional problem in the field of pattern recognition, for it is rather an isolated task than a fundamental problem in most work of pattern recognition area, with which we have various methods to deal in terms of specific conditions. That means the pursuit of character recognition is of great significance both in theory and in practice .The goal of this paper is using neural network to recognize characters on digital image based on camera. It also can be seen, in the paper, the advantage of neural network compared with the template matching method. Because its nonlinearity, parallel and strong, in these fields mentioned above, artificial neural network has achieved the success which other traditional algorithms can not reach.

Key word: neural network, character recognition, image processing

1引言

字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,

而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而字符识别的研究仍具有理论和实践意义。

人工神经网络模式识别方法是近些年提出的新方法,为字符识别研究提供了一种新手段,它具有一些传统技术所没有的优点:良好的容错能力、分类能力强、并行处理能力和自学习能力。因而,采用神经网络识别方式是一种很好的选择。

参考文献:

[1] Q. Zang, et al. Object Classification and Tracking in Video Surveillance[C]. Canadian Association of Internet Providers, 2008.

[2] S.K. Zhou, et al. Visual Tracking and Recognition using Appearance-Adaptive Models in Particle Filters[J]. IP, 2008, 13(11):1491-1506

[3] C.O. Conaire, et al. Multi-spectral Object Segmentation and Retrieval in Surveillance Video[C]. IEEE International Conference on Image Processing, 2008.

[4] N. Dalal, et al. Human Detection Using Oriented Histograms of Flow and Appearance[C]. European Conference on Computer Vision, 2008.

[5] Y. Freund, et al. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 2008, 55(1): 119-139.

[6] J. Friedman, et al. Additive logistic regression: a statistical view of boosting[R]. Dept. of Statistics, Stanford Univ. Technical Report, 2008.

[7] I. Haritaoglu, et al. W4: Real-Time Surveillance of People and Their Activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 22(8): 809-830.

[8] A. Lipton. Local Application of Optic Flow to Analyses Rigid versus Non-Rigid Motion[R]. ICCV Workshop on Frame-Rate Vision, 2008.

[9] K. Murphy, et al. Graphical model for recognizing scenes and objects[C]. Neural Information Processing Systems Conference, 2008.

[10] V. Vapnik. Statistical Learning Theory[C]. Wiley Inter-science, New York, 2008.

[11] A. Torralba, et al. Sharing visual features for multi-class and multi-view object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 29(5): 854-869.

[12] Z. Tu. Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering[C]. IEEE International Conference on Computer Vision, 2008.

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

BP神经网络算法步骤

B P神经网络算法步骤 SANY GROUP system office room 【SANYUA16H-

传统的BP 算法简述 BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi ,rt 。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 (3)计算新的连接权及阀值,计算公式如下: (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计 算精度值 和最大学习次数M 。 第二步,随机选取第k 个输入样本及对应期望输出 ()12()(),(),,()q k d k d k d k =o d ()12()(),(),,()n k x k x k x k =x 第三步,计算隐含层各神经元的输入和输出 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ 第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ 第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。 第八步,计算全局误差211 1(()())2q m o o k o E d k y k m ===-∑∑ ε

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

基于某某BP神经网络地手写数字识别实验报告材料

基于BP神经网络的手写体数字图像识别 PT1700105 宁崇宇 PT1700106 陈玉磊 PT1700104 安传旭 摘要 在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。 本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课题掌握了用神经网络处理实际问题的方法,为今后将深度学习与自身领域相结合打下了基础。

1 引言 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难的工作,然而,一些人类通过直觉可以很快解决的问题,却很难通过计算机解决,这些问题包括自然语言处理、图像识别、语音识别等等,它们就是人工智能需要解决的问题。 计算机要想人类一样完成更多的智能工作,就需要掌握关于这个世界的海量知识,很多早期的人工智能系统只能成功应用于相对特定的环境,在这些特定环

