S9-400/10.5/0.4变压器电磁计算本科论文

S9-400/10.5/0.4变压器电磁计算本科论文
S9-400/10.5/0.4变压器电磁计算本科论文

S9-400/10.5/0.4变压器电磁计算

摘要

电力变压器是一种静止的电气设备,电力变压器是电力网中的主要电气设备。其设计和制造的好坏是直接影响其运行质量和经济效益的关键所在,因此电力变压器的电磁计算就显得尤为重要。电磁计算的任务在于确定变压器的电、磁负载和主要几何尺寸,计算性能数据和各部分的温升以及计算变压器的重量、外型尺寸和取得比较合理的技术经济效果。计算结果必须满足国家标准及有关技术标准的规定和使用部门的要求。

本文对400kV A/10.5kV/0.4电力变压器进行了电磁计算。首先对电力变压器的发展历史、基本的特性及变压器的设计方法进行了简单的阐述。在电磁计算中,最开始是铁心的选择,这是变压器设计的起点也是一个关键点,然后是变压器绕组材料和型式的选择,绕组有关数据的计算,最为关键的是短路阻抗、负载损耗、空载电流、空载损耗等变压器性能参数的计算,最后完成变压器油箱、变压器温升、短路电动力、变压器总油量和总质量的确定与计算。其中的短路阻抗计算困难最大,需要经过反复计算才能达到技术要求。在电磁计算的全过程中较为详细的阐明了电力变压器计算的基本公式和计算方法,给出了一套完整的设计方案。

关键词:电力变压器;电磁计算;绕组;短路电动力

S9-400/10.5 /0.4/of Electromagnetic Power

Transformer Design

Abstract

Power transformer is a kind of static electrical equipment in power network, it is the main electric equipment. The design and manufacturing quality is directly affecting the operation quality and the economic benefit is the key, so the electromagnetic calculation of power transformer is very important. Electromagnetic computing task is to identify transformer electric, magnetic load and main dimensions, computing performance data and the various parts of the temperature rise and the calculation of transformer weight, dimensions and obtain reasonable technical and economic effect. The calculation results must meet the national standards and the relevant technical standards and the use of department. The 400KVA/10.5KV/0.4KV power transformer electromagnetic computation. The power transformer development history, basic characteristic and design method of simple exposition. In the electromagnetic calculation, most beginning is core selection, which is the starting point of transformer design is also a key point, and then is transformer winding material and type selection, calculation of winding of relevant data, the most important is the short circuit impedance, load loss, no load current, no load loss of transformer performance parameters are calculated, finally finished oil tank of transformer, transformer temperature rise, power transformer short circuit, the total oil volume and total quality determination and calculation. The calculation of short circuit impedance difficulty the biggest requires repeated calculation can reach the technical requirements. In the electromagnetic calculation of whole process detailed expounds the power transformer basic calculation formula and method, given a complete set of design scheme. Power transformer; electromagnetic computing; winding short-circuit force;

Keywords Power transformer; Electromagnetic calculation;

Short-circuit force

目录

摘要...................................................................................................................... I Abstract ............................................................................................................... II

第1章绪论 (6)

1.1 课题背景 (6)

1.2 电力变压器的发展及研究现状 (6)

1.3 电力变压器的基本结构 (7)

1.4 电力变压器的性能参数 (9)

1.5 变压器计算的一般程序 (9)

1.6 本论文研究内容 (10)

第2章变压器电磁计算 (11)

2.1 本设计的技术条件 (11)

2.2 变压器设计 (11)

2.2.1 变压器主要结构的确定 (11)

2.2.2 硅钢片的选用 (11)

2.2.3 铁心直径的确定 (11)

2.2.4 铁心截面积确定 (12)

2.2.5 铁心碟片系数确定与级数的选取 (12)

2.2.6 变压器主纵绝缘 (12)

2.3 电磁计算 (13)

2.3.1 额定电压和额定电流的计算 (13)

2.3.2 绕组匝数计算 (13)

2.3.3 绕组计算 (15)

2.3.4 绝缘半径及导线长度计算 (16)

2.3.5 75℃时绕组直流电阻计算 (17)

2.3.6 绕组导线质量计算 (17)

2.3.7短路阻抗计算 (18)

2.3.8 负载损耗的计算 (19)

2.3.9 绕组表面对油的温升计算 (23)

2.4 油箱尺寸计算 (25)

2.4.1 油箱尺寸估计 (25)

2.4.2 箱壁散热面积计算 (26)

2.4.3 散热器的选择 (26)

2.5 短路电动力计算 (28)

2.5.1 绕组区域划分 (28)

2.5.2 安匝分布计算 (29)

2.5.3 漏磁计算 (29)

2.5.4 短路电流稳定值倍数计算 (30)

2.5.5 不平衡安匝漏磁组所产生的总轴向力计算 (30)

2.5.6 绕组导线应力计算 (30)

2.5.7 总油量计算 (32)

2.5.8 变压器箱体质量计算 (33)

2.5.9 附件质量计算 (33)

2.5.10 变压器总质量计算 (34)

2.6 本章小结 (34)

结论 (35)

致谢...................................................................................... 错误!未定义书签。参考文献 (36)

附录 (37)

第1章绪论

1.1课题背景

随着我国“节能降耗”政策的不断深入,国家鼓励发展节能型、低噪音、智能化的配电变压器产品。目前在网运行的部分高能耗配电变压器已不符合行业发展趋势,面临着技术升级、更新换代的需求,未来将逐步被节能、节材、环保、低噪音的变压器所取代。2008年、2009年连续两年我国电网建设投资超过电源建设投资,预示着我国电网建设落后的问题或将得到改善。但要实现电源与电网的平衡,我国仍须提高电网的输配电能力,使之与电源规模相匹配。可见未来几年,电网建设和城乡配电网改造仍是我国电力工业的首要任务,电力变压器的市场需求量有望保持较强劲的增涨。

