特征函数的概念及意义

特征函数的概念及意义
特征函数的概念及意义

特征函数的概念及意义

目录:

一.特征函数的定义。 二.常用分布的特征函数。 三.特征函数的应用。 四.绪论。

一.特征函数的定义

设X 是一个随机变量,称 ()()

itX

e t E =?, +∞<<∞-t ,

为X 的特征函数.

因为=1Xit e ,所以()

itX e E 总是存在的,即任一随机变量的特征函数总是存在的.

当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为

()∑+∞

==1k k itx p e t k ?, +∞<<∞-t .

当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()?+∞

∞-=dx x p e t k itx ?, +∞<<∞-t .

与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数.

二.常用分布的特征函数

1、单点分布:().1P ==a X 其特征函数为 ().e t it a =?

2、10-分布:()(),10x p 1p x X P x

1x =-==-,,其特征函数为

()q pe t it +=?,其中p 1q -=.

3、泊松分布()λP :()λλ-=

=e k k X P k

,k=0,1, ,其特征函数为

()()∑+∞

=---===0k 1e e k

ikt

it

it e e e e k e

t λλλλλ?!

. 4、均匀分布()b a U ,:因为密度函数为

()?????<<-=.;,

0,

1其他b x a a b x p

所以特征函数为

()()

?

--=

-=b a

iat

ibt itx a b it e e dx a b e x ?. 5、标准正态分布()1,0N :因为密度函数为

()2

221x e x p -=

π

, +∞<<∞-x .

所以特征函数为

()()

?

?∞+∞-∞+∞

----

-

∞==

dx

it x t x itx e e

dx e x 22

22

222121

π

?

=?

-∞+-∞---

-

=it

it

t t t e

dz e

e

2

2

2

22221π

.

其中

?

-∞+-∞--

=it

it

x dz e

π22

2 .

三.特征函数的应用

1、在求数字特征上的应用

求()

2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2

t i 2

2e

t σμ

?=,

于是由()k k k i 0ξ?E =得,

()μ?ξi 0i ′

==E , ()22″

220i σμ?ξ--==E , 由此即得

()22

2D σξξξμξ=E -E ==E ,.

我们可以看出用特征函数求正态分布的数学期望和方差, 要比从定义计算

方便的多.

2、 在求独立随机变量和的分布上的应用

利用归纳法, 不难把性质4推广到n 个独立随机变量的场合,而n

21,ξξξ ,,是n 个相互独立的随机变量, 相应的特征函数为

()()()∑==n 1

i i n 21t t t ξξ???,则,,, 的特征函数为()()∏==n

1

i i t t ??.

设()n ,,21j j ,=ξ是n 个相互独立的,且服从正态分布()

2N j j a σ,的正态随机变量.

试求∑==n

1j j ξξ的分布.

由于j ξ的分布为()

2N j j a σ,,故相应的特征为()2

2

2t

ia j j j

e t σ?=.

由特征函数的性质()()ξ??可知∏==n

j j t t 1的特征函数为

()()21

212

2211

1

2

t t a i n j n

j t

ia j n

j j n

j j j j

e

e

t t ?

??

? ?

?-???? ?

?

==∑∑

=====∏∏σσ??.

而这正是???

? ??∑∑==n j j n j j a N 12

1,σ的特征函数.

由分布函数与特征函数的一一对应关系即知ξ服从???

? ??∑∑==n j j n j j a N 12

1,σ. 3、 在证明二项分布收敛于正态分布上的应用

在n 重贝努力实验中,事件A 每次出现的概率为p(0

dt e x npq np P x

t n

n ?

-∞→=???

? ??<-2

2

21

lim πμ.

要证明上述结论只需证明下面的结论,因为它是下面的结论一个特例. 若 ,,21ξξ是一列独立同分布的随机变量,且

()

,,2,1,0,22 =>==E k D a k k σσξξ则有

dt e x n

na P x

t n k k n ?

∑∞

-=∞→=?????

? ??<-2

12

21lim π

σξ.

证明 设a k -ξ的特征函数为(),t ?则

∑∑==-=-n

k k n

k k

n a

n

na

11

σξσξ

的特征函数为n

n t ??

??????? ??σ?

又因为()(),,02σξξ=-=-E a D a k k 所以()()20,00σ??-=''=' 于是特征函数()t ?有展开式

()()()()()()

222222

1

12000t t t t t t οσο????+-=+''+'+=.