境下,计算机需要了解的知识很容易被严格完整地定义。 为了使计算机更多地掌握开放环境下的知识,研究人员进行了很多的尝试。其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。 卡内基梅隆大学的Tom Michael Mitchell教授在1997年出版的书籍中将机器学习定义为“如果一个程序可以在任务T上,随着经验E的增加,效果P 也可以随之增加,则称这个程序可以从经验中学习”。逻辑提取算法可以从训练数据中计算出每个特征和预测结果的相关度,在大部分情况下,在训练数据达到一定数量之前,越多的训练数据可以使逻辑回归算法的判断越精确,但是逻辑回归算法有可能无法从数据中学习到好的特征表达,这也是很多传统机器学习算法的共同问题。 对机器学习问题来说,特征提取不是一件简单的事情。在一些复杂问题上,要通过人工的方式设计有效的特征集合,需要很多的时间和精力,甚至需要整个领域数十年的研究投入。既然人工无法很好地抽取实体中的特征,那么是否有自动的方式呢?深度学习解决的核心问题就是自动地将简单的特征组合成更加复杂的特征,并使用这些特征解决问题。 因为深度学习的通用性,深度学习的研究者往往可以跨越多个研究方向,甚至同时活跃于数个研究方向。虽然深度学习受到了大脑工作原理的启发,但现代深度学习研究的发展并不拘泥于模拟人脑神经元和人脑的工作原理,各种广泛应用的机器学习框架也不是由神经网络启发而来的。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MNIST是一个非常有名的手写体数字识别数据集,被广泛用作机器学习的入门样例,它包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片代表了0~9中的一个数字,图片的大小为28x28,且数字会出现在图片的正中间。本文以该数据集为例,基于Matlab来分析BP神经网络的性能。 2 运行环境 本设计在Windows 10 下进行设计、主要利用Matlab工具环境,进行模拟演示。

神经网络分析应用

基于动态BP神经网络的预测方法及其应用来源:中国论文下载中心 [ 08-05-05 15:35:00 ] 作者:朱海燕朱晓莲黄頔编辑:studa0714 摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字神经网络,BP模型,预测 1 引言 在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

基于神经网络方法的字符识别方法

论文写作与规范 题目:基于神经网络方法的字符识别方法 学号: 210802102 专业:计算机系统结构 姓名:靳飞飞 2009 年 1 月 9日

基于神经网络方法的字符识别方法 靳飞飞 (中国海洋大学信息科学与工程学院, 山东青岛266071) 摘要:字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而字符识别的研究仍具有理论和实践意义。这里讨论的是用神经网络方法实现基于照相的数字图像的字符识别的问题。并且通过模板匹配的方法作为参照,以体现神经网络在处理模式识别问题上的优势。由于人工神经网络的非线性以及并行性和鲁棒性等特点,在上述领域,其取得了以往传统算法无法获得的成功。 关键词:神经网络;字符识别;图像处理 Character recognition based on neural network Jin Feifei (College of Information Science and Engineering,Ocean University of China,Qingdao 266071,China) Abstract:Character recognition is a traditional problem in the field of pattern recognition, for it is rather an isolated task than a fundamental problem in most work of pattern recognition area, with which we have various methods to deal in terms of specific conditions. That means the pursuit of character recognition is of great significance both in theory and in practice .The goal of this paper is using neural network to recognize characters on digital image based on camera. It also can be seen, in the paper, the advantage of neural network compared with the template matching method. Because its nonlinearity, parallel and strong, in these fields mentioned above, artificial neural network has achieved the success which other traditional algorithms can not reach. Key word: neural network, character recognition, image processing 1引言 字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

神经网络分析法

神经网络分析法是从神经心理学和认知科学研究成果出发,应用数学方法发展起来的一种具有高度并行计算能力、自学能力和容错能力的处理方法。 神经网络技术在模式识别与分类、识别滤波、自动控制、预测等方面已展示了其非凡的优越性。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构由一个输入层、若干个中间隐含层和一个输出层组成。神经网络分析法通过不断学习,能够从未知模式的大量的复杂数据中发现其规律。神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,毋需分清存在何种非线性关系,给建模与分析带来极大的方便。 编辑本段神经网络分析法在风险评估的运用 神经网络分析方法应用于信用风险评估的优点在于其无严格的假设限制,且具有处理非线性问题的能力。它能有效解决非正态分布、非线性的信用评估问题,其结果介于0与1之间,在信用风险的衡量下,即为违约概率。神经网络法的最大缺点是其工作的随机性较强。因为要得到一个较好的神经网络结构,需要人为地去调试,非常耗费人力与时间,因此使该模型的应用受到了限制。Altman、marco和varetto(1994)在对意大利公司财务危机预测中应用了神经网络分析法;coats及fant(1993)trippi 采用神经网络分析法分别对美国公司和银行财务危机进行预测,取得较好效果。然而,要得到一个较好的神经网络结构,需要人为随机调试,需要耗费大量人力和时间,加之该方法结论没有统计理论基础,解释性不强,所以应用受到很大限制。 编辑本段神经网络分析法在财务中的运用 神经网络分析法用于企业财务状况研究时,一方面利用其映射能力,另一方面主要利用其泛化能力,即在经过一定数量的带噪声的样本的训练之后,网络可以抽取样本所隐含的特征关系,并对新情况下的数据进行内插和外推以推断其属性。 神经网络分析法对财务危机进行预测虽然神经网络的理论可追溯到上个世纪40年代,但在信用风险分析中的应用还是始于上个世纪90年代。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构是由一个输入层、若干个中间隐含层和输出层组成。国外研究者如Altman,Marco和Varetto(1995),对意大利公司财务危机预测中应用了神经网络分析法。Coats,Pant(1993)采用神经网络分析法

