理论力学谢传锋第九章习题解答

理论力学谢传锋第九章习题解答
理论力学谢传锋第九章习题解答

第九章部分习题解答

9-2

解:取整个系统为研究对象,不考虑摩擦,该系统具有理想约束。作用在系统上的主动力为重力

g M g M 21,。如图(a )所示,假设重物2M 的加速度

2a 的方向竖直向下,则重物1M 的加速度1a 竖直向上,两个重物惯性力I2I1,F F 为

11I1a M F = 22I2a M F =

(a )

该系统有一个自由度,假设重物2M 有一向下的虚位移

2x δ,则重物1M 的虚位移1x δ竖直向上。由动力学普遍

方程有 (a )

02I21I12211=--+-=x F x F x g M x g M W δδδδδ (b )

根据运动学关系可知

212

1

x x δδ=

212

1a a =

(c )

将(a)式、(c)式代入(b)式可得,对于任意02≠x δ有

21

21

22m/s 8.2424=+-=

g M M M M a (b )

方向竖直向下。

取重物2M 为研究对象,受力如图(b )所示,由牛顿第二定律有

222a M T g M =-

解得绳子的拉力N 1.56=T 。本题也可以用动能定理,动静法,拉格朗日方程求解。 9-4

解:如图所示该系统为保守系统,有一个自由度,取θ为广义坐标。系统的动能为

2])[(2

1

θθ R l m T +=

取圆柱轴线O 所在的水平面为零势面,图示瞬时系统的势能为

]cos )(sin [θθθR l R mg V +-=

M 1g

M 2g

F I2

F I1

δx 2

δx 1

M 2g

T a 2

拉格朗日函数V T L -=,代入拉格朗日方程

0)(=??-??θ

θL L dt d 整理得摆的运动微分方程为

0sin )(2=+++θθθ

θg R R l 。

9-6

解:如图所示,该系统为保守系统,有一个自由度,取弧坐标s 为广义坐标。系统的动能为

22

1S m T =

取轨线最低点O 所在的水平面为零势面,图示瞬时系统的势能为

mgh V =

由题可知b s

ds dh 4sin ==?,因此有b s d b s h S

o

8s 42==?。则拉格朗日函数

2

2821s b

mg s m V T L -=-= 代入拉格朗日方程

0)(=??-??s L s L dt d ,整理得摆的运动微分方程为04=+s b

g

s 。解得质点的运动规律为)21sin(

0?+=t b

g

A s ,其中0,?A 为积分常数。

9-13

解:1.求质点的运动微分方程

圆环(质量不计)以匀角速度ω绕铅垂轴AB 转动,该系统有一个自由度,取角度θ为广义坐标。系统的动能为

22)sin (2

1

)(21θωθr m r m T +=

如图所示,取0=θ为零势位,图示瞬时系统的势能为

零势面

h

)cos 1(θ-=mgr V

则拉格朗日函数

)cos 1()sin (2

1222

2θθωθ--+=

-=mgr mr V T L 代入拉格朗日方程0)(=??-??θ

θL L dt d ,整理得质点的运动微分方程为

0sin )cos (2=-+θθωθ

r

g 2.求维持圆环作匀速转动的力偶M

如果求力偶M ,必须考虑圆环绕铅垂轴AB 的一般转动。因此解除“圆环绕铅垂轴AB 匀速ω转动”这一约束,将力偶M 视为主动力。此时系统有两个自由度,取角度θ和圆环绕

轴AB 的转角?为广义坐标,系统的势能不变,动能表达式中以?

代替ω,则拉格朗日函数为

)cos 1()sin (2

1222

2θθ?

θ--+=

-=mgr mr V T L 力偶M 为非有势力,它对应于广义坐标θ和?的广义力计算如下:取0,0=≠δ?δθ,在这组虚位移下力偶M 所做的虚功为0][=δθδW ,因此力偶M 对应于广义坐标θ的广义力0=M

Q θ;取0,0≠=δ?δθ,在这组虚位移下力偶M 所做的虚功为δ?δδ??=M W ][,

因此力偶M 对应于广义坐标?的广义力M W Q M

==

δ?

δδ?

?][。

代入拉格朗日方程

0)(==??-??M Q L L dt d θθ

θ ,整理可得 0sin =+θθr

g 代入拉格朗日方程

M Q L L dt d M

==??-?????

)( ,整理可得 M mr mr =+θ?θ?

θ 2sin sin 222 圆环绕铅垂轴AB 以匀速ω转动,即0,==?ω?