从而对任意的t 有,

∞→→???????

??? ??+-=????????? ??-n e n t n

t n t t

n

,2122

222

οσ?. 而2

2

t e

-

是()1,0N 分布的特征函数,由连续定理可知

dt e x n na P x

t n k k n ?

∑∞

-=∞→=

????

?? ??<-2

1221

lim π

σξ.

成立,证毕.

我们知道在n 2

221

P lim μπ

μ中dt e x npq np x

t n n ?

-∞

→=???

?

??<-是服从二项分布.

()n k q p C k p k

n k k n n ≤≤==-0,μ.

的随机变量,dt e x x

t ?

-∞→=

??

?

??<-2

2

21P lim πλλξλλ为“泊松分布收敛于正态分布” , 我

们把上面的结论常常称为“ 二项分布收敛于正态分布”.

4、在求某些积分上的应用

我们知道?+∞

-022

dx e x x k 可以用递推法,现在我们用特征函数来解决随机变量

ξ服从??

? ??21,0N ,其密度函数为:()2

1

x e x p -=

π

其特征函数为:()∑?∞

+=-∞

+∞

--??? ??-==?

?=024

1!411

22

i t

i

t x itx i t

e

dx e e t π

?ξ, 故 ()()()() +++?

?

?

??-+??? ??-=+!

131241!!2412

1

2k t k k k t k k

k

ξ? ,

所以 ()()()!!1221!!24102-???

??-=??? ??-=k k k k

k

k ξ?,

由特征函数的性质 ()()()k

k k

k k i 2!!120222-=

-=E ξ?ξ,

又 ?+∞

-=E 0

222

dx e x x k k

ξ,

()?

+∞

-+--=

1

22!!122

k x k k dx e x .

即 ()?∞++--=

01

22!!122k x k k dx e x

四.结论

从上面的内容可以看出:特征函数并不是一个抽象概念,在概率论与数理

统计的许多问题中,无论是证明还是应用,通过构造特征函数,比如在求分布的数学期望和方差;在求独立随机变量和的分布上的应用,利用独立随机变量和的特征函数为特征函数的积性质推广,往往能使问题得到简化;在证明二项分布收敛于正态分布上的应用,可以从特例到一般问题,从而使问题迎刃而解;在求某些积分上的时候,可以通过构造特征函数使问题简单.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数教材分析解读

《函数》教材分析 1、哪儿发生变化,哪没变?从教材内容,(或添加、删减),内容 没变,但是呈现方式发生改变,体现的理念变化,为什么这么 变?实际上是要学有用的数学,身边的数学,应用数学,学是 为了用,设计思想,体现的理念。做数学,让学生参与。 2、新教材的重点和难点要分析出来,要将知识串起来。 3、变化的内容引起呈现方式的变化,技术所起的作用。技术的使用,引起学习方式的改变,怎么用?明确指出需要用技术的地方,形与数要结合。使用技术到非用不可,举例说明。重点! “函数是描述客观世界变化规律的重要数学模型。高中阶段用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社

会中的简单问题。” 二、内容安排: 函数这章教材共分个大节:第一大节是函数的概念及函数的一般性质;第二大节是指数与指数函数;第三大节是对数与对数函数;第四大节是函数的应用举例和实习作业。 1、函数是中学数学中最重要的基本概念之一。中学的函数教学大致为三个阶段,初中初步探讨函数的概念、函数关系的表示法、函数图象,并具体学习正比例、反比例、一次函数、二次函数等,使学生获得感性知识;本章及三角函数的学习是函数教学的第二阶段,是对函数概念的再认识阶段,用集合、映射的思想理解函数的一般定义,通过指数函数、对数函数以及后续的三角函数,使学生获得较为系统的函数知识,并初步培养函数的应用意识。第三阶段在选修部分,极限、导数与微分、积分是函数及其应用的深化与提高。 高中的函数知识是在初中的基础上学习的,主要讲函数的概念、函数关系的表示法、并学习函数的一般性质。从映射的概念看,函数是集合A到集合B的映射(A、B是非空数集),映射是特殊的对应,函数是特殊的映射,反函数也是映射。 2、学生在初中的基础上学习有理指数幂及其运算法则是不困难的。指数函数及其图象和性质是这一节的重点,要通过具体实例了解指数函数模型的实际背景,通过具体函数的图象来观察、归纳函数的性质,反之,函数性质又直观反映在图象上,指导准确作出函数图象。

数列的概念与简单表示法(含 解析)

第一节数列的概念与简单表示法 知识要点 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类: (3)数列的通项公式: 如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n (n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数-1 列的递推公式.