基于MATLAB的字符识别研究

基于MATLAB的字符识别研究 汽车牌照识别程序的设计 摘要:本次课程设计的目的是通过对基于MATLAB的字符识别的研究,以汽车牌照识别的设计为实例,详细介绍字符识别的相关原理。整个汽车牌照识别的过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。在研究的同时对其中出现的问题进行了具体分析,处理。寻找出对于具体的汽车牌照识别过程的最好的方法。 关键词:MATLAB 字符识别车牌识别神经网络图像处理 引言 在MATLAB的字符识别研究中,汽车牌照的识别是最经典的样例,因为车辆牌照识别系统(License Plate Recognition System,简称LPRS)是建设智能交通系统不可或缺的部分。基于 MATLAB 图像处理的汽车牌照识别系统是通过引入数字摄像技术和计算机信息管理技术,采用先进的图像处理模式识别和人工智能技术,通过对图像的采集和处理,获得更多的信息,从而达到更高的智能化管理程度。车牌识别系统整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,用 MATLAB软件编程来实现每一个部分处理工程,最后识别出汽车牌照。 一、MATLAB及其图像处理工具概述 MATLAB 是 MATrix LABoratory (矩阵实验室)的缩写,是 Math Works 公司开发的一种功能强效率高简单易学的数学软件。MATLAB 的图像处理工具箱,功能十分强大,支持的图像文件格式丰富,如 *.BMP、*.JPG、 *.JPEG、 *.GIF、 *.TIF 、*.TIFF、 *.PNG 、*.PCX、*.XWD、 *.HDF、*.ICO 、*.CUR 等。MATLAB 7.X 提供了20 多类的图像处理函数,几乎涵盖了图像处理的所有技术方法,是学习和研究图像处理的人员难得的宝贵资料和加工工具箱。这些函数按其功能可分为:图像显示、图像文件 I/O、图像算术运算、几何变换、图像登记、像素值与统计图像分析、图像增强、线性滤波、线性二元滤波设计、图像去模糊、图像变换、邻域与块处理、灰度与二值图像的形态学运算、基于边缘的处理、色彩映射表操作色彩空间变换图像类型与类型转换。MATLAB 还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。本文将给出 MATLAB 的图像处理工具箱中的图像处理函数实现图像处理与分析的应用技术实例。 二、基于 MATLAB图像处理的汽车牌照识别系统 1.系统组成 基于 MATLAB图像处理的汽车牌照识别系统主要包括车牌定位字符车牌分割和车牌字符识别三个关键环节其识别流程图如图 1所示。 图1 识别流程图