,代入上式可得θθ

ω2sin 2

mr M =。 零势位

9-14

解: 以刚体为研究对象,有一个自由度。如图(a )所示,取G O 3和OC 的夹角θ为广义坐标。若以框架OC O O 21为动系,则刚体的相对运动是以角速度θ 绕轴21O O 的定轴转动,牵连运动是以角速度ω绕OC 轴的定轴转动,绝对角速度a ω是θ 和ω的矢量和。以21O O 为

x '轴,G O 3为y '轴,建立一个固连在刚体上的坐标系,该刚体的角速度a ω可表示成

a ωz j i '-'+'=θωθωsin cos θ

(a )

(b )

由于坐标系z y x O '''3的三个坐标轴为过3O 点的三个惯量主轴,则系统的动能为

])sin ()cos ([2

1

232221θωθωθJ J J T ++=

取0=θ为零势位,图示瞬时系统的势能为)cos 1(θ-=mgl V ,则拉格朗日函数

)cos 1(])sin ()cos ([2

1232221θθωθωθ--++=-=mgl J J J V T L 代入拉格朗日方程

0)(=??-??θ

θL L dt d ,整理可得物体的运动微分方程为 θθθωθsin cos sin )(3

221mgl J J J -=-+

9-15

x ’ z ’

y ’

ω

θ

垂直于O 1O 2的平面

解:框架(质量不计)以匀角速度ω绕铅垂边转动,系统有一个自由度,取AB 杆与铅垂边的夹角θ为广义坐标。若以框架为动系,AB 杆上任意一点的速度是该点相对于框架的相对速度和随框架运动的牵连速度的矢量和,且相对速度和牵连速度相互垂直, 因此杆AB 的动能可表示为相对于框架运动的动能和随框架转动的动能之和。如图所示,AB 杆相对于框架作平面运动,“速度瞬心”为O 点,设AB 杆的质心为C ,由几何关系可知l BC OC AC ===,

则质心为C 的速度大小为θ l v C =。杆AB 相对于框架运动的动能 22222C 13

2])2(121[2121θθ

ml l m mv T =+= 杆AB 随框架转动的动能

θωθω2222022sin 3

2)sin (221ml x dx l m T l ==?

系统的动能21T T T +=。

假设0

90=θ时杆势能为零,则任意位置系统的势能为θcos mgl V =。则拉格朗日函数

θθωθcos )sin (3

2222

2mgl ml V T L -+=

-= 代入拉格朗日方程

0)(=??-??θ

θL L dt d ,整理得系统的运动微分方程 0sin 3cos sin 442=--θθθωθ

g l l 由于角θ描述的是杆AB 相对于框架的位置变化,因此上式也就是杆的相对运动微分方程。

9-17

解:取楔块A ,B 构成的系统为研究对象,该系统有二个自由度,取楔块A 水平滑动的位移

x ,

以及楔块B 相对于A 滑动的位移s 为广义坐标。若以楔块A 为动系,则楔块A 的速度A v ,楔块B 的速度B v ,以及B 相对于A 的相对速度满足如下的矢量关系(方向如图所示)

Br A B v v v +=

系统的动能为

C

O

])sin ()cos [(222121222212

B B 2A A ??s s x g P x

g P v m v m T +++=+= 222

2

2121cos 1)(21s P g

s x P g x P P g +++=

? 取过x 轴的水平为零势面,某瞬时系统的势能为?sin 2s P V =。则拉格朗日函数

??sin 21cos 1)(212222

2

21s P s P g

s x P g x P P g V T L -+++=

-= 水平力F 对应于广义坐标x 和s 的广义力计算如下:取0,0=≠s x δδ,在这组虚位移下力F 所做的虚功为x F W x δδδ=][,因此力F 对应于广义坐标x 的广义力F Q F

x =;取

0,0≠=s x δδ,在这组虚位移下力F 所做的虚功为s F W s ?δδδcos ][=,因此力F 对应于

广义坐标s 的广义力?cos F Q F

s =。 代入拉格朗日方程

F Q x

L x L dt d F x ==??-??)( ,整理可得 Fg s P

x P P =++ ?cos )(221 (a )

代入拉格朗日方程

?cos )(F Q s

L s L dt d F s ==??-?? ,整理可得 g P F s

P x P )sin cos (cos 222???-=+ (b )

由方程(a )、(b )解得 楔块A 的加速度:

???

?sin sin cos sin 2

2

12A g P P P F x

a ++== ,方向水平向右。 楔块B 的相对加速度:g P P P P P P FP s a )

sin (sin )(cos 2

2122211Br ???++-==

,方向沿斜面向上。

9-18

解:取楔块ABC 和圆柱构成的系统为研究对象,该系统为保守系统,有二个自由度,取楔块水平滑动的位移x ,以及圆柱的转角?(A 点?=0)为广义坐标。若以楔块为动系,则楔块的速度A v ,圆柱轴心O 的速度o v ,以及轴心O 相对A 的相对速度满足如下的矢量关系

(方向如图所示)

Or A O v v v +=

圆柱在斜面上作纯滚动有:r v ?

=O r 。系统的动能为

2212

O 12A )2

1(212121?

r m v m mv T ++= 22122124

1

])sin ()cos [(2121?θ?θ? r m r r x m x

m ++-+=

2211214

3

cos )(21??θ r m x r m x

m m +-+= 取过楔块上A 点的水平面为零势面,图示瞬时系统的势能为

θ?sin 1r g m V -=

则拉格朗日函数

θ???θsin 43

cos )(211221121r g m r m x r m x

m m V T L ++-+=

-= 代入拉格朗日方程

0)(=??-??x

L x L dt d ,整理可得 0cos )(11=?-+?θ r m x

m m (a )

代入拉格朗日方程

0)(=??-????