3.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 4.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n) =a n(n∈N*). 题型一:由数列的前几项求数列的通项公式 [例1] 下列公式可作为数列{a n}:1,2,1,2,1,2,…的通项公式的是( ) A.a n=1 B.a n=C.a n=2- D.a n= [自主解答] 由a n=2-可得a1=1,a2=2,a3=1,a4=2,….[答案] C 变式:若本例中数列变为:0,1,0,1,…,则{a n}的一个通项公式为________. 答案: a n= 由题悟法 1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整. 2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

函数概念及其基本性质

第二章函数概念与基本初等函数 I 一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重 要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的 三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 1 10.通过实例,了解幂函数的概念,结合五种具体函数y = x,y= x3,y=x-1,y = x2的图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法. 4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

数列的函数特征(学生版)

数列的函数特征 1、数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即a n=f(n)(n∈N*).数列的函数图像是一群孤立的点。 2、数列的增减性 (1)若,n∈N*,则数列{a n}叫作递增数列; (2)若,n∈N*,则数列{a n}叫作递减数列; (3)若,n∈N*,则数列{a n}叫作常数列; (4)若a n的符号或大小交替出现,则数列{a n}叫作摆动数列. 3、数列的最大项与最小项 (1)若a n是最大项,则;(2)若a n是最小项,则。 4、数列的周期性 对于数列{a n},若存在一个大于1的自然数T(T为常数),使a n+T=a n,对一切n∈N*恒成立,则称数列{a n}为周期数列,T就是它的一个周期. 考向一数列的单调性 例1—1 已知数列{a n}的通项公式为a n=n2 n2+1 ,判断数列{a n}的增减性.

例1—2 已知数列{a n}的通项公式是a n=an bn+1 ,其中a,b均为正常数,则该数列是单调递__________数列. ①判断数列单调性的基本方法是利用作差或作商的方法比较a n 与a n+1的大小关系,若a n>a n+1(n∈N*)恒成立,则{a n}是递减数列;若a n<a n+1(n∈N*)恒成立,则{a n}是递增数列;②判断数列单调性时,也可从数列与函数的关系出发,分析数列{a n}的通项公式a n=f(n)对应函数的单调性来确定数列的单调性. 变式1—1 已知数列{a n}的通项公式是a n= kn 2n+3 (k∈R). (1)当k=1时,判断数列{a n}的单调性;(2)若数列{a n}是递减数列,求实数k的取值范围. 变式1—2 已知数列{a n}的通项公式a n= 1 1+n2-n ,n∈N*,则该数列是单调递__________数列. 考向二数列的最大项与最小项例2—1 已知数列{a n}的通项公式为a n=n2-5n+4 (n∈N*),则 (1)数列中有多少项是负数?(2)n为何值时,a n有最小值?并求出最小值.

高中数学 第一章1.1.2《数列的概念及函数特征》课时训练 北师大版必修5

1.1.2数列的概念及函数特征测试题 1.数列1,1,1,1,1-- ,的通项公式的是 。 1. 1(1)n n a +=- 或{11n n a n =-,为奇数,为偶数 。提示:写成两种形式都对,a n 不能省掉。 2. ,5 2 ,21,3 2, 1的一个通项公式是 。 2. 2 ;1 n a n = +提示:若把12换成24,同时首项1换成22,规律就明显了。其一个通项应该为:2;1 n a n = + 3.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表 3.140,85。提示:观察上表规律,收缩压每次增加5,舒张压相应增加3或2,且是间隔出现的,故应填140,85。 4.已知数列{}n a ,1 ()(2) n a n N n n += ∈+,那么1120是这个数列的第 项. 4.10.提示:令1(2)n a n n = +=1120 ,即n 2 +2n-120=0,解得n=10. 5.已知数列{a n }的图像是函数1 y x =图像上,当x 取正整数时的点列,则其通项公式为 。 5. a n = 1n .提示:数列{a n }对应的点列为(n,a n ),即有a n =1n 。 6.已知数列{}n a ,22103n a n n =-+,它的最小项是 。 6.2或3项。提示:22103n a n n =-+=2(n- 52)2-19 2 .故当n=2或3时,a n 最小。 7. 已知数列{}n a 满足12a =-,1221n n n a a a +=+-,则4a = . 7. 25-。提示:222212a ?-=++()=23,32 23262 13a ?=+ =-,12622165n a +?=+=--。 8.如图,图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则