1.2电力变压器的发展及研究现状

电力变压器是发、输、变、配电系统中的重要设备之一,它的性能、质量直接关系到电力系统运行的可靠性和运营效益。

电力变压器主要有配电变压器、箱式变压器、高压、超高压电力变压器。下面简单介绍一下几种电力变压器的研究现状。

配电变压器我国中小型配电变压器最初是以绝缘油为绝缘介质发展起来的;进入20世纪90年代,干式变压器在我国才有了很快的发展。油浸式配电变压器S9系列配电变压器,S11系列配电变压器,卷铁心配电变压器,非晶合金铁心变压器。为了使变压器的运行更加完全、可靠,维护更加简单,更广泛地满足用户的需要,近年来油浸式变压器采用了密封结构,使变压器油和周围空气完全隔绝,从而提高了变压器的可靠性。目前,主要密封形式有空气密封型、充氮密封型和全充油密封型。其中全充油密封型变压器的市场占有率越来越高,它在绝缘油体积发生变化时,由波纹油箱壁或膨胀式散热器的弹性形变做补偿。干式变压器由于结构简单,维护方便,又有防火、难燃等特点,我国从20世纪50年代末即已开始生产,但近10来年才开始大批量生产。干式变压器种类很多,主要有浸渍绝缘干式变压器和环氧树脂绝缘干式变压器两类。

箱式变压器箱式变压器具有占地少,能伸入负荷中心,减少线路损耗,提高供电质量,选位灵活,外形美观等特点,目前在城市10Kv、35kV 电网中大量应用。我国目前所使用的箱式变压器,主要是欧式箱变和美式箱变,前者变压器作为一个单独的部件,即高压受电部分、配电变压器、

低压配电部分三位一体。后者结构分为前后两部分,前部分为接线柜,后部分为变压器油箱,绕组、铁心、高压负荷开关、插入式熔断器、后备限流熔断器等元器件均放置在油箱体内。目前有些厂家,已将卷铁心变压器移置到箱式变压器中,使箱式变压器体积和质量都有所减小,实现了高效、节能和低噪声级。

目前,我国已具备了110kV、220kV、330kV和500kV高压、超高压变压器生产能力。超高压变压器的绝缘介质仍以绝缘油为主,根据电网发展的需要,变压器的生产技术正在不断提高。SF6气体绝缘高压、超高压变压器正在研究开发。

从制造水平总体上讲,我国电力变压器技术处于国际20世纪90年代初的水平,少量的处于世界20世纪90年代末的水平,与国外先进国家相比,还存在一定的差距。

1.3电力变压器的基本结构

随着变压器技术的发展,其结构越来越趋于复杂。变压器的品种繁多,结构型式也是千变万化,如图1-1为一台电力变压器外形结构。结合电力变压器的基本结构概况作一介绍,其结构组成部分如下图1-2:

图1-1 电力变压器外形结构

图1-2 电力变压器基本构成

变压器是由套在一个闭合铁芯上的两个绕组组成的,铁芯和绕组是变压器最基本的组成部分。此外,还有油箱、储油柜、吸湿器、散热器、防爆管或压力释放阀、绝缘套管等等。变压器各部件的作用如下:铁芯:它是变压器电磁感应的磁通路,变压器的一、二次绕组都绕在铁芯上,铁芯是用导磁性能很好的硅钢片叠装成的闭合磁路。为了减少涡流,铁芯一般采用含硅1%~4.5%,厚度为0.23mm~0.35mm的硅钢片叠装而成。

绕组:它是变压器的电路部分。变压器分高、低压绕组,即一次、二次两绕组。它是由绝缘铜线或铝线绕成的多层线圈套装在铁芯上。导线外边的绝缘一般采用纸绝缘。

油箱:它是变压器的外壳,内装铁芯、绕组和变压器油,同时起一定的散热作用。

储油柜:当变压器油的体积随油温的变化而膨胀或缩小时,储油柜起着储油和补油的作用,以保证油箱内充满油。储油柜还能减少油与空气的接触面,防止油被过速氧化和受潮。一般储油柜的容积为变压器油箱容积的1/10。储油柜上装有游标管,用以监视油位的变化,即油位计。

散热器:当变压器上层油温与下层油温产生温差时,通过散热器形成油的循环,使油经散热器冷却后流回油箱,起到降低变压器温度的作用。为提高变压器油冷却得效果,可采用风冷、强迫油循环和强油水冷等措施。

高、低压绝缘套管:它是变压器高、低压绕组的引线到油箱外部的绝缘装置,起着固定引线和对地绝缘的作用。

附件:变压器还有温度计、净油器、油位计等附件。

1.4电力变压器的性能参数

1.变压器额定容量(kVA);

2.相数;

3.频率(

H);

z

4.变压器一、二次侧的额定电压(kV);

5.绕组接线方式和联结组;

6.变压器冷却方式;

7.负载特点:连续负载或短时间断负载;

8.安装特点:户内或户外特点;;

9.短路阻抗;

kW;

10.负载损耗()

11.空载损耗()

kW;

12.空载电流。

上述的1-8项技术参数由电力系统的技术条件和环境使用条件所决定;9-12项性能数据由国家标准《三相油浸电力变压器基本参数和技术要求》(GB/T 6451-1999)和有关技术条件所规定。

1.5变压器计算的一般程序

电力变压器电磁计算的任务在于确定变压器的电、磁负荷和主要几何,计算性能数据和各部分的温升以及计算变压器的重量、外型尺寸,利用电磁计算可以比较合理确定变压器生产和运行的经济性、运行的可靠性等,因此变压器的电磁计算是变压器生产制造的基础,也是变压器能否安全运行的基础。变压器计算的一般手工计算的设计程序如下:

1.确定硅钢片品种、牌号及铁心结构型式,计算铁芯柱直径,选定标准直径,得出铁心柱和铁轭截面积。

2.根据硅钢片牌号,初选铁芯柱中的磁通密度,计算每匝电势。

3.初算低压绕组匝数,凑成整数匝,根据整数匝再重算铁芯柱中的磁通密度及每匝电势,再算出高、中压绕组匝数。

4.根据变压器额定容量及电压等级,确定变压器的主、纵绝缘结构。

5.根据绕组结构型式,确定导线规格,进行绕组段数(层数)、匝数的排列,计算绕组轴向高度及辐向尺寸。

u),检查阻抗电压

6.计算绕组负载损耗,算出阻抗电压的有功分量(

r

是否符合标准规定值,若不符合时应调整达到标准规定值范围。

7.计算绕组导线对油的温差,不合格时,可调整导线规格,或调整线

段数及每段匝数的分配,当超过规定值过大时,则需要变更铁芯柱直径。

8.计算短路机械力及导线应力,当超过规定值时,应调整安匝分布,或加大导线截面积。

9.计算空载性能及变压器总损耗,计算油温升,当油温升过高或过低时,应调整冷却装置的数目。

10.计算变压器重量。

应该指出,电力变压器计算必须根据国家的经济、技术政策和资源情况以及制造和运行方面的要求,合理地制定变压器的性能数据和相应的主要几何尺寸。由于制造和运行的角度不同,对某些性能数据的要求也往往有所不同。在进行变压器计算时必须综合考虑各方面因素,并应进行多种方案比较,以便从中选取最佳方案。

目前,电子计算机在变压器计算和设计方面的广泛应用,给快速进行变压器计算、设计和方案比较、选择最佳方案提供了方便条件。

1.6本论文研究内容

本论文主要对S9-400/10.5/0.4型变压器进行了电磁计算,计算出该变压器的短路阻抗,负载损耗,空载损耗,及空载电流等主要的技术指标与要求的合格指标进行对照,校核是否符合标准为合格产品。

第2章 变压器电磁计算

2.1 本设计的技术条件

本设计的基本技术条件如下,其他的技术性能指标均应满足国家和行业相关标准的要求。

变压器额定容量N S :400KVA ;

变压器额定线电压及分接范围:高压线电压: 1050015%V ±?