L L dt d ,整理可得 θθ?sin 2cos 23g x

r =- (b )

求解方程(a )、(b )得

楔块的加速度: g m m m m x a θ

θ

2

111cos 2)(32sin -+==

,方向水平向左。 圆柱的角加速度:g r

m m m m m ]cos 2)(3[sin )(22

111θθ

?

α-++== ,顺时针方向。

9-21

解:以三个重物和滑轮构成的系统为研究对象,该系统为保守系统,有二个自由度(如图所

x

φ

A

v Or v

零势面

示)。设重物1M 的坐标为1x ,重物2M 相对于滑轮B 的轮心的位置为2x 。系统的动能为

22132212211)(2

1

)(2121x x m x x m x m T ++-+=

21232

23221321)()(2

1)(21x x

m m x m m x m m m -+++++= 设021==x x 时系统的势能为零,则任意位置系统的势能为

)()(21312211x x g m x x g m gx m V ++---= 2321321)()(gx m m gx m m m --++-=

拉格朗日函数

21232

23221321)()(2

1)(21x x

m m x m m x m m m V T L -+++++=

-= 2321321)()(gx m m gx m m m -+--+

代入拉格朗日方程

0)(1

1=??-??x L x L dt d ,整理可得 0)()()(3212321321=-----++g m m m x

m m x m m m

(a )

代入拉格朗日方程

0)(2

2=??-??x L x L dt d ,整理可得 0)()()(32132232=----+g m m x

m m x m m

(b )

由方程(a )、(b )解得重物1M 的加速度

g m m m m m m m m m m x

a 3

23213

2321114)(4)(++-+== ,

初始时刻系统静止,若使1M 下降则01>a ,即:3

23

214m m m m m +>。

9-22

解:取整个系统为研究对象,该系统有二个自由度,取平台的水平坐标x ,以及物体M 相对于平台的坐标s (弹簧原长为坐标原点)为广义坐标。系统的动能为

x 1

x 2

22

21)(22s x g

P x g P T ++=

22222121

1)(21s

P g

s x P g x P P g +++=

设初始时刻势能为零,则任意时刻系统的势能为

22

1ks V =

则拉格朗日函数

22222212

1

211)(21ks s

P g s x P g x P P g V T L -+++=

-= 水平力F 对应于广义坐标x 和s 的广义力计算如下:取0,0=≠s x δδ,在这组虚位移下力F 所做的虚功为x F W x δδδ=][,因此力F 对应于广义坐标x 的广义力F Q F

x =;取

0,0≠=s x δδ,在这组虚位移下力F 所做的虚功为0][=s W δδ,因此力F 对应于广义坐标s 的广义力0=F s Q 。

代入拉格朗日方程

F Q x

L

x L dt d F x ==??-??)( ,整理可得 Fg s

P x P P =++ 221)( (a ) 代入拉格朗日方程0)(==??-

??F s Q s

L

s L dt d ,整理可得 022=++kgs s P x P

(b ) 由方程(a ))可得: s

P P P P P Fg

x

)

()(21221+-+= (c )

代入方程(b )得: Fg P kgs P P s P P 22121)(-=++

(d )

解微分方程(d )得:)(cos )(212212P P k F P pt P P k F P s +-+=

,其中,:2

1212)(P P kg P P p +=。求

导得:pt P Fg

s cos 1

=

,代入方程(c )可得 x

平台的加速度: )cos 1(1

2211pt P P g P P F

x a ++==

,方向水平向右;

物体M 的加速度:)cos 1(2

12pt g P P F

s x a -+=+=

,方向水平向右。

9-27

解:取整个系统为研究对象,该系统有二个自由度,取滑块的水平坐标x ,以及杆AB 与铅垂方向的夹角?为广义坐标。如图所示,系统的动能为

2B 22A 12121v m v m T +=

])sin ()cos [(2

1

2122221????l l x m x

m +++=

22222212

1

cos )(21??? l m x l m x

m m +++= 设0=?时势能为零,图示瞬时系统的势能为 )cos 1(2?-=gl m V 。拉格朗日函数

)cos 1(2

1

cos )(2122222221????--+++=-=gl m l m x l m x

m m V T L 拉格朗日函数中不显含广义坐标x 和时间t ,存在循环积分和广义能量积分,即

=++=??=????cos )(221 l m x

m m x T

x

L 常数

=-++++=+)cos 1(2

1

cos )(2122222221????gl m l m x l m x

m m V T 常数

9-28

解:取整个系统为研究对象,该系统有二个自由度,取滑块B 沿斜面的坐标s ,以及杆OD 与铅垂方向的夹角?为广义坐标。如图所示,杆OD 作平面运动,有

CB B C v v v +=

则系统的动能为

A v

BA v

2

B 22212

C 121)121(2121v m l m v m T ++=?

222212212

1

241}]2)cos([)]sin({[21s m l m l s s m ++-+++=

??α?α? 22112216

1

)cos(21)(21?α?? l m s l m s

m m ++-+= 设0

90,0==?s 时势能为零,某时刻系统的势能为

2

2112

1

sin )(cos 2?α?k gs m m l g m V ++-=拉格朗日函数V T L -=中不显含时间t ,存在

广义能量积分,即

=+V T 常数。

9-29

解:以圆柱和圆筒构成的系统为研究对象,该系统有二个自由度,取?θ,为广义坐标。系统的动能为

222O1220)2

1(212121ωθmr mv R m T ++= 其中:?

