六年级抽屉原理练习卷 姓名

六年级抽屉原理练习卷 姓名
六年级抽屉原理练习卷 姓名

六年级抽屉原理练习卷

1. 将10个苹果放进3个抽屉里,至少有一个盒子里有()个。

2. 红、黄、白、黑球共50个,至少有()个球的颜色是相同的。

3. 18个小朋友,至少有()个人是在同一个月出生的。

4. 实验小学一年级的730名学生是同一年出生的,至少有( )个学生是同一天出生的。

5. 抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿()枝才能才能保证至少有1枝蓝色铅笔。

6. 盒子里有5个红球,6个蓝球和7个白球,一次拿出()个球才能保证至少有1个白球。

7. 有红、黄、蓝、白四色球各10个,一次摸出5个球,至少有( )个球的颜色是相同的。

8. 有红、黄、蓝3种颜色的小珠子各4颗混放在口袋里,为了保证一次能取出2颗颜色相同的珠子,一次至少取()颗。

9. 一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出()个球才能保证有2个球的颜色相同。

10. 某班学生去买语文书、数学书和英语书。买书的情况是:有买一本的,有买两本的,有买三本的,至少要去()人才能保证一定有两位同学买到相同的书。(每种书最多买一本)

11. 某班学生去买数学书、语文书、美术书、自然书,买书的情况是:有买一本的、两本的、三本的和四本的。至少去()人才能保证一定有两人买的书是相同的。(每种书最多买一本)

12. 学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,至少要()个同学才能保证一定有两人所借的图书属于同一种。

13. 学校买来红、黄、蓝、绿四种颜色的球,每个学生最多只能借2个球,至少要有()个学生借球,才能保证其中必然有两个学生所借的球一样。

14. 某班学生去买书,A、B、C、D四种,每人可买一本,二本,三本或四本.至少有( )位同学才能保证一定有两位同学买到相同的书。(每种书最多买一本)

15. 幼儿园买来三种玩具,每个小朋友从中任意选择不同的2件,那么至少有( )个小朋友才能保证总有两人选择的玩具相同?

16. 学校六(1)班有40名学生,年龄最大的有13岁,最小的有12岁,那么其中必有( )名学生是同年同月出生的。

17. 有47名同学参加考试,成绩都是整数,满分100分,有3名同学的成绩在60分以下,其余学生的成绩都在75~95分之间,至少有( )名同学的分数相同。

18. 停车场上有40辆客车,各种座位数不同,最少的有26个座,最多的有44个座位,那么在这些客车中,至少有()辆的座位数相同。

19. 某班有37名学生,他们都定了A,B,C三种报纸中的一种、二种或三种,其中至少有( )位同学定的报纸相同。

20. 库房里有A,B,C,D四种球,每人任意搬运3个不同种类的,在31个搬运者中至少有( )人搬运的球完全相同。

21. 袋子里有足够多的A、B、C三种颜色的球,有32个同学到袋中去摸球,每人只能摸一次,每次只能摸3个球,至少有()人摸到的小球颜色是相同。

22. 有一副扑克,最少拿出( )张,才能保证四种花色全都有(包括大.小王)。

23. 布袋里有4种不同颜色的球,每种都有10个,最少取出( )个球,才能保证其中一定有3个球的颜色相同。

24. 布袋中有60个形状,大小相同的木块,每6块编上相同的号码,那么一次至少取出( )块,才能保证有3块号码相同。

25. 有一个布袋里有红色、黄色、蓝色袜子各10只,最少要拿出()只才能保证至少有2双颜色不相同的袜子。

26. 一个盒子里有红,黄,蓝三色袜子各8只,每次从中拿出一只,最少要拿( )只才能保证其中至少有2双颜色不同的袜子。

27. 有质地一样的红色、白色、绿色、粉色筷子各12支,一次至少拿出()支才能保证有3双不同颜色的筷子。

28. 有红色、白色、粉色、黑色、橙色的手套各15只,一次至少拿出()只才能保证有4副不同颜色的。

29. 一只布袋中装有大小相同,颜色不同的手套,有黑,红,蓝,黄四种,至少要摸出( )只手套才能保证有4副同色的。

30. 一个箱子中有同样规格但颜色不同的袜子若干只,颜色有白,黑,蓝三种,最少摸出( )只袜子,才能保证有3双同色的。

31. 一个布袋中有大小相同颜色不同的手套,颜色有黑红蓝黄四种,至少要取出()只才能保证有3副同色的。

32. 把104块糖分给14个小朋友,如果每人至少分1块的话,那么不管你怎么分,一定会有2个小朋友分到的糖的块数同样多,为什么?