低压线电压: 400V ;

分接系数:5%±

联接组标号:0Yyn

空载损耗:0.8O P KW =

空载电流: 1.30%O I =

负载损耗: 4.3k P KW =

短路阻抗:4.0%

2.2 变压器设计

2.2.1 变压器主要结构的确定

1.铁心结构:采用三相三柱式铁心,铁心的迭积采用斜接缝叠积法以适应冷轧硅钢片的方向性。

2.铁轭结构:铁轭的级数与铁心柱级数完全一致,这样两者磁通分布均匀,铁轭截面可以与铁心柱一致节省了材料。

2.2.2 硅钢片的选用

铁心采用30ZH120(28H-0.3)冷轧硅钢片。

2.2.3 铁心直径的确定

根据结构型式和工艺特点,变压器的铁心可分为叠片式和渐开线式两种。

铁心直径的大小,直接影响材料的用量、变压器的体积及性能等经济

指标。硅钢片重量和空载损耗随铁心直径增大而增大,而线圈导线重量和负载损耗随铁心直径增大而减小。合理的铁心直径就是硅钢片和导线材料的用量比例适当,达到最经济的效果,故铁心直径的大小,与采用的硅钢片性能和导线材料直接有关。

对于高、低各绕组容量均为100%的三绕组变压器,每柱容量为:

40013433

N a S P kVA =

== 铁心直径估计:

(5257)177195D K mm ===::

由于设计需要查表取180mm 。式中: D K -铁心直径经验系数,对冷轧硅钢片的铁心及铜绕组的变压器,一般取52~57D K =。

2.2.4 铁心截面积确定

由于铁心截面设计是变压器设计中的重要环节,因此,铁心设计采取节材措施具有重要意义。采用优化设计方法以便在相同的铁心截面半径条件下获取最大的铁心截面有效面积, 铁心柱一般制成阶梯圆柱形,各小阶梯(级)均为矩形。本设计采用心式变压器,故铁心柱制成阶梯圆柱形。

查表180D mm =,碟片系数取0.96时,有效截面积2229.97zh S cm =

2.2.5 铁心碟片系数确定与级数的选取

铁心柱有效截面积等于铁心柱总的几何面积乘以铁心叠片系数,即叠片系数为铁心有效截面积与其几何面积之比。叠片系数大,则铁心柱有效截面积也大。国产冷轧硅钢片的叠片系数,一般叠片涂漆的为0.95到0.96;不涂漆的为0.97,本论文选0.96。查表本设计中铁心的级数选为7级,撑条数为8。

2.2.6 变压器主纵绝缘

变压器绕组对其本身以外的其他部分的绝缘是主绝缘,本设计中变压

器的三相容量为400kVA,故采用中部出线结构[6]。

主绝缘尺寸的选取如下:

铁心到低压绕组,取14mm ;

低压绕组到高压绕组,取18mm ;

相间距大于20mm , 取24mm ;

绕组到上铁轭距离取25mm ;

绕组到下铁轭距离取25mm ;

绕组本身的绝缘是纵绝缘。变压器绕组纵绝缘通常是由梯度电压所决定,即在冲击电压作用下,在绕组的线匝间、层间及线段之间出现的过电压为依据[7]。

纵绝缘尺寸的选取如下:

低压绕组:匝绝缘取为0.45mm ,匝间油道平均为:3.5mm 。

高压绕组:匝绝缘取为0.45mm 。

2.3 电磁计算

2.3.1 额定电压和额定电流的计算

(1)高压绕组相电压:高压绕组为Y

倍的相电压

:

5%5759.06U V -===

16062.177U V ?===

5%6365.28U V +=== (2)低压绕组相电压:低压绕组为y 联接,

2230.94U V ?== (3) 高压绕组额定电流:高压绕组线电流

33

121.99I A === (4)低压绕组线电流:

33

2577.35I A === 2.3.2 绕组匝数计算

(1) 每匝电势:

229.97 1.78.687/4545

zh c z S B e V '?'===匝

'c B -铁心柱内磁通密度初选值(T )

,对于冷轧硅钢片T T B c 75.1~7.1='

(小容量取小值),此处取T 7.1

(2) 低压绕组匝数计算:

2

2230.95

26.58

8.687z U N e ?==='

取27匝。故

2

2230.95

8.51/27z U e V N ?===匝

磁通密度:

458.51

45 1.669229.87

z c zh e B T S ??===

(3) 高压绕组匝数计算:高压绕组在额定分接时的匝数,即基本绕

组匝数:

1

1712.35z U N e ?====匝

调压绕组匝数7135%36N ?=?=匝

1分接位置时,11748T N =匝

2 分接位置时,13678T N =匝

(4) 电压比偏差(V%)计算:

%100%?-?=U U

W e V t 一般%25.0±≤

式中:t e -每匝电势(V );

W -高压线圈各分接位置的每相匝数;

U -高压各分接位置的相电压(V )

5%8.517486365

%100%0.0075%6365V +?-=?= 合适

08.517136062

%100%0.093%6062V ?-=?= 合适

5%8.516785759%100%0.187%5759

V -?-=?= 合适 2.3.3 绕组计算

2.3.3.1 低压绕组计算

1. 低压绕组匝数为27匝;

2. 双螺旋式绕组,8根撑条,30mm 宽垫块,匝间油道取为

3.5mm ;

3.导线规格ZB-0.45,2.659.53.19.95

??,10根并联,即5|| ; 4. 电流密度:222577.35 2.3424.6310

I j S ?===?2A/mm ; 5.低压绕组尺寸计算:

低压绕组辐向尺寸为:5?3.1×1.02=16mm ;