)(O1r R v -=。圆柱相对于圆筒作纯滚动,由圆柱轴心1O 以及圆柱上与圆筒相接触的点的速度关系,可得:])[(1θ?

ω R r R r

--=

,代入动能表达式有 ?θ?

θ R r R m r R m R m m T )(2

1

)(43)2(4122220---++=

设0=?为零势位,图示瞬时系统的势能为:)cos 1)((?--=r R mg V 。拉格朗日函数

)cos 1)(()(2

1)(43)2(4122220??θ?θ------++=

-=r R mg R r R m r R m R m m V T L 拉格朗日函数中不显含广义坐标θ和时间t ,存在循环积分和广义能量积分,即

B

v

CB v C

φ

α

=---=??=??])[(2

120θ?θθθ R r R mR R m T L 常数 =--+-+--+=

+)cos 1)(()(2

1])[(4121222220??θ?θ

r R mg r R m R r R m R m V T 常数

理论力学习题答案

精选文档 第一章 静力学公理和物体的受力分析 一、是非判断题 1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。 ( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。 ( ∨ ) 1.1.5 两点受力的构件都是二力杆。 ( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 1.1.7 力的平行四边形法则只适用于刚体。 ( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。 ( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。 ( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。 ( × ) 1.1.11 合力总是比分力大。 ( × ) 1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。 ( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 ( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。 ( × ) 1.1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。 ( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。 ( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。 ( × ) 1.1.18 如图1.1所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。 ( × ) 二、填空题 1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。 1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。 1.2.3 如图1.2所示三铰拱架中,若将作用于构件AC 上的力偶M 搬移到构件BC 上,则A 、B 、C 各处的约束力 C 。 图1.2

理论力学习题

班级姓名学号 第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

f(杆AC、CD、整体 )e(杆AC、CB、整体) 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

班级 姓名 学号 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

理论力学练习题-基础题

理论力学练习 一、填空题 1、理论力学是研究物体______一般规律的科学,包括静力学、_____和_____。静力学主要研究物体______和物体在外力作用下的_________。2、平衡是指物体相对地球处于______或作______运运。 3、力是物体间的相互______,这种作用使物体的_____和____发生变化。4、力是矢量,具有_____和______。矢量的长度(按一定比例)表示力的_____,箭头的指向表示力的______,线段的起点或终点表示力的_____。 通过作用点,沿着力的方向引出的直线称为力的____。 5、只受两个力作用并处于_______的物体称______,当构件呈杆状时则称_______。 6、限制物体自由运动的_______称为约束。 7、物体所受的力分为主动力、____两类。重力属_____ 8、光滑面约束不能限制物体沿约束表面______的位移,只能阻碍物体沿接触面法线并向_______的位移。 9、确定约束反力的原则:(1)约束反力的作用点就是约束与被约束物体的_______或______;(2)约束反力的方向与该约束阻碍的运动趋势方向 ______;(3)约束反力的大小可采用______来计算确定。 10、作用在物体上的_____称力系。如果力系中的__________都在___内,且 ____________,则称平面汇交力系。人们常用几何法、_____研究平面汇交力系的合成和平衡问题。 11、任意改变力和作图次序,可得到______的力多边形,但合力的______ 仍不变,应注意在联接力多边形的封闭边时,应从第一个力的_______指向最后一个力的______。 12、共线力系的力多边形都在____上。取某一指向力为正,___指向力为负, 则合力的____等于各力代数和的______,代数和的___表示合力的_____。 13、平面汇交力系平衡的必要与充分几何条件是:该力系的___是______的。 14、平面汇交力系平衡的解析条件:力系中各力在两直角坐标上_______分 别等于______。其表达式为_______和________。 15、合力投影定理是指合力在任一坐标轴上的投影等于_____在同一轴上投 影的________。 16、为求解平面汇交力系平衡问题,一般可按下面解题步骤: (1)选择______;(2)进行_____分析;(3)选取合适的______计算各力的投 影;(4)列____,解出未知量。若求出某未知力值为负,则表明该力的_____与受力图中画出的指向______,并须在____中说明。 17、力F使刚体绕某点O的转动效应,不仅与F的____成正比,而且与O至力作 用线的____成正比。为此,力学上用乘积F·d加上适当的_____,称为_____,简称力矩。O点称为_____,简称矩心。矩心O到F作用线的_____称为力臂。 18、力矩的平衡条件:各力对转动中心O点的____的_____等于零,用公式表 示Σmo(F)=________。