第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质 函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究. 1.求函数值和函数表达式 对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题. 例1 已知f(x-1)=19x2+55x-44,求f(x). 解法1 令y=x-1,则x=y+1,代入原式有 f(y)=19(y+1)2+55(y+1)-44 =19y2+93y+30, 所以 f(x)=19x2+93x+30. 解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30. 可. 例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5). 解 由题设 f(-x)=-ax5+bx3-x+5 =-(ax5-bx3+x+5)+10

=-f(x)+10, 所以 f(-5)=-f(5)+10=3. 例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得 f(x)=f(x+0)=f(x ·0)=f(0)=k , 即对任意实数x ,恒有f(x)=k .所以 f(x)=f(19)=99, 所以f(1999)=99. 2.建立函数关系式 例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像. 解 因为l 2过点C(1,0),所以m +b=0,即b=-m . 设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0. 故S 的函数解析式为 例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

数列的函数特性教案

无为二中公开课 教 学 设 计 课题《数列的函数特性》 执教人:汪桂霞 数列的函数特性 1课时 知能目标解读 1.熟练掌握数列与函数之间的关系,理解数列是一种特殊的函数的含义. 2.能够用函数的观点、方法研究数列的增减性、最值、图像等问题. 3.能够通过探求数列的增减性或画出数列的图像来求数列中的最大项或最小项. 重点难点点拨 重点:1.理解数列是一种特殊的函数的含义. 2.能够用函数的观点、方法研究数列的增减性、最值、图像等问题. 难点:用函数的观点、方法研究数列的增减性、最值、图像等问题. 学习方法指导 1.数列的概念与函数概念的联系与区别 2.数列的表示方法 通项公式法(解析法),图像法,列表法 3.数列的单调性 (1)递增数列(2)递减数列(3)常数列(4)摆动数列

4.如何证明数列的单调性证明数列的单调性的主要方法有: (1)定义法:作差比较,也可以采用作商的方法,作商时,首先应明确数列的项a n 的符号(a n >0还是a n <0),对 于根式,进行分子(或分母)有理化. (2)借助于数列图像的直观性,证明数列的单调性. 教学手段:多媒体教学 教学方法:类比,引导,发现,总结提高,讲练结合 教学过程: 一:以函数的观点,分析等差、等比数列 1、关于等差数列{a n } (1)通项公式a n =a 1+(n-1)d,可以写成a n =dn+(a 1-d)。它是n 的一次函数,以(n,a n )为坐标的 一群离散点均匀地分布在直线上。 当d>0时,{a n }数列递增; 当d<0时,{a n }数列递减; 当d=0时,{a n }为常数数列。 (2) 若d 不为零,它是关于n 的二次函数(缺常数项),图象是过原点的抛物线上的一群孤立点。 2、关于等比数列{a n } (1)通项公式a n =a 1q n-1,可以写成a n =·q n (n ∈ N*)。 当q>0且q≠1时,y=q x (x ∈R) 是一个不为0的常数与指数函数的积,因此a n =·q n (n ∈N*) 的图象是函数y=·q x (xR)的图象上的一群孤立点。 很明显,若a 1>0,当q>1时,{a n }数列递增当0

函数的概念及基本性质练习题

函数的概念及基本性质练习题 1. 下列各图中,不能是函数f (x )图象的是( ) 2.若f (1x )=1 1+x ,则f (x )等于( ) A.1 1+x (x ≠-1) B.1+x x (x ≠0) C.x 1+x (x ≠0且x ≠-1) D .1+x (x ≠-1) 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 4.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 5.已知函数f (x )=??? 2x +1,x <1 x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( ) A.12 B.4 5 C .2 D .9 6.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1}, B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数 D .A =R ,B ={正实数},f :A 中的数取绝对值 7.下列各组函数表示相等函数的是( ) A .y =x 2-3 x -3与y =x +3(x ≠3) B .y =x 2-1与y =x -1 C .y =x (x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 8.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +8 3x -2

相关文档
最新文档