低压绕组轴向尺寸为:27?9.95?2=537.3——导线高度,mm

35 ——油道高度,mm

572.3

- 72.3——(12.6%)压缩系

500——电抗高度,mm

+ 25——绕组到上轭的距离,mm

+ 25——绕组到下轭的距离,mm

550——铁窗高度0H ,mm

2.3.3.2 高压绕组计算

1.高压绕组匝数为713匝;

2.层式绕组,8根撑条;

3.导线规格ZB-0.45, 2.3642.81

4.45

??; 4.电流密度:11121.99 2.210.051

L j S ?===?2A/mm ; 5.高压绕组尺寸计算

高压绕组辐向尺寸:(6×2.81+4×1+7)×1.02=27

高压绕组轴向尺寸:125?4.45=556——导线高度,mm

- 56——(10.8%)压缩系数

500——电抗高度,mm

25——绕组到上轭的距离,mm

+ 25——绕组到下轭的距离,mm

550——铁窗高度

H,mm

2.3.4绝缘半径及导线长度计算

2.3.4.1线圈绝缘半径计算:

图2-1 绕组尺寸示意图

,mm

90 ——铁心柱半径R

+ 14——低压绕组到铁心的距离d1,mm

R,mm

104——低压绕组内半径

1

B,mm

+ 16——低压绕组辐向厚度

1

,mm

120——低压绕组外半径R

+ 18 ——高低压绕组主空道距离d2,mm

R,mm

138——高压绕组内径

3

B,mm

+ 30 ——高压绕组辐向厚度

2

R,mm

168——高压绕组外径

4

2

336——高压绕组外直径D,mm

+ 24——相间主空道距离,mm

M,mm

360——铁心中心距

2.3.4.2绕组平均半径

1.低压绕组平均半径:

1211610411222B r R =+

=+= mm 2.高压绕组平均半径:

2133013815222

B r R =+=+= mm 2.3.4.3 绕组平均匝长计算

3102-?=p pt R L π

式中:p R -各线圈平均半径

1.低压绕组:

33222102112100.703l r ππ--=?=??=m

2.高压绕组:

33112102152100.954l r ππ--=?=??=m

2.3.4.4 绕组导线总长计算

1.低压绕组:

222270.70318.9L N l =?=?=m

2.高压绕组:

1117480.954713L N l =?=?=m

2.3.5 75℃时绕组直流电阻计算

q q k q S L R /?=ρ 式中:k ρ-导线电阻系数,铜导线()C 075:20.02097/k mm m ρ=Ω? q S -线圈导线总截面积

1.低压绕组:

322218.90.02097 1.6091024.6310

L R S ρ-==?=??Ω 2.高压绕组: 1117130.02097 1.4810.051L R S ρ

==?=?Ω 2.3.6 绕组导线质量计算

2.3.6.1 裸导线质量计算

310-????=q q q x q S L m G ρ

式中:x m -相数

q ρ-线圈导线的密度,铜导线:3/9.8cm g q =ρ

1.低压绕组:

338.924.6318.91010124.3q G kg -=?????=

2.高压绕组:

338.910.0571310191.3q G kg -=????=

2.3.6.2 带绝缘导线质量计算

'(1)c c G G c =+ , kg

式中:c ——绝缘纸占裸导线质量的百分数;

纸包扁铜线:

17( 1.57)t a b t c S

++=,% 式中:

t ——导线每边匝绝缘厚度,mm ;

a ——裸导线的厚度,mm ;

b ——裸导线的宽度,mm ;

S ——单根导线截面积,2mm 。

1.低压绕组

'2170.225(2.659.5 1.570.225) 1.9424.63

c ??++?==% '2124.3(1 1.94%)126.7c G kg =?+=

2.高压绕组 '1170.225(2.364 1.570.225) 1.05%10.05

c ??++?=

=% '1191.3(1 1.05%)193.3c G kg =?+= 2.3.7 短路阻抗计算

当线圈几何尺寸确定后,应首先计算阻抗分量。短路阻抗d Z 由电阻分量d R %和电抗分量d X %两部分组成,但对较大容量变压器,因为电阻分量d R %很小,计算时可以略去。电抗分量X d %都是以额定电压的百分数表示的,其计算公式如下:

649.610

d z X fIN D X

e H ρ∑=,% 式中:

IN ——低压线圈安匝数(或取高压线圈安匝数)

,安匝; Z e ——每匝电势,V ;

X H ——绕组平均有效电抗高度,cm ;

ρ ——洛式系数,1/X H ρλπ=-;

λ——漏磁场总宽度,cm ;

D ∑——漏磁宽度,cm ,

111212221133

D a r a r a r ∑=++ 式中:

1a ,12a ,2a 分别为绕组1,主绝缘空道,绕组2的辐向尺寸; 1r ,12r ,2r 分别为绕组1,主绝缘空道,绕组2的平均半径。

漏磁宽度有关计算:

1.6 1.83 6.4cm λ=++=

1X21250505022

X X H H H ++===cm 131 6.4/(50)0.96ρπ=-?=

11(1.612) 1.812.9(316.8)46.233

D ∑=?+?+?=cm 13649.650577.352746.20.96 4.0298.515010

d X ?????==??% 2.3.8 负载损耗的计算

一对绕组运行时的负载损耗:

∑∑∑++=y f R k P P P P

式中:∑R P -被计算的一对绕组的导线电阻损耗之和

∑f P -被计算的一对绕组的导线附加损耗之和

∑y P -被计算的一对绕组的引线损耗之和

zs P -被计算的一对绕组的杂散损耗

2.3.8.1 绕组导线电阻损耗计算

q x R R I m P 2=

式中:x m -相数;

I -分接的相电流;

q R -分接的想电阻。

1.高压绕组电阻损耗2322 1.482148R R W =??=

2.低压绕组电阻损耗233577.35 1.609101599R R W -=???=

2.3.8.2 附加损耗计算

双螺旋绕组的附加损耗,包括绕组的涡流损耗及不完全换位是的附加损耗,可按下式计算:

100

f f r K p p = ,W f w b K K K =+

式中:

r p ——被计算绕组的导线电阻损耗,W ;

f K ——被计算绕组的附加损耗系数,%;

w K ——被计算绕组的涡流损耗百分数,%;

b K ——被计算绕组的环流损耗百分数,%。

2

710w

w X k fmnaS K H ρ??= ??? ,% (2—1) 式中:

w k =3.8(铜导线75C ?时);

m ——每段匝数?并联根数(连续式绕组);

n ——段数(连续式绕组);

a ——延辐向单根导线厚度,mm ;

X H ——绕组电抗高度,mm ;