理论力学第九章习题

9-1.塔式起重机的水平悬臂以匀角速度 =0.1rad/s 绕铅垂轴OO i 转动,同时跑 车A 带着重物B 沿悬臂按x=20-0.5t 的规律运动,单位为米、秒,且悬挂 钢索AB 始终保持铅垂。求当t=10s 时重物B 的绝对速度。 解:动 点:A ;动系:起重机 运动分析:牵连运动:定轴转动; 相对运动:直线运动; 绝对运动:曲线运动; V r dx dt 0.5m / s V e X Q e 当t=10s 时 V e (20 0.5 10) 0.1 1.5m/ s V a V 2 V r 、0.5)2 1.52 1.58m/s 9-2.图示曲柄滑道机构中,曲柄长 OA=r ,它以匀角速度 绕O 轴转动。装在水 平上的滑槽DE 与水平线成60。角。求当曲柄与水平线的交角分别为 =0、 30°、60°时,杆BC 的速度。 解:动 点:A ;动系: ABC 运动分析:牵连运动:平动; 相对运动:直线运动; 绝对运动:圆周运动;

当=30° 时, V e 0 当=60 °时,V e 詐 9-3.图示曲柄滑道机构中,杆BC 为水平,而杆DE 保持铅垂。曲柄长OA=10cm , 以匀角速度=20rad/s 绕O 轴转动,通过滑块A 使杆BC 作往复运动。求当 曲柄与水平线的交角分别为 =0、30°、90°时,杆BC 的速度。 解:动 点:A ;动系:BDC 运动分析:牵连运动:平动; 相对运动:直线运动; 绝对运动:圆周运动; V a r ? 200cm / s V V sin ? 当=0°时, V e 0 ; 当=30° 时, V e 100cm/s ; 9-4.矿砂从传送带A 落到另一传送带B 的绝对速度为v i =4m/s ,其方向与铅垂 线成30°角。设 传送带B 与水平面成15°角,其速度V 2=2m/s 求此时矿砂对 于传送带B 相对速度;又问当传送带B 的速度为多大时,矿砂的相对速度 由正弦定理得: V a V e sin120 sin ? 30 V r sin 90 ? 当=0°时, V e V e V a sin ? 30 sin120 当=90。时, v e 200cm /s C

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

理论力学习题解答第九章

9-1在图示系统中,均质杆OA 、AB 与均质轮的质量均为m ,OA 杆的长度为1l ,AB 杆的长度为2l ,轮的半径为R ,轮沿水平面作纯滚动。在图示瞬时,OA 杆的角速度为ω,求整个系统的动量。 ω12 5 ml ,方向水平向左 题9-1图 题9-2图 9-2 如图所示,均质圆盘半径为R ,质量为m ,不计质量的细杆长l ,绕轴O 转动,角速度为ω,求下列三种情况下圆盘对固定轴的动量矩: (a )圆盘固结于杆; (b )圆盘绕A 轴转动,相对于杆OA 的角速度为ω-; (c )圆盘绕A 轴转动,相对于杆OA 的角速度为ω。 (a )ω)l R (m L O 22 2 +=;(b )ω2ml L O =;(c )ω)l R (m L O 22+= 9-3水平圆盘可绕铅直轴z 转动,如图所示,其对z 轴的转动惯量为z J 。一质量为m 的质点,在圆盘上作匀速圆周运动,质点的速度为0v ,圆的半径为r ,圆心到盘中心的距离为l 。开始运动时,质点在位置0M ,圆盘角速度为零。求圆盘角速度ω与角?间的关系,轴承摩擦不计。

9-4如图所示,质量为m 的滑块A ,可以在水平光滑槽中运动,具有刚性系数为k 的弹簧一端与滑块相连接,另一端固定。杆AB 长度为l ,质量忽略不计,A 端与滑块A 铰接,B 端装有质量1m ,在铅直平面内可绕点A 旋转。设在力偶M 作用下转动角速度ω为常数。求滑块A 的运动微分方程。 t l m m m x m m k x ωωsin 21 11+=++

9-5质量为m,半径为R的均质圆盘,置于质量为M的平板上,沿平板加一常力F。设平板与地面间摩擦系数为f,平板与圆盘间的接触是足够粗糙的,求圆盘中心A点的加速度。

理论力学试题和答案

2010 ~2011 学年度第 二 学期 《 理论力学 》试卷(A 卷) 一、填空题(每小题 4 分,共 28 分) 1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。 2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,A B ∥CD 。则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。 E 1.1 1.2 3、如图1.3所示,已知杆OA L ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A 的相对速度v r =( );科氏加速度a C =( )。 4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作

纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。则杆AB 的动能T AB =( ),轮B 的动能T B =( )。 1.3 1.4 5、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。 6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。   A B 1.5 7、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为( )(要求保留作图过程)。

理论力学课后习题答案分析

第五章 Lt 习题5-2.重为G的物体放在倾角为a的斜面上,摩擦系数为 所需拉力T的最小值是多少,这时的角9多大? 解:(1)研究重物,受力分析(支承面约束用全反力R表 示), (2)由力三角形得 sin(a +甲」gin[(90J - a + (a + 6)] 千曲")& 皿0 -

??0=甲聽=arctgf T=Gsin(tt +(pJ

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m勺力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1)研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2)由力三角形得: R广护血(4亍-趴)& =0co昭5—忙) (3)列平衡方程: Vm o (F) = 0: - M+K血礼x/*+&$in化xr = O 由⑵、(3)得: M=FT[sin(45tf -(p H) + cos(45J -(p fl)]xrx sin(p w =JP>sin(p… x2sin45L,cos(p K 化35° (4)求摩擦系数: Wr =04243