一种基于多模板匹配的字符识别方法

一种基于多模板匹配的字符识别方法 李 婧,龚晓峰,王瑞辉 (四川大学 电气信息学院 成都 610065) 摘要:本文在对字符进行各种预处理,包括倾斜校正,归一化,分割的基础上,依据字符的高度,宽度范围,提出了一种基于多模板匹配的字符识别方法,并将该算法运用于仿宋_GB2312字体,识别率达到98%以上,有效的提高了识别正确率,简单易实现。 关键词:倾斜校正;字符分割;多模板匹配 中图分类号:TP391.41 文献标识码:A A recognition method of characters based on Multi-Template Matching LI Jing, GONG Xiao-feng, Wang Rui-hui (College of Electrical Information, Sichuan University, Chengdu 610065, China) Abstract: This paper first do pretreatment such as skew correction, normalization, segmentation of characters, etc. Then it presented a new muti-template matching method according to the range of the character’s width and height. At last, the experiment used in the FangSong_GB2312 font show that this method can improve recognition accuracy and is easy to put into practice. Keywords: skew correction; character segmentation; multi-template matching 0 引言 字符识别是图像处理和模式识别领域中的研究课题之一,它涉及模式识别、图像处理、人工智能、中文信息处理等学科,是一门综合性技术,在中文信息处理、办公室自动化、人工智能、车牌识别、交通管理等高技术领域都有着重要的实用价值和理论意义[1]。目前字符识别主要有以下几种方法:1)利用字符的统计特征进行特征提取,2)基于字符结构分析的识别方法,3)利用字符的结构特征和变换进行特征提取,4)基于模板匹配的方法进行字符识别,5)近年来又出现了基于神经网络的算法和基于矩和小波变换的识别算法。但由于同一字体的字符有各种字号的差异,单一的运用上述某一种方法的效果都不理想[2]。为了提高识别率,本文从识别率较高的模板匹配法入手,对单模板匹配和特征模板进行改进,提出了一种根据字符高度,宽度值为每个字聚类多个模板,最后采用海明距离实现多模板的匹配。通过将该算法运用于仿宋_GB2312字体,发现这一方法能有效解决相似度高的字符的正确识别问题,有一定的实用价值。 1 识别系统总体方案 字符识别系统一般包括字符预处理,字符分割,字符识别三个环节,系统框图如图1所示。

基于神经网络的手写数字识别系统的设计与实现

中南大学 本科生毕业论文(设计) 题目基于神经网络的手写数字 识别系统的设计与实现

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第一章绪论 (1) 1.1手写体数字识别研究的发展及研究现状 (1) 1.2神经网络在手写体数字识别中的应用 (2) 1.3 论文结构简介 (3) 第二章手写体数字识别 (4) 2.1手写体数字识别的一般方法及难点 (4) 2.2 图像预处理概述 (5) 2.3 图像预处理的处理步骤 (5) 2.3.1 图像的平滑去噪 (5) 2.3.2 二值话处理 (6) 2.3.3 归一化 (7) 2.3.4 细化 (8) 2.4 小结 (9) 第三章特征提取 (10) 3.1 特征提取的概述 (10) 3.2 统计特征 (10) 3.3 结构特征 (11) 3.3.1 结构特征提取 (11) 3.3.2 笔划特征的提取 (11) 3.3.3 数字的特征向量说明 (12) 3.3 知识库的建立 (12) 第四章神经网络在数字识别中的应用 (14) 4.1 神经网络简介及其工作原理 (14) 4.1.1神经网络概述[14] (14) 4.1.2神经网络的工作原理 (14) 4.2神经网络的学习与训练[15] (15) 4.3 BP神经网络 (16) 4.3.1 BP算法 (16) 4.3.2 BP网络的一般学习算法 (16)

4.3.3 BP网络的设计 (18) 4.4 BP学习算法的局限性与对策 (20) 4.5 对BP算法的改进 (21) 第五章系统的实现与结果分析 (23) 5.1 软件开发平台 (23) 5.1.1 MATLAB简介 (23) 5.1.2 MATLAB的特点 (23) 5.1.3 使用MATLAB的优势 (23) 5.2 系统设计思路 (24) 5.3 系统流程图 (24) 5.4 MATLAB程序设计 (24) 5.5 实验数据及结果分析 (26) 结论 (27) 参考文献 (28) 致谢 (30) 附录 (31)