S ——绕组单根导线截面积,2mm 。

2

b b m X faSN K k

c H ρ??= ???,% (2—2)

式中:

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定的使用环境与运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、 空载电流、空载损耗与负载损耗)与总重。 A、额定容量(kVA):额定电压、额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压、为适应电网电压变化的需要, 变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压、 C、额定电流(A):变压器在额定容量下,允许长期通过的电流、 D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸 取的有功功率。与铁心硅钢片性能及制造工艺、与施加的电压有关、 E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流、一般以额 定电流的百分数表示、 F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此 时变压器所消耗的功率、 G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电 流等于额定值时,此时一次侧所施加的电压、一般以额定电压的百分数表示、 H、相数与频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外 有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升、油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、 强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV、奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

电力变压器容量的计算方法 电力变压器容量规格0kva

电力变压器容量的计算方法电力变压器容量规 格0kva 电力变压器容量的计算方法 变压器容量选择的计算,按照常规的计算方法:是小区住宅用户的设计总容量,就是一户一户的容量的总和,又因为住宅用电是单相,我们需要将这个数转换成三相四线用电,那么,相电流跟线电流的关系就是根号3的问题,也就是就这个单相功率的总和除于,变换为三相四线的功率。 比如现在有一个小区,200户住宅,每户6-8KW用电量,一户一户的总和是1400÷ ≈808KW,这个数是小区所有电器同时使用时的最大功率。但是,实际使用时,这种情况是不会发生的。那么,就产生了一个叫同时用电率,一般选择70-80%,这是根据小区的用户结构特征所决定的。一般来说,变压器的经济运行值为75%。那么,我们可以将这二个值抵消,就按照这个功率求变压器的容量。所以,这个变压器的容量就是合计的总功率 1400÷≈808KW。根据居民用电的情况,功率因数一般在,视在功率Sp = P÷ =808/ ≈951KVA 。 还可以这么计算,先把总功率1400分成三条线的使用功率,就是单相功率,1400÷3=467KW;然后,把这个单相用电转换成三相用电,即467× ≈808KW, 再除于功率因数也≈951KVA。

按照这个数据套变压器的标准容量,建议选择二台变压器;总容量为945KVA,一台630KVA的,另一台315KVA的,在实际施工过程中还可以分批投入使用。如果考虑到今后的发展,也可以选择二台500KVA的变压器,或者直接选择一台1000KVA的变压器。 10KV/的电压,1KVA变压器容量,额定输入输出电流如何计算: 我们知道变压器的功率KVA是表示视在功率,计算三相交流电流时无需再计算功率因数,因此,Sp=√3×U×I ,那么,I低=Sp/√3/=1/≈ 也就是说1KVA变压器容量的额定输出电流为,根据变压器的有效率,和能耗比的不同而选择大概范围。高压10KV 输入到变压器的满载时的额定电流大约为;I 高=Sp/√3/10=1/≈ 也就是说1KVA容量的变压器高压额定输入电流为。

电磁装置设计原理变压器设计-华中科技大学原

电磁装置设计原理 变压器设计 专业: 班级: 设计者: 学号: 华中科技大学电气与电子工程学院

一、变压器设计综述及其基本原理 变压器是一种静止电机,由绕在共同铁芯上的两个或者两个以上的绕组通过交变的磁场而联系着。用以把某一种等级的电压与电流转换成另外一种等级的电压与电流。其用途是多方面的,十分广泛的应用在国民经济的各个领域。在电力系统中,通常要将大功率的电能输送到很远的地方去,利用低电压大电流的传输是有困难的,一方面,电流大引起的输电线损耗很大;另一方面,电压的下降也会使电能无法传送出去。因此需要用升压变压器将发电机端电压升高,而经过高压传输线到达用户端所在城市后,再利用降压变压器将电压降低,方便用户使用。 二、设计步骤 1、根据设计仟务书确定各原始技术数据; 2、计算铁心柱直径、铁芯柱和铁轭截面; 3、绕组尺寸计算; 4、绕组的确定及相关计算; 5、绕组的绝缘设计; 6、绝缘半径计算; 7、铁芯重量计算; 8、性能计算; 9、温升计算; 10、主要部件价格计算。

三、设计内容 已知参数有: 额定容量 500n S kVA =; 额定电压 10kV/0.4kV (高压绕组5±%分接头); 额定频率 f =50Hz ; Dy11连接模式; 高压侧:1110N N U U kV ?==; 128.8675()N I A = =线电流; 116.6667()N I ?= =相电流 低压侧:20.4()N U kV =线电压 2230.94()N U V ?= =相电压 22721.6878N N I I A ?== = (1)技术条件 名称:变压器 绝缘材料耐热等级:H 级(145℃) 容量:500kVA 电压比:10±5%/0.4kV 频率:50Hz 硅钢片型号:DQ122G-30 导线材料: 铜导线 连接组:Dy11 短路阻抗:4% 负载损耗(145℃):9350w

变压器经典计算

1. 反激式开关电源电路 2. 开关变压器功能 a. 磁能转换(能量储存) b. 绝缘 c. 电压转换 3. 工作流程 a. 根据PWM(脉宽调制法)控制,当晶体管(例功率MOSFET)打开时电流流过变压器初级绕组,这时变压器储存能量(在磁心GAP),与此同时,因为初级绕组和次级绕组极性不同,整流二极管断开时电流流过次级绕组; b. 因为次级绕组极性是不同于初级绕组,当晶体管关闭(例功率MOSFET)时存储的能量将被释放(从磁心GAP). 同时整流管也打开.所以,电流将流过开关电源变压器的次级绕组; c. 反馈绕组提供PWM工作电压(控制), 所以反馈绕组的圈数是依照PWM 的工作电压来计算;例如, UC3842B(PWM)工作电压是10-16Vdc ,你必须是依照这个电压计算反馈圈数,否则UC3842B(PWM)将不能正常工作!一般, UC3842B(PWM)损坏时,反馈电压是超过30Vdc. 4. 主要参数对整个路的影响 a. 电感:如果初级电感太低,变压器将储存的能量少,使输出电压不连续;如果次级电感也低,变压器的能量将不能完全释放,所以,输出电压将是非常低;这时PWM将不能正常工作.此时反馈绕组的电感也是过低或过高, b. 漏电感: 如果漏电感太高,它将产生一个高的尖峰电压在初级绕组. 它是非常的危险.因为高的尖峰电压可以损坏晶体管!另一方面,漏电感将影响开关电源变压器对电磁干扰的测试,它对整个电流将产生更多的噪音;所以开关变压器要求低漏电感. c. 绝缘强度:因为初级地是不同次级地;它有一个高电压在初级与次级之间,所以,它有很好的绝缘! 一。基本设计条件 1. 输入85-264V ac /输出5Vdc 2A 2. 最大工作比40% (晶体管关闭和打开的时间比率) 3. 工作频率75kHz 4. 温度等级: class B 二。基本的设计步骤 1.变压器尺寸 Ae*Ap=PB*102/2f*B*j*?*K Ae---- 有效截面积 Ap---- 磁芯绕线面积 PB ---- 输出功率 f ----- 工作频率 B ----- 有效饱和磁通 j ----- 电流密度 ? ----- 变压器效率 K ----- 骨架绕线系数 Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2