习题5-7. 尖劈顶重装置如图所示,尖劈 A 的顶角为a ,在B块上受重物Q的作用, A、B块间的摩擦系数为f (其他有滚珠处表示光滑);求:(1)顶起重 物所需力P之值;(2)取支力P后能保证自锁的顶角a之值。 解:(1)研究整体,受力分析,画受力图: 列平衡方程 审":-S+JV X=O ■^ = Q 由力三角形得 P 二JV 勰(a+w)二伽(d +v)^?r(ff+) 1 (2)研究尖 劈

理论力学题库第二章

理论力学题库——第二章 一、 填空题 1. 对于一个有n 个质点构成的质点系,质量分别为123,,,...,...i n m m m m m ,位置矢量分别 为123,,,...,...i n r r r r r ,则质心C 的位矢为 。 2. 质点系动量守恒的条件是 。 3. 质点系机械能守恒的条件是 。 4. 质点系动量矩守恒的条件是 。 5. 质点组 对 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 6. 质心运动定理的表达式是 。 7. 平面汇交力系平衡的充分必要条件是合力为零。 8. 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 9. 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 10. 质点组动能的微分的数学表达式为: ∑∑∑===?+?==n i i i i n i i e i n i i i r d F r d F v m d dT 1 )(1)(12 )21( , 表述为质点组动能的微分等于 力和 外 力所作的 元功 之和。 11. 质点组动能等于 质心 动能与各质点对 质心 动能之和。 12. 柯尼希定理的数学表达式为: ∑='+=n i i i C r m r m T 1 2221 ,表述为质点组动能等于 质心 动能与各质点对 质心 动能之和。 13. 2-6.质点组质心动能的微分等于 、外 力在 质心系 系中的元功之和。 14. 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 15. 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 16. 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 17. 设木块的质量为m 2 , 被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为m 1的子弹以速率v 1 沿水平方向射入木块,子弹与木块将一起摆至高度为 h 处,则此子弹射入木块前的速率为: 2 /11 2 11)2(gh m m m += v 。 18. 位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值 。(或

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学课后习题答案 第9章 动量矩定理及其应用)

O ω R r A B θ 习题9-2图 习题20-3图 Ox F Oy F g m D d α 习题20-3解图 第9章 动量矩定理及其应用 9-1 计算下列情形下系统的动量矩。 1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。 2. 图示质量为m 的偏心轮在水平面上作平面运动。轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。 解:1、2 s m L O ω=(逆) 2、(1) )1()(R e mv e v m mv p A A C +=+==ω(逆) R v me J R e R mv J e R mv L A A A C C B )()()(22 -++=++=ω (2))(e v m mv p A C ω+== ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++= 9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。 解: ω)(22r m R m J L B A O O ++= 9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。不计铰链摩擦。 解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6 5 65== =l OD d 刚体作定轴转动,初瞬时ω=0 l mg l mg J O ?+?=22α 222232)2(212 1 31ml ml l m ml J O =+??+= 即mgl ml 2 532=α 2rad/s 17.865==g l α g l a D 36 256 5t =?=α 由质心运动定理: Oy D F mg a m -=?33t 4491211 362533==-=mg g m mg F Oy N (↑) 0=ω,0n =D a , 0=Ox F (a) O M v ω ω A B C R v A (b) 习题9-1图

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

理论力学习题

第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

精选文库 -- - 2 - )e (杆AC 、CB 、整体 )f (杆AC 、CD 、整体 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a (球A 、球B 、整体 )b (杆BC 、杆AC 、整体

精选文库 -- - 3 - 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

理论力学课后习题第二章解答

理论力学课后习题第二章解答 2.1 解 均匀扇形薄片,取对称轴为轴,由对称性可知质心一定在轴上。 有质心公式 设均匀扇形薄片密度为,任意取一小面元, 又因为 所以 对于半圆片的质心,即代入,有 2.2 解 建立如图2.2.1图所示的球坐标系 x x 题2.1.1图 ? ?=dm xdm x c ρdS dr rd dS dm θρρ==θcos r x =θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?? ????2 π θ= πππ θθa a a x c 342 2sin 32sin 32=?==

把球帽看成垂直于轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为。 则 由对称性可知,此球帽的质心一定在轴上。 代入质心计算公式,即 2.3 解 建立如题2. 3.1图所示的直角坐标,原来与共同作一个斜抛运动。 当达到最高点人把物体水皮抛出后,人的速度改变,设为,此人即以 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离 题2.2.1图 z ρ)(222z a dz y dv dm -===ρπρπρz )2()(432 b a b a dm zdm z c ++-==? ?人 W y 题2.3.1图 x v x v αcos v 0=水平v 1s

① ② ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 可知道 水平距离 跳的距离增加了 = 2.4解 建立如图2.4.1图所示的水平坐标。 以,为系统研究,水平方向上系统不受外力,动量守恒,有 ① 对分析;因为 ② 在劈上下滑,以为参照物,则受到一个惯性力(方向与加速度方向相反)。如图2.4.2图所示。所以相对下滑。由牛顿第二定律有 t a v s ?=cos 01gt v =αsin 0ααcos sin 20 1g v s =)(cos )(0u v w Wv v w W x x -+=+αu w W w a v v x ++ =cos 0αααsin )(cos sin 0202uv g W w w g v t v s x ++==12s s s -=?αsin )(0uv g w W w + 题2.4.1图 θ题2.4.2图 1m 2m 02211=+x m x m 1m 相对绝a a a +=1m 2m 2m 1m 21x m F -=惯2m 1m 2m