33. 把135块饼干分给16个小朋友,若每个小朋友至少分到一块饼干,那么不管怎样分,一定会有两个小朋友得到饼干的数量相同,为什么?

34. 在10米长的一段电线上落着11只麻雀,那么至少有2只麻雀之间的距离不超过1米。为什么?

35. 袋子里有红球90只,,蓝球80只,黄球70只,白球60只,黑球50只,要保证摸出10对同色球,至少要取出多少只球?

36. 把25个球最多放在( )个盒子里,才能至少有一个盒子里有7个球。

37. 某班选2名班长,投票时每人能从4名候选人中选两名,这个班至少应有多少名同学才能保证有8名同学投了相同的两名候选人的票。

38. 甲乙丙三人都在读同一本故事书,书中有100个故事,每个人可以从中选定一个故事顺序的往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事,那么甲乙丙三人共同读过的故事至少有多少个?

抽屉原理例习题

8-2抽屉原理 教学目标 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 知识点拨 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进 其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的. 利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”, 6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么 肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子. 【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的 任意一个中,这样至少有一个鱼缸里面会放有两条金鱼. 【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名 学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽 屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的 作业. 【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生 日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显 知识精讲

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

抽屉原理基础题

抽屉原理基础题 1.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少多少学生中一 定有两人所借的图书属于同一种。 答:从三种图书中任意借两本有6种借法。6+1=7,由抽屉原理可知,至少7个学生种有两人所借图书种类完全相同。 2.礼堂里有253人开会,这253人中至少有多少人的属相相同 答:22人 3.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1 答:选A。 由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。 4.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若 干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。 (A)3 (B)4 (C)5 (D)6 答:选C。 要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。 5.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能 使拿出的手套中一定有两双是同颜色的。 (A)4 (B)5 (C)6 (D)7 答:选C。 考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。 提高班 1.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。 答:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。 2.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.360docs.net/doc/3e5685215.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

六年级下册抽屉原理习题答案版

__________________________________________________ 抽屉原理练习题 习题精选一:------找“抽屉”,找“苹果” 1、三个小朋友同行,其中必有两个小朋友性别相同,为什么? 两种性别:2个“抽屉”三个小朋友:3个“苹果” 3÷2=1(个)···1(个) 1+1=2(个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 1年有52周:52个“抽屉” 53个学生:53个“苹果” 53÷52=1(个)···1(个) 1+1=3(个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么? 12个属相:12个“抽屉” 13个观众:13个“苹果” 13÷12=1(个)···1(个) 1+1=2(个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。 五种颜色:5个“抽屉”六个面:6个“苹果” 6÷5=1(个)···1(个) 1+1=2(个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的? 四个班:4个“抽屉” 6个同学:6个“苹果” 6÷4=1(个)···2(个) 1+1=2(个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉”抽牌:“苹果” 4+1=5(张) 习题精选二:-------求至少数=商(苹果数÷抽屉数)+1 1、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的? 列式:17÷3=5(次)···2(次) 5+1=6(次) (分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。) 2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:152÷3=50(人)···2(人) 50+1=51(人) (分析:把跳绳、投篮、爬杆三项活动看做3个抽

抽屉原理的例题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n 个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 例题5:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的? 例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有( )只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着( )本书; 3.把7封信投进3个邮筒,则总有一个邮筒投进了不止( )封信。

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

最新小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求. 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相 同. 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同. 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相 同. 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同. 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同. 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致 的? 解题关键:利用抽屉原理2. 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的. 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为 __________人. 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)

人教版小学数学六年级下册抽屉原理

《抽屉原理》教学设计 教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书,各小组。备好自己的记分牌教学过程: 一、创设情景导入新课 师:同学们,昨天晚上与爸爸、妈妈做过导学案中的扑克牌游戏吗?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示) 师生共同做两轮抽牌游戏,让没有做过游戏的同学观察、思考、验证 师:为什么会出现这种情况呢?如何解释呢?今天我们就来探索这其

中的规律——抽屉原理 教师板书:抽屉原理 二、自主操作探究新知 1 活动) 一( 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放? 师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。 1、学生动手操作,师巡视,了解情况。 2、汇报交流说理活动 学生动手操作,教师巡视,了解情况,并参与到较弱的小组中适当点拨:要把所有可能的情况摆出来 一个小组上台展示,四人操作,一人同时解说,教师协助学生将记录放在投影机上展示比较 教师展示数组的形式(4,0,0)(3,1,0)(2,2,0)(2,1,1),让学生比较认识到数组形式的简洁) 引导学生再认真观察记录,还有什么发现?并请刚才展示的小组回答板书:总有一个笔筒里至少有2枝铅笔。 ③怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)……1(枝) ④这样摆挺麻烦,那么怎样摆可以一次得出结论?各组摆摆、想想。

抽屉原理练习题 学生版

抽屉原理练习题 1、光明小学有367名2000年出生的学生,请问是否有生日相同的学生? 2、用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同. 3、三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩. 4、试说明400人中至少有两个人的生日相同. 5、证明:任取6个自然数,必有两个数的差是5的倍数。 6、从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有

2个数的和是41. 7、从1,2,3, ,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。 8、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12. 9、有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子? 10、三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书? 11、篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?