电磁装置设计原理变压器设计-华中科技大学原

电磁装置设计原理变压器设计-华中科技大学原

————————————————————————————————作者:————————————————————————————————日期:

电磁装置设计原理变压器设计 专业: 班级: 设计者: 学号:

华中科技大学电气与电子工程学院 一、变压器设计综述及其基本原理 变压器是一种静止电机,由绕在共同铁芯上的两个或者两个以上的绕组通过交变的磁场而联系着。用以把某一种等级的电压与电流转换成另外一种等级的电压与电流。其用途是多方面的,十分广泛的应用在国民经济的各个领域。在电力系统中,通常要将大功率的电能输送到很远的地方去,利用低电压大电流的传输是有困难的,一方面,电流大引起的输电线损耗很大;另一方面,电压的下降也会使电能无法传送出去。因此需要用升压变压器将发电机端电压升高,而经过高压传输线到达用户端所在城市后,再利用降压变压器将电压降低,方便用户使用。 二、设计步骤 1、根据设计仟务书确定各原始技术数据; 2、计算铁心柱直径、铁芯柱和铁轭截面; 3、绕组尺寸计算; 4、绕组的确定及相关计算; 5、绕组的绝缘设计; 6、绝缘半径计算; 7、铁芯重量计算;

8、性能计算; 9、温升计算; 10、主要部件价格计算。 三、设计内容 已知参数有: 额定容量 500n S kVA =; 额定电压 10kV/0.4kV (高压绕组5±%分接头); 额定频率 f =50Hz ; Dy11连接模式; 高压侧:1110N N U U kV ?==; 150028.8675()103 N I A ==?线电流; 1116.6667()3 N N I I ?==相电流 低压侧:20.4()N U kV =线电压 22230.94()3 N N U U V ?==相电压 22500721.687830.4N N I I A ?== =? (1)技术条件 名称:变压器 绝缘材料耐热等级:H 级(145℃) 容量:500kVA 电压比:10±5%/0.4kV

S9-400/10.5/0.4变压器电磁计算本科论文

S9-400/10.5/0.4变压器电磁计算 摘要 电力变压器是一种静止的电气设备,电力变压器是电力网中的主要电气设备。其设计和制造的好坏是直接影响其运行质量和经济效益的关键所在,因此电力变压器的电磁计算就显得尤为重要。电磁计算的任务在于确定变压器的电、磁负载和主要几何尺寸,计算性能数据和各部分的温升以及计算变压器的重量、外型尺寸和取得比较合理的技术经济效果。计算结果必须满足国家标准及有关技术标准的规定和使用部门的要求。 本文对400kV A/10.5kV/0.4电力变压器进行了电磁计算。首先对电力变压器的发展历史、基本的特性及变压器的设计方法进行了简单的阐述。在电磁计算中,最开始是铁心的选择,这是变压器设计的起点也是一个关键点,然后是变压器绕组材料和型式的选择,绕组有关数据的计算,最为关键的是短路阻抗、负载损耗、空载电流、空载损耗等变压器性能参数的计算,最后完成变压器油箱、变压器温升、短路电动力、变压器总油量和总质量的确定与计算。其中的短路阻抗计算困难最大,需要经过反复计算才能达到技术要求。在电磁计算的全过程中较为详细的阐明了电力变压器计算的基本公式和计算方法,给出了一套完整的设计方案。 关键词:电力变压器;电磁计算;绕组;短路电动力 S9-400/10.5 /0.4/of Electromagnetic Power

Transformer Design Abstract Power transformer is a kind of static electrical equipment in power network, it is the main electric equipment. The design and manufacturing quality is directly affecting the operation quality and the economic benefit is the key, so the electromagnetic calculation of power transformer is very important. Electromagnetic computing task is to identify transformer electric, magnetic load and main dimensions, computing performance data and the various parts of the temperature rise and the calculation of transformer weight, dimensions and obtain reasonable technical and economic effect. The calculation results must meet the national standards and the relevant technical standards and the use of department. The 400KVA/10.5KV/0.4KV power transformer electromagnetic computation. The power transformer development history, basic characteristic and design method of simple exposition. In the electromagnetic calculation, most beginning is core selection, which is the starting point of transformer design is also a key point, and then is transformer winding material and type selection, calculation of winding of relevant data, the most important is the short circuit impedance, load loss, no load current, no load loss of transformer performance parameters are calculated, finally finished oil tank of transformer, transformer temperature rise, power transformer short circuit, the total oil volume and total quality determination and calculation. The calculation of short circuit impedance difficulty the biggest requires repeated calculation can reach the technical requirements. In the electromagnetic calculation of whole process detailed expounds the power transformer basic calculation formula and method, given a complete set of design scheme. Power transformer; electromagnetic computing; winding short-circuit force;

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器基本型号及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思就是箔式绕组,如果就是R则表示为缠绕式绕组,如果就是L则表示为铝绕组,如果就是Z则表示为有载调压(铜不标)。 10的意示就是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思就是一次额定电压,0.4KV意思就是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕

组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 一、电力变压器型号说明如下:

浅谈电力变压器继电保护设计 妥志鹏 杜航

浅谈电力变压器继电保护设计妥志鹏杜航 发表时间:2017-07-17T11:41:26.390Z 来源:《电力设备》2017年第8期作者:妥志鹏杜航 [导读] 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。 (国网青海省电力公司检修公司青海省西宁市 810000) 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。继电保护作为变压器的有效保护措施,是提高变压器安全稳定使用的关键所在,优化继电保护的设计,对于提高电力变压器的稳定运行,有着不可替代的重要作用。 关键词:电力变压器;继电保护;设计; 1电力变压器继电保护的工作原理 电力变压器继电保护系统主要是根据电力系统所出现的电力数值的变化情况以实现电力变压器继电系统的自我调节功能。电力变压器继电系统存在的目的是,无论电力变压器继电系统中的电力变压器继电保护系统的工作状态如何,或是处于什么样的情形都要保证整个系统的安全。按照电力变压器继电系统是否处于正常运行的状态,其继电保护的基本原理并不相同。为了确认电力变压器继电系统处于什么样的运行状态,则需要对电力变压器继电系统的运行状态进行测量并进行分析。 2电力变压器继电保护的基本构成 经过长时间的发展与演变,如今电力变压器继电保护系统已逐步发展到了微机型的继电保护系统的状态,该类型的电力变压器继电保护系统主要由3部分组成。①电力系统信号采集部分。其主要功能是收集并整理电力系统内部的电力数值的情况,然后将其收集整理的数据通过有效的传递方式提交给电力系统继电保护部分。②电力系统的信号处理部分。其能够对电力系统信号采集整理的信号进行处理,并以有效的方式对相关问题进行分类与处理。③信号输出部分。该部分是十分重要的一环节,信号输出部分可以有效地将输出信号的指令精准无误地发送给电力系统,从而保障调节工作的顺利进行。 3.电力变压器继电保护系统常见故障类型 3.1电力变压器继电保护系统中电压互感器的二次回路故障 系统的电压互感器部分属于继电保护系统的核心组成部分,是电力变压器继电保护系统的心脏部分,其主要功能是将电力系统中过高的电压排除。在通常情况下,电压互感器在承受相对数值较大的电阻负载的同时,其承受的二次电压数值与其所承受的一次电压数值还以正比的关系存在。因此,在这样的情况下,一旦发生电阻数值减小等相关现象,那么极容易造成电压互感器出现短路现象。在开口三角电压数值不稳定的情况下,通常就会引起以上原因造成的故障与问题。因为在电压互感器内部的铁芯中极易发生由于电压的升高所造成的线性不稳限次,所以在处理这类力变压器继电保护系统故障的时候,应当格外注意电压互感器的短路以及回路等问题。 3.2电力变压器继电保护系统电流互感器的故障 因为电力变压器继电保护系统内的电流互感器是根据电磁感应的相关原理制作设计的,因此,将原有的较大数值电流转换成为较小的数值电流是设计电流互感器的主要功能,也是电流互感器存在的价值。基于以上原因很容易知道,一旦电流互感器内部的绝缘部分发生破裂或类似现象,则极容易引起电流的窜出等系列问题,则给电力系统的安全、稳定、正常运行造成了严重的阻碍,严重时还可能引发安全事故。 3.3计算机型电力变压器继电保护装置的故障 在现代信息技术迅速发展、计算机技术迅速提升的时代背景下,计算机型电力变压器继电保护装置已经逐渐开始运用于继电保护工作。然而,在实际操作、运用的过程中,如果发生了输入功率不足的现象,则极易引起计算机系统控制所输出的电压数值减少等现象,该问题会对电力系统电力数值的正常运行带来十分不利的影响。 4.电力变压器继电保护设计优化方法 4.1差动保护设计 将变压器两侧的电流互感器二次侧按正常时的“环流接线”是变压器差动保护动作电流设计的原则。如果变压器处于正常运行的状态,那么差动继电器中的电流为其两侧电流互感器CT的二次电流之差,其数值趋于0。如果差动继电器不发生任何动作,那么其保护也不会有任何作为。也就是说,如果在电流互感器二次回路端线,并且变压器处于最大负荷的状态下,差动保护是不会产生任何动作的。随着计算机芯片性能的提升,对位于变压器1套保护装置中所具有的主保护以及各侧全部后备保护的两套主变压器微机型保护装置进行了全力开发,其成果已经被广泛应用于实际工程中。所以,在330kV及以上高压侧电压的变压器可以采用安装双重差动保护的方法对电力变压器引出线、套管及其内部短路故障进行反应,从而实现有效反应电力变压器绕组及其引出线的多相短路及绕组匝间短路的纵联差动保护,同时也可以将电流速断保护作为主保护,另外也能达到将瞬时动作于断开各侧断路器的目的。 4.2瓦斯保护设计 除了瓦斯保护可以动作,像差动保护以及其他有关保护设计通常是都不能进行动作的。瓦斯保护主要是依靠气体继电器来实现动作的,其位于变压器油箱和油枕之间的连接导油管中。瓦斯保护主要有两种:①首先轻瓦斯保护动作于信号,然后依照气体的属性,包括:颜色、可燃性、数量以及化学成分来判断保护的理由以及电力变压器继电保护装置故障的性质。根据此有关工作人员则可以及时察觉故障的发生并有针对性地对故障进行相关处理。②首先重瓦斯保护动作于断路器跳闸,然后通过监视确定气体发生的速度,并对气体的不同特征以及相关成分进行剖析,从而根据有关分析间接地推测、判断造成故障发生的原因、故障出现的部位和以及故障的严重程度。 4.3过电流保护设计 ①低压变压器过电流保护设计。三相式三卷变压器通常用于变压器低压侧,而在压侧短路时高、中压侧的阻抗保护通常无法发挥作用,起不到保护功能,因此难以达成作为相邻元件所具有的后备保护需求。在这种情况下可以在低压侧安置复合电压闭锁过流保护,并同时在其高、中压侧都设计并安装复合电压闭锁过流保护以及零序方向过电流保护或间隙保护等。②高压变压器的保护设计。在电力变压器高压侧的过电流保护对低压侧母线规定有灵敏系数的时候,可以在电力变压器低压侧断路器和电力变压器高压侧短路器上设计安装有关的过电流保护装置。如果电力变压器低压侧母差保护发生校验停运现象,或者是因为故障出现拒动问题以及开关与TA间出现不正常现象的时