(完整word版)理论力学 期末考试试题(题库 带答案)

理论力学 期末考试试题 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用 力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

理论力学谢传锋第九章习题解答

第九章部分习题解答 9-2 解:取整个系统为研究对象,不考虑摩擦,该系统具有理想约束。作用在系统上的主动力为重力 g M g M 21,。如图(a )所示,假设重物2M 的加速度 2a 的方向竖直向下,则重物1M 的加速度1a 竖直向上,两个重物惯性力I2I1,F F 为 11I1a M F = 22I2a M F = (a ) 该系统有一个自由度,假设重物2M 有一向下的虚位移 2x δ,则重物1M 的虚位移1x δ竖直向上。由动力学普遍 方程有 (a ) 02I21I12211=--+-=x F x F x g M x g M W δδδδδ (b ) 根据运动学关系可知 212 1 x x δδ= 212 1a a = (c ) 将(a)式、(c)式代入(b)式可得,对于任意02≠x δ有 21 21 22m/s 8.2424=+-= g M M M M a (b ) 方向竖直向下。 取重物2M 为研究对象,受力如图(b )所示,由牛顿第二定律有 222a M T g M =- 解得绳子的拉力N 1.56=T 。本题也可以用动能定理,动静法,拉格朗日方程求解。 9-4 解:如图所示该系统为保守系统,有一个自由度,取θ为广义坐标。系统的动能为 2])[(2 1 θθ R l m T += 取圆柱轴线O 所在的水平面为零势面,图示瞬时系统的势能为 ]cos )(sin [θθθR l R mg V +-= M 1g M 2g F I2 F I1 δx 2 δx 1 M 2g T a 2

拉格朗日函数V T L -=,代入拉格朗日方程 0)(=??-??θ θL L dt d 整理得摆的运动微分方程为 0sin )(2=+++θθθ θg R R l 。 9-6 解:如图所示,该系统为保守系统,有一个自由度,取弧坐标s 为广义坐标。系统的动能为 22 1S m T = 取轨线最低点O 所在的水平面为零势面,图示瞬时系统的势能为 mgh V = 由题可知b s ds dh 4sin ==?,因此有b s d b s h S o 8s 42==?。则拉格朗日函数 2 2821s b mg s m V T L -=-= 代入拉格朗日方程 0)(=??-??s L s L dt d ,整理得摆的运动微分方程为04=+s b g s 。解得质点的运动规律为)21sin( 0?+=t b g A s ,其中0,?A 为积分常数。 9-13 解:1.求质点的运动微分方程 圆环(质量不计)以匀角速度ω绕铅垂轴AB 转动,该系统有一个自由度,取角度θ为广义坐标。系统的动能为 22)sin (2 1 )(21θωθr m r m T += 如图所示,取0=θ为零势位,图示瞬时系统的势能为 零势面 h

理论力学题库第4章

理论力学题库——第四章 一、填空题 1.科里奥利加速度(“是”或“不是”)由科里奥利力产生的,二 者方向(“相同”或“不相同”)。 2.平面转动参考系中某一点对静止参考系的加速度的表达式 是,其中是相对加速度,是牵 连加速度,是科里奥利加速度。 4-1.非惯性系中,运动物体要受到 4种惯性力的作用它们是:惯性力、惯性切 向力、惯性离轴力、科里奥利力。 4-2.在北半球,科里奥利力使运动的物体向右偏移,而南半球,科里奥利力使 运动的物体向左偏移。(填“左”或“右”) 4-3.产生科里奥利加速度的条件是:物体有相对速度υ'及参照系转动,有角速度ω,且υ'与ω不平行。 4-4.科里奥利加速度是由参考系的转动和物体的相对运动相互影响产生的。 4-5.物体在主动力、约束力和惯性力的作用下在动系中保持平衡,称为相对平衡。4-6.重力加速度随纬度增加的主要原因是:地球自转产生的惯性离轴力与地心引力有抵消作用。 4-7.由于科里奥利力的原因北半球气旋(旋风)一般是逆时针旋转的.(顺时针或逆时针) 4-8.地球的自转效应,在北半球会使球摆在水平面内顺时针转动.(顺时针或逆时针) 二、选择题 1.关于平面转动参考系和平动参考系,正确的是() A.平面转动参考系是非惯性系; B.牛顿定律都不成立; C.牛顿定律都成立; D.平动参考系中质点也受科里奥利力。