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

字符识别方法归纳

字符识别 一、理论 1.结构模式识别:根据字符结构特征进行识别,可用来识别汉字,但抗干扰能力差。可用来识别少量和简单的字符,如数字。 2.统计模式识别:其要点是提取待识别模式的的一组统计特征,然后按照一定准则所确定的决策函数进行分类判决。 常见的统计模式识别方法有: (1) 模板匹配。模板匹配并不需要特征提取过程。字符的图象直接作为特征,与字典中的模板相比,相似度最高的模板类即为识别结果。这种方法简单易行,可以并行处理;但是一个模板只能识别同样大小、同种字体的字符,对于倾斜、笔划变粗变细均无良好的适应能力。 (2)利用变换特征的方法。对字符图象进行二进制变换(如Walsh, Hardama变换)或更复杂的变换(如Karhunen-Loeve, Fourier,Cosine,Slant变换等),变换后的特征的维数大大降低。但是这些变换不是旋转不变的,因此对于倾斜变形的字符的识别会有较大的偏差。二进制变换的计算虽然简单,但变换后的特征没有明显的物理意义。K-L变换虽然从最小均方误差角度来说是最佳的,但是运算量太大,难以实用。总之,变换特征的运算复杂度较高。 (3)投影直方图法。利用字符图象在水平及垂直方向的投影作为特征。该方法对倾斜旋转非常敏感,细分能力差。 (4)几何矩(Geometric Moment)特征。M. K. Hu提出利用矩不变量

作为特征的想法,引起了研究矩的热潮。研究人员又确定了数十个移不变、比例不变的矩。我们都希望找到稳定可靠的、对各种干扰适应能力很强的特征,在几何矩方面的研究正反映了这一愿望。以上所涉及到的几何矩均在线性变换下保持不变。但在实际环境中,很难保证线性变换这一前提条件。 (5)Spline曲线近似与傅立叶描绘子(Fourier Descriptor)。两种方法都是针对字符图象轮廓的。Spline曲线近似是在轮廓上找到曲率大的折点,利用Spline曲线来近似相邻折点之间的轮廓线。而傅立叶描绘子则是利用傅立叶函数模拟封闭的轮廓线,将傅立叶函数的各个系数作为特征的。前者对于旋转很敏感。后者对于轮廓线不封闭的字符图象不适用,因此很难用于笔划断裂的字符的识别。 (6)笔划密度特征。笔划密度的描述有许多种,这里采用如下定义:字符图象某一特定范围的笔划密度是在该范围内,以固定扫描次数沿水平、垂直或对角线方向扫描时的穿透次数。这种特征描述了汉字的各部分笔划的疏密程度,提供了比较完整的信息。在图象质量可以保证的情况下,这种特征相当稳定。在脱机手写体的识别中也经常用到这种特征。但是在字符内部笔划粘连时误差较大。 (7)外围特征。汉字的轮廓包含了丰富的特征,即使在字符内部笔划粘连的情况下,轮廓部分的信息也还是比较完整的。这种特征非常适合于作为粗分类的特征。 (8)基于微结构特征的方法。这种方法的出发点在于,汉字是由笔划组成的,而笔划是由一定方向,一定位置关系与长宽比的矩形段组

基于MATLAB的字符识别研究

function Bayes2 %算法视线见《模式识别》P33-P44(各类样本的协方差不相等) %为了提高实验样本测试的精度,故采用多次模拟求平均值的方法 N=input('实验模拟次数 N(N最好为奇数)= '); Result(1:3,1:3)=0; %判别矩阵的初始化 for k=1:N %控制程序模拟次数N %生成二维正态分布的样本2 X N 维的矩阵 X1=mvnrnd([1 2],[4 0;0 6],300)'; %2 X N X2=mvnrnd([5 3],[5 0;0 1],200)'; X3=mvnrnd([4 7],[2 0;0 9],500)'; %样本程序 %---------------------------------------------------% %测试样本 X10=mvnrnd([1 2],[4 0;0 6],100)'; %2 X N X20=mvnrnd([5 3],[5 0;0 1],100)'; X30=mvnrnd([4 7],[2 0;0 9],100)'; %先验概率 P(1)=length(X1)/(length(X1)+length(X2)+length(X3)); P(2)=length(X2)/(length(X1)+length(X2)+length(X3)); P(3)=length(X3)/(length(X1)+length(X2)+length(X3)); %计算相关量 cov(X):协方差矩阵 Ave:均值 %--------------------------------------------------------% W1=-1/2*inv(cov(X1')); W2=-1/2*inv(cov(X2')); W3=-1/2*inv(cov(X3'));% Ave1=(sum(X1')/length(X1))';Ave2=(sum(X2')/length(X2))'; Ave3=(sum(X3')/length(X3))';%计算平均值(2维列向量) w1=inv(cov(X1'))*Ave1;w2=inv(cov(X2'))*Ave2;w3=inv(cov(X3'))*Ave3;%2 w10=-1/2*Ave1'*inv(cov(X1'))*Ave1-1/2*log(det(cov(X1')))+log(P(1)); w20=-1/2*Ave2'*inv(cov(X2'))*Ave2-1/2*log(det(cov(X2')))+log(P(2)); w30=-1/2*Ave3'*inv(cov(X3'))*Ave3-1/2*log(det(cov(X3')))+log(P(3)); %-----------------------------------------------------------% for i=1:3 for j=1:100 if i==1 g1=X10(:,j)'*W1*X10(:,j)+w1'*X10(:,j)+w10; g2=X10(:,j)'*W2*X10(:,j)+w2'*X10(:,j)+w20; g3=X10(:,j)'*W3*X10(:,j)+w3'*X10(:,j)+w30; if g1>=g2&g1>=g3