12、学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗? 13、11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同 14、有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同? 15、有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出个,才能保证有5个小球是同色的? 16、把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.

(完整版)六年级下册抽屉原理习题答案版

抽屉原理练习题 习题精选一:------找“抽屉”,找“苹果” 1、三个小朋友同行,其中必有两个小朋友性别相同,为什么? 两种性别:2个“抽屉”三个小朋友:3个“苹果” 3÷2=1(个)···1(个) 1+1=2(个) 2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 1年有52周:52个“抽屉” 53个学生:53个“苹果” 53÷52=1(个)···1(个) 1+1=3(个) 3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么? 12个属相:12个“抽屉” 13个观众:13个“苹果” 13÷12=1(个)···1(个) 1+1=2(个) 4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。 五种颜色:5个“抽屉”六个面:6个“苹果” 6÷5=1(个)···1(个) 1+1=2(个) 5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的? 四个班:4个“抽屉” 6个同学:6个“苹果” 6÷4=1(个)···2(个) 1+1=2(个) 6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉”抽牌:“苹果” 4+1=5(张) 习题精选二:-------求至少数=商(苹果数÷抽屉数)+1 1、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有 几次手势是相同的? 列式:17÷3=5(次)···2(次) 5+1=6(次) (分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。) 2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位 同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:152÷3=50(人)···2(人) 50+1=51(人) (分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。)习题精选三:--------求物体数(当至少数=2时,直接判断物体数比抽屉数多1;当至少数>2时,物体数=抽屉数×(至少数--1)+1。) 1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保 证取出的球中有2个球的颜色相同,则最少要取出多少个球? 列式:3+1=4(个) (分析:把三种颜色看作3个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出4个球。) 2、一个盒子里有红色、蓝色、黄色、白色球若干个,为保证取出的球中有 5个球颜色相同,则最少要取出多少个球? 列式:4×(5-1)+1=17(个) (分析:把四种颜色看做4个抽屉,为保证取出的球中有5个球的颜色是相同的,说明一个抽屉中至少要有5个物体,物体数=4×(5-1)+1=17个,所以至少要取出17个球。) - 1 -

六年级数学抽屉原理

抽屉原理 知识框架 一、 知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、 抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、 抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 重难点 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题; (4) 利用最不利原则进行解题;

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

人教版六年级下册抽屉原理教学设计

《数学广角——抽屉原理》教案 城区小学李忠 【教学内容】: 人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2.“总有”“至少”具体含义,以及为什么商+1而不是加余数。 【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的小棒、杯子、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们,你们玩过扑克牌吗? 生齐:玩过。 师:下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?生齐:对。 师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们信吗? 部分生说:信 部分生说:不信。

师:那我们就来验证一下。 师请5名同学各抽一张,验证至少有两张牌是同一种花色的。 师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗? 生齐:相信。 师:其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊? 生齐:想。 二、操作探究,发现规律。 1.研究小棒数比杯子数多1的情况。 师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子 师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法? 学生分组操作,并把操作的结果记录下来。 请一个小组汇报操作过程,教师在黑板上记录。 生:我们组一共有2种摆法,第一种摆法是一个杯子里放3根,另一个杯子里没有,记作(3 0);第二种摆法是一个杯子里放2根,另一个杯子里放1根,记作(2 1)。 师:你们的摆法跟他一样吗? 生齐:一样。 师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?生1: 总有一个杯子里至少有2根小棒。生2:总有一个杯子里至少有几根小棒。师板书:总有一个杯子里至少有2。 师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?学生分组操作,并把操作的结果记录下来。 请一个小组代表汇报操作过程,教师在黑板上记录。 生:我们组一共有四种摆法。第一种摆法是一个杯子里放4根,另外两个杯子里没有,记作(4 0 0);第二种摆法是一个杯子里放3根,一个杯子里放一根,另外一个杯子里没有,记作(3 1 0);第三种摆法是一个杯子里放2根,另一个杯子里也放2根,最后一个杯子里没有,记作(2 2 0);第四种摆法是一个杯子里放2根,另外两个杯子里各放一根,记作(2 1 1)。师:还有不同的摆法吗? 生都摇头表示没有异议。 师:观察所有的摆法,你发现了什么?

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。 一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证 6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D.

相关文档
最新文档