2. 下列关于非惯性系的说法中正确的是: 【C 】 A 惯性离心力与物体的质量无关; B 科里奥利力与物体的相对运动无关; C 科里奥利力是参考系的转动与物体相对与参考系的运动引起的; D 科里奥利力使地球上南半球河流右岸冲刷比左岸严重。 3. 科里奥利力的产生与下列哪个因素无关? 【B 】 A 参照系的转动; B 参照系的平动; C 物体的平动; D 物体的转动。 4. 在非惯性系中如果要克服科里奥利力的产生,需要: 【D 】 A 物体作匀速直线运动; B 物体作匀速定点转动; C 物体作匀速定轴转动; D 物体静止不动。 5. A 、B 两点相对于地球作任意曲线运动,若要研究A 点相对于B 点的运动,则A (A) 可以选固结在B 点上的作平移运动的坐标系为动系; (B) 只能选固结在B 点上的作转动的坐标系为动系; (C) 必须选固结在A 点上的作平移运动的坐标系为动系; (D) 可以选固结在A 点上的作转动的坐标系为动系。 6..点的合成运动中D (A) 牵连运动是指动点相对动参考系的运动; (B) 相对运动是指动参考系相对于定参考系的运动; (C) 牵连速度和牵连加速度是指动参考系对定参考系的速度和加速度; (D) 牵连速度和牵连加速度是该瞬时动系上与动点重合的点的速度和加速度。 7. dt v d a e e =和dt v d a r r =两式A (A) 只有当牵连运动为平移时成立; (B) 只有当牵连运动为转动时成立; (C) 无论牵连运动为平移或转动时都成立; (D) 无论牵连运动为平移或转动时都不成立。 8.点的速度合成定理D (A) 只适用于牵连运动为平移的情况下才成立; (B) 只适用于牵连运动为转动的情况下才成立; (C) 不适用于牵连运动为转动的情况; (D) 适用于牵连运动为任意运动的情况。

理论力学试题一

理论力学试题一 一、 单项选择题(将正确答案的序号填在括号内。每小题2分,共16分) 1.两个力的合力的大小与其任一分力大小的关系是( )。 A.合力一定大于分力 B.合力一定小于分力 C.二者相等 D.不能确定 2.在研究点的合成运动时,( )称为牵连运动。 A.动点相对动系的运动 B.动点相对定系的运动 C.牵连点相对定系的运动 D.动系相对定系的运动 3.一个弹簧质量系统,在线性恢复力作用下自由振动,今欲改变其频率,则( )。 A.可改变质量或弹簧刚度 B.可改变初始条件 C.必须同时改变物体质量和初始条件 D.必须同时改变弹簧刚度和初始条件 4.若两共点力??F F 12,大小不等,方向相反,则其合力的矢量为( )。 A.??F F 12- B.??F F 21- C.??F F 12+ D.F 1-F 2 5.点作平面曲线运动,若其速度大小不变,则其速度矢量与加速度矢量( )。 A.平行 B.垂直 C.夹角为45° D.夹角随时变化 6.定轴转动刚体上任一点的加速度的大小可用该点的转动半径R 及ω、α表示( )。 A.a =ωR B.a =ω2R C.a =αR D.a =R 24αω+ 7.弹簧常数为k 的弹簧下挂一质量为m 的重物,若物体从静平衡位置(设静伸长为δ)下降△距离,则弹性力所作的功为( )。 A. 2k △2 B.2k (δ+△)2 C. 2k [(δ+△)2-δ2] D.2 k [δ2-(δ+△)2] 8.求解质点动力学问题时,初始条件是用来( )。 A.分析力的变化规律 B.建立质点运动微分方程 C.确定积分常数 D.分离积分变量 1 v 2v

理论力学题库第二章

理论力学题库——第二章 一、填空题 1.对于一个有"个质点构成的质点系,质量分别为加],加2,加3,…叫,…加",位置矢量分别 为,“,£,?",???—,则质心c的位矢为_______________ 。 2.质点系动量守恒的条件是______________________________ 。 3.质点系机械能守恒的条件是__________________________ , 4.质点系动量矩守恒的条件是___________________________________ o 5.质点组_______ 对______ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 & 质心运动定理的表达式是______________________________ 0 7.平面汇交力系平衡的充分必要条件是合力为零。 8.各质点对质心角动量对时间的微商等于外力对质心的力矩之和。 9.质点组的角动量等于质心角动量与各质点对质心角动量之和。 10.质点组动能的澈分的数学表达式为:£耳"?心+£戸件叭 2 t.i /-I /-I 表述为质点组动能的微分等于_力和力所作的元功之和。 11.质点组动能等于质心动能与各质点对质心动能之和。 12.柯尼希定理的数学表达式为:丁=丄〃呢2+£性十2 ,表述为质点组动能等于质心 2 /.I 动能与各质点对质心动能之和。 13.2-6?质点组质心动能的微分等于、外力在质心系系中的元功之和。 14.包含运动电荷的系统,作用力与反作用力不--定在同一条直线上。 15.太阳、行星绕质心作圆锥曲线的运动可看成质量为折合质量的行星受太阳(不动)的引力的运 动。 16.两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。 17.设木块的质呈为nh ,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如果有一质 量为叫的子弹以速率v,沿水平方向射入木块,子弹与木块将一起摆至高度为 久=佟上竺(2g〃严 h处,则此子弹射入木块前的速率为:E___________ 。 18.位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值。(或 沧士护T ) 二、选择题

理论力学课后习题答案

《理论力学》课后答案 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是:

向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。 习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核:

结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

相关文档
最新文档