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/3c1883275.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

(完整版)bp神经网络算法.doc

BP 神经网络算法 三层 BP 神经网络如图: 目标输出向量 传递函数 g 输出层,输出向量 权值为 w jk 传递函数 f 隐含层,隐含层 输出向量 输 入 层 , 输 入 向量 设网络的输入模式为 x (x 1 , x 2 ,...x n )T ,隐含层有 h 个单元,隐含层的输出为 y ( y 1 , y 2 ,...y h )T ,输出 层有 m 个单元,他们的输出为 z (z 1 , z 2 ,...z m )T ,目标输出为 t (t 1 ,t 2 ,..., t m )T 设隐含层到输出层的传 递函数为 f ,输出层的传递函数为 g n n 于是: y j f ( w ij x i ) f ( w ij x i ) :隐含层第 j 个神经元的输出;其中 w 0 j , x 0 1 i 1 i 0 h z k g( w jk y j ) :输出层第 k 个神经元的输出 j 此时网络输出与目标输出的误差为 1 m (t k z k ) 2 ,显然,它是 w ij 和 w jk 的函数。 2 k 1 下面的步骤就是想办法调整权值,使 减小。 由高等数学的知识知道:负梯度方向是函数值减小最快的方向 因此,可以设定一个步长 ,每次沿负梯度方向调整 个单位,即每次权值的调整为: w pq w pq , 在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。

BP 神经网络(反向传播)的调整顺序为:1)先调整隐含层到输出层的权值 h 设 v k为输出层第k个神经元的输入v k w jk y j j 0 ------- 复合函数偏导公式 1 g'(u k ) e v k 1 (1 1 ) z k (1 z k ) 若取 g ( x) f (x) 1 e x,则(1e v k) 2 1e v k 1e v k 于是隐含层到输出层的权值调整迭代公式为:2)从输入层到隐含层的权值调整迭代公式为: n 其中 u j为隐含层第j个神经元的输入: u j w ij x i i 0 注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即涉及所有的权值w ij,因此 y j m (t k z k )2 z k u k m y j k 0 z k u k y j (t k z k ) f '(u k )w jk k 0 于是: 因此从输入层到隐含层的权值调整迭代为公式为: 例: 下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的 2010 和 2011 年的数据,预测相应的公路客运量和货运量。 人数 ( 单位:机动车数公路面积 ( 单公路客运量公路货运量 时间( 单位:万位:万平方公( 单位:万( 单位:万万人 ) 辆 ) 里) 人 ) 吨 ) 1990 20.55 0.6 0.09 5126 1237 1991 22.44 0.75 0.11 6217 1379 1992 25.37 0.85 0.11 7730 1385 1993 27.13 0.9 0.14 9145 1399 1994 29.45 1.05 0.2 10460 1663 1995 30.1 1.35 0.23 11387 1714 1996 30.96 1.45 0.23 12353 1834 1997 34.06 1.6 0.32 15750 4322 1998 36.42 1.7 0.32 18304 8132 1999 38.09 1.85 0.34 19836 8936 2000 39.13 2.15 0.36 21024 11099 2001 39.99 2.2 0.36 19490 11203 2002 41.93 2.25 0.38 20433 10524 2003 44.59 2.35 0.49 22598 11115 2004 47.3 2.5 0.56 25107 13320 2005 52.89 2.6 0.59 33442 16762 2006 55.73 2.7 0.59 36836 18673

相关文档
最新文档