电力变压器设计与计算_1_刘传彝

电力变压器设计与计算(1) 刘传彝,侯世勇,许长华 (山东达驰电气有限公司,山东成武274200) 学习之友 1电力变压器设计与计算基础知识 1.1 变压器的分类 变压器是一种静止的电磁感应设备,在其匝链于一个铁心上的两个或几个绕组回路之间可以进行电磁能量的交换与传递。根据不同用途,变压器可以分为许多类型。 1.1.1电力变压器 电力变压器在电力系统中属于量大面广的产 品。二次侧电压高于一次侧电压的变压器称为升压变压器;反之,称为降压变压器。直接接发电机组的升压变压器,又称为发电机用变压器。二次侧直接接用户的变压器,称为配电变压器。把两个或三个网络连接起来,使其间可以有潮流往来、能量交换的变压器,称为联络变压器。联络变压器也可制作成自耦变压器。 1.1.2电炉变压器 工业上使用的金属材料和化工原材料很多是用 电炉冶炼生产出来的。而电炉所需的电源是由电炉变压器供给的。电炉变压器的特点是二次电压很低(一般由几十伏到几百伏),但电流却很大。电炉变压器种类很多,根据冶炼原材料的不同,电炉变压器可分为炼钢电弧炉变压器、矿热炉变压器、电阻炉变压器、盐浴炉变压器以及工频感应炉和电渣炉变压器等。我国电炉变压器一次侧的电压多为10kV 或 35kV ,个别的为110kV 。1.1.3 整流变压器 很多工业电气设备需要直流供电,如城市主要交通工具之一的电车、电机车、钢厂的轧机、冶炼厂及化工厂的电解槽等。把交流电变成直流电是需要经过整流器(水银整流器、硅整流器)进行整流的,供工业整流器用的电源变压器称作整流变压器。为了提高整流效率,整流变压器二次绕组要接成六相或十二相。整流变压器的共同特点是二次电压低,电流大。为了提高效率,二次侧相数一般不少于三相,有时采用六相、十二相或加移相绕组。另外,由于整流 的作用,整流变压器绕组中的工作电流波形是不规则的非正弦波。 1.1.4牵引变压器 给铁路牵引线路供电的变压器称为牵引变压 器。近年来我国现代电气化高速铁路发展很快,需要的牵引变压器逐年增加,牵引变压器同普通电力变压器相比,主要区别有以下几点:(1)单相负载。(2)变动负载。(3)轨道回路。(4)会有高次谐波的负载。目前变压器生产厂根据以上特点能生产出满足需要的牵引变压器。牵引变压器将电能从110kV 或 220kV 三相电力系统传输给二条27.5kV 的单相牵 引回路。110kV 多采用V/V 接牵引变压器,220kV 采用单相,低压通过中间抽头实现2×27.5kV 。1.1.5 工频试验变压器 工频试验变压器也称高压试验变压器。工频试验变压器在电气工厂、发电站、电业部门和科研等单位应用十分广泛,是不可缺少的试验设备。通过采用工频试验变压器可以对各种电工产品、电气元件、绝缘子、套管和绝缘材料等进行工频电压下绝缘强度试验。 工频试验变压器特点是一、二次绕组具有很大的电压比。一次电压通常为0.22kV 、0.38kV 、3kV 、 6kV 和10kV 等,二次电压为50kV ~2200kV 或更高。试验变压器运行持续时间都在1h 以下。也可由 几台试验变压器串联成串接试验变压器装置。 1.1.6电抗器 具有一定电感值的电器,统称为电抗器。现代的 电抗器种类很多,应用也十分广泛。总的来说,电抗器按结构可以分为两类:一类为空心抗器;另一类为铁心电抗器。用于限制短路电流的电抗器称为限流电抗器。例如,电力系统中用于限流的限流电抗器,电炉炼钢炉变压器用的串联电抗器,电动机起动用的起动电抗器等。限流电抗器通常是串联连接在电路中。用于补偿电容电流的电抗器称为补偿电抗器。例如,电力系统中用的并联电抗器,中性点接地用的消弧线圈,串联谐振试验装置中用的试验电抗器等。 TRANSFORMER 第48卷第2期2011年2月Vol.48February No.22011

10kV电力变压器设计资料

( 二 〇 一五 年 六 月 本科毕业设计说明书 学校代码: 10128 学 号: 201111202005 题 目:10kV 电力变压器的电磁计算与分析 学生姓名:朱 磊 学 院:电力学院 系 别:电力系 专 业:电气工程及其自动化 班 级:电气11-2 指导教师:陈艳宁 讲师

摘要 电力变压器在电力系统中占有重要的地位,其发展趋势是安全可靠、节省生产资本、低损耗运行。因此,进行电力电压器的电磁计算与分析就显得非常重要。 本文早参考了大量文献的基础上,根据变压器设计的基本思路,按照一般压器设计的基本步骤,完成了一台1600kV A/10kV的电力变压器设计。本文章根据一般变压器设计方法针对给定的的电力变压器做了详细的设计。根据所设计变压器的技术参数选用合理的导线和铁心,使其能够安全可靠的运行。通过计算高、低压绕组匝数,对高、低压绕组进行了设计。计算出每匝电动势,进而计算获得低压绕组的匝数,通过变比可得到高压绕组的匝数。高低压绕组的设计包括设计绝缘结构,绕组材料,绕组结构阻抗与负载损耗计算等。计算空载特性是计算空载损耗和空载电流,进而判断所设计的变压器是否合理。计算短路特性是计算变压器的短路电压百分数、铜耗和短路阻抗,若短路阻抗太大则会产生很大的附加损耗,也会使变压器局部过热。变压器温升计算值不仅关系到变压器的安全性、可靠性、使用寿命,也关系到变压器的制造成本。所以本文对温升做了详细的计算。最后则对变压器的结构改进做了详细的介绍。 关键词:电力变压器;电磁计算;结构改进

Abstract Power transformers plays an important role in the power system, and its development trend is safe and reliable, saving production capital, low-loss run, trying to improve the quality of the product. Therefore, it is very important to calculate and analyze the electromagnetic power voltage device. This article reference to the vast literatures on the basis in early, according to the basic idea of transformer design, in accordance with the basic steps of the general press is designed to complete the design of a power transformer 1600kVA / 10kV . This design transformer design according to the general method for the design of power transformers made a detailed design. A reasonable choice of wire and an iron core transformer according to the design specifications to enable safe and reliable operation. High and low voltage windings are designed By calculating the high and low voltage winding turns. Calculating the quantity per turn, and then calculating the number of turns of the low voltage winding can be obtained through high voltage winding turns ratio. Design of high and low voltage winding insulation structure including design, winding material, winding structure impedance and load loss calculation. Computing load characteristic is to calculate load loss and no-load current, and then to determine the design of the transformer is reasonable. Calculating short-circuit characteristic is to calculate the percentage of the transformer short-circuit voltage, short-circuit impedance copper consumption and, if too short-circuit impedance will have a huge additional losses, but also make local overheating transformer. Calculating transformer temperature rise is not only related to the transformer of safety, reliability, service life, but also to the manufacturing cost of the transformer. Therefore, this essay have made a detailed calculation of the temperature rise. Finally, I made a detailed presentation to improve the structure of the transformer. Keywords: power transformer; electromagnetic calculation; structure improvement

相关文档
